
Search Techniques for Fourier-Based Learning

Adam Drake and Dan Ventura

Computer Science Department
Brigham Young University
{acd2,ventura}@cs.byu.edu

Abstract

Fourier-based learning algorithms rely on being
able to efficiently find the large coefficients of a
function’s spectral representation. In this paper,
we introduce and analyze techniques for finding
large coefficients. We show how a previously intro-
duced search technique can be generalized from the
Boolean case to the real-valued case, and we apply
it in branch-and-bound and beam search algorithms
that have significant advantages over the best-first
algorithm in which the technique was originally in-
troduced.

1 Introduction

Fourier-based learning algorithms attempt to learn a func-
tion by approximating its Fourier representation. They have
been used extensively in learning theory, where properties of
the Fourier transform have made it possible to prove many
learnability results [Jackson, 1997; Kushilevitz and Mansour,
1993; Linial et al., 1993]. Fourier-based algorithms have
also been effectively applied in real-world settings [Drake
and Ventura, 2005; Kargupta et al., 1999; Mansour and Sa-
har, 2000].

In order to approximate a function’s Fourier representation,
a learning algorithm must be able to efficiently identify the
large coefficients of the spectrum. Thus, Fourier-based learn-
ing is essentially a search problem, as the effectiveness of this
learning approach is tied to the search for large coefficients.

In this paper, we consider the problem of finding large
spectral coefficients in real-world settings. Specifically, we
consider the scenario in which a learner is asked to learn an
unknown function from a set of labeled examples. In the fol-
lowing sections, we briefly discuss the hardness of the search
problem, and describe a coefficient search technique that can
be incorporated into a variety of search algorithms. We show
that a complete branch-and-bound algorithm is as fast as and
more memory efficient than a previously introduced algo-
rithm. We also introduce an incomplete beam search algo-
rithm that is always fast and usually able to find solutions that
are as good as those found by the complete algorithms.

2 Fourier-Based Learning

The algorithms discussed in this paper are based on the
Fourier transform of Boolean-input functions. It is also
known as a Walsh transform.

2.1 The Fourier Transform

Suppose f is a real-valued function of n Boolean inputs (i.e.,
f : {0, 1}n −→ R). Then the Fourier spectrum of f , denoted
f̂ , is given by

f̂(α) =
1
2n

∑
x∈{0,1}n

f(x)χα(x) (1)

where α ∈ {0, 1}n and f̂(α) is the spectral coefficient of
basis function χα. Each χα : {0, 1}n −→ {1,−1} is defined
by the following:

χα(x) =
{

1 : if
∑

i αixi is even
−1 : if

∑
i αixi is odd (2)

where αi and xi denote the ith binary digits of α and x.
The 2n basis functions of the Fourier transform are XOR

functions, each computing the XOR of a different subset of
inputs. The subset is determined by α, as only inputs for
which αi = 1 contribute to the output of χα. The order of a
basis function is the number of inputs for which αi = 1.

The Fourier coefficients provide global information about
f . For example, each f̂(α) provides a measure of the correla-
tion between f and χα. A large positive or negative value in-
dicates a strong positive or negative correlation, while a small
value indicates little or no correlation.

Every f can be expressed as a linear combination of the ba-
sis functions, and the Fourier coefficients provide the correct
linear combination:

f(x) =
∑

α∈{0,1}n

f̂(α)χα(x) (3)

Equation 3 is the inverse transform, and it shows how any f
can be recovered from its Fourier representation.

2.2 Learning Fourier Representations

In typical learning scenarios, f , the target function, is un-
known and must be learned from a set X of 〈x, f(x)〉 ex-
amples of the function. A Fourier-based learning algorithm

1040

attempts to learn a linear combination of a subset B of the
basis functions that is a good approximation of f :

f(x) ≈
∑
α∈B

f̂X(α)χα(x) (4)

Here, f̂X(α) denotes a coefficient approximated from X .
Since f is only partially known, the true values of the co-
efficients cannot be known with certainty. However, they can
be approximated from the set of examples:

f̂X(α) =
1
|X|

∑
〈x,f(x)〉∈X

f(x)χα(x) (5)

It can be shown that under certain conditions coefficients ap-
proximated in this way will not differ much from the true
coefficients [Linial et al., 1993].

Since there are an exponential number of basis functions
(2n basis functions for an n-input function), it is not practical
to use all basis functions unless n is small. Consequently,
a key difference between Fourier-based algorithms is in the
choice of which basis functions will be used. (The other basis
functions are implicitly assumed to have coefficients of 0.)

One approach is to use all basis functions whose order is
less than or equal to some value k [Linial et al., 1993]. This
approach has the advantage that no search for basis functions
is necessary. However, it has the disadvantage that the class
of functions that can be learned is limited to those that can be
expressed with only low-order basis functions.

Another approach is to search for and use any basis func-
tions whose coefficients are “large” (e.g., larger than some
threshold θ) [Kushilevitz and Mansour, 1993; Mansour and
Sahar, 2000]. Basis functions with large coefficients carry
most of the information about a function, and many functions
can be approximated well by only the large coefficients of
their spectral representations.

A third approach uses boosting [Jackson, 1997]. In this
approach, basis functions are added iteratively. Each itera-
tion, a basis function is selected that is highly correlated with
a weighted version of the data. Initially, all examples have
equal weight, so the first basis function added is correlated
with the original data. Thereafter, examples that are classified
incorrectly by the previously added basis functions receive
more weight, so that basis functions added in subsequent it-
erations are more correlated with misclassified examples.

The search algorithms described in the following sections
are presented with a boosting approach in mind, and each al-
gorithm returns the largest coefficient found during search.
However, with simple modification, they can be used to find
any desired number of large coefficients, allowing them to be
used with the all-large-coefficients Fourier learning approach.

2.3 Generalized Fourier-based Learning

A Fourier-based learning algorithm will likely be most effec-
tive when f has, or can be approximated well by, a sparse
Fourier representation. Of course, not all functions can be
approximated efficiently by a sparse Fourier representation.
However, the Fourier learning approach can be generalized
to allow other representations, such as wavelet representa-
tions [Donoho and Johnstone, 1994; 1995] or representations

based on ANDs and ORs of input features [Drake and Ven-
tura, 2005]. The search algorithms presented in this paper can
be used with other representations by modifying a procedure
described in the following section.

3 Finding Spectral Coefficients

For a spectral learning algorithm that selects basis functions
with large coefficients, the heart of the learning algorithm
is the search algorithm used to find large coefficients. In a
boosting approach, the key to success is being able to find
one large coefficient (per iteration).

3.1 Finding Spectral Coefficients is Hard

As mentioned previously, the number of basis functions is
exponential in the number of inputs to the function being
learned. A simple brute force calculation of spectral coef-
ficients to find the largest would require O(|X| · 2n) time.
(O(|X|) time is required to compute a single coefficient, and
there are 2n coefficients to consider.) Meanwhile, the Fast
Walsh Transform algorithm (a Boolean-input analogue to the
Fast Fourier Transform) requires O(n·2n) time. Both of these
approaches are practical only for small learning problems.

Most previous work in spectral learning has either been
in small domains (where a brute-force approach is feasible),
made assumptions about which coefficients might be large
(which limits applicability), or relied on conditions that are
not practical in many real-world situations (such as requiring
an oracle that can be queried for examples during training).
This paper considers algorithms for the more general learning
scenario in which brute force computation may be infeasible,
no assumptions about the coefficients can be made, and the
set of training examples may be fixed prior to learning.

Unfortunately, it can be shown that the problem of finding
a large spectral coefficient with respect to a set of examples is
as hard as solving the MAX-2-SAT problem, and is therefore
an NP-complete problem. The following theorem expresses
this idea for the Fourier spectrum.
Theorem 1. Let X be a set of 〈x, f(x)〉 pairs, where x ∈
{0, 1}n and f(x) ∈ R. Given θ ∈ R, the problem of de-
termining whether ∃α ∈ {0, 1}n such that |f̂X(α)| ≥ θ is
NP-complete.

Proof Sketch. The proof is by reduction from MAX-2-SAT.
The key observation in the proof is that every CNF expression
can be converted in polynomial time to a set X of 〈x, f(x)〉
pairs such that each coefficient of f̂X gives the number of
clauses that will be satisfied by one of the possible truth as-
signments. Thus, solving the large Fourier coefficient prob-
lem for X would give the MAX-2-SAT solution for the CNF
expression.

This coefficient search result generalizes to a class of spec-
tral representations with certain properties.

3.2 Searching by Bounding Coefficient Size

Fortunately, although the NP-completeness result suggests
that an efficient algorithm for finding large coefficients in ar-
bitrary spectra does not exist, a technique for bounding co-
efficient size in any given region of the spectrum makes it

1041

CreateChild(parentNode, i, value)
(1) child.β ← parentNode.β
(2) child.βi ← value
(3) child.Xβ ← ∅
(4) for each 〈x, f(x)〉 ∈ parentNode.Xβ

(5) v ← x
(6) f(v)← f(x)
(7) if vi = 1
(8) vi ← 0
(9) if value = 1
(10) f(v)← −f(v)
(11) if ∃〈z, f(z)〉 ∈ child.Xβ such that v = z
(12) 〈z, f(z)〉 ← 〈z, f(z) + f(v)〉
(13) else
(14) child.Xβ ← child.Xβ ∪ 〈v, f(v)〉
(15) return child

Figure 1: Procedure for obtaining children of a Fourier coef-
ficient search node. i is the digit of the parent node’s label
that is to be set, and value is the value it is to be set to.

possible to find large coefficients much more efficiently than
with the previously mentioned approaches. A Boolean func-
tion version of this technique was used in the context of a
best-first search algorithm [Drake and Ventura, 2005]. Here
we generalize the technique to handle real-valued functions
and show that it can be incorporated into search algorithms
that are capable of handling larger problems. In this section
we will consider only the case of searching the Fourier (XOR)
spectrum. With some modification this technique can be used
to find coefficients in other spectra.

To explain the technique we will introduce some additional
notation. Let β ∈ {0, 1, ∗}n, where ∗ is a wildcard value, be
a partially or fully defined basis function label that represents
a region of the Fourier spectrum. Specifically, β represents
the region of the spectrum consisting of all α such that ∀i
(βi = ∗∨αi = βi). We will use the notation α ∈ β to denote
an α in region β.

Suppose that the coefficient search space is a tree of nodes
with one node for each possible β. The search begins at
the root node, which has label β = ∗n. As the search
proceeds, nodes are expanded by replacing them with child
nodes whose labels have one of the wildcards set to either 0
or 1. Both children set the same wildcard, with one child tak-
ing the value 0 and the other taking the value 1. A leaf node,
which will have no wildcards in its label, is a solution, and its
label corresponds to the label of a specific basis function.

In addition to the label β, there is a set of examples, Xβ ,
associated with each node that facilitates the computation of
coefficient bounds by implicitly storing in child nodes infor-
mation obtained while computing bounds for parent nodes.
For the root node, Xβ = X . For any other node, Xβ is
derived from its parent by the procedure shown in Figure 1.
Using this procedure, the size of the largest possible Fourier
coefficient in region β can be bounded as follows:

max
α∈β

∣∣∣f̂X(α)
∣∣∣ ≤

∑
〈x,f(x)〉∈Xβ

|f(x)|
|X| (6)

To give some intuition behind this technique, note that the

largest possible Fourier coefficient for a given X is given by

max
α∈∗n

∣∣∣f̂X(α)
∣∣∣ ≤

∑
〈x,f(x)〉∈X |f(x)|

|X|
which is the coefficient bound of the root node. This maxi-
mum correlation exists only if there is an α such that either
sign(f(x)) = sign(χα(x)) or sign(f(x))
= sign(χα(x))
for all 〈x, f(x)〉 ∈ X . To the extent that a basis function, or
set of basis functions, does not exhibit either of these correla-
tions, coefficient size drops.

The procedure described in Figure 1 captures this idea at
line 12, where examples are merged. Examples are merged
here only if they are identical on inputs for which βi has not
yet been set. This can be done because the effect of inputs for
which βi has been set has already been taken into account (by
inverting outputs, at line 10, whenever βi = vi = 1). When
examples are merged, the coefficient bound may decrease
since |f(x) + f(v)| < |f(x)| + |f(v)| when sign(f(x))
=
sign(f(v)).

Note that for a solution node, where β ∈ {0, 1}n, all ex-
amples will have merged into one, and the coefficient of χβ

is given by

f̂X(β) =

∑
〈x,f(x)〉∈Xβ

f(x)

|X|
while the magnitude of the coefficient is given by the absolute
value of that quantity.

The following sections describe search algorithms that all
use this coefficient bounding technique but explore the search
space in different ways. Two of the methods are complete,
while the other is an incomplete search technique.

4 Complete Search Techniques

The complete search algorithms presented here always find
the largest coefficients, but may require exponential time
and/or memory to do so. The first is a previously introduced
best-first search algorithm [Drake and Ventura, 2005], and
the second is a branch-and-bound search algorithm. Empir-
ical results show that the branch-and-bound algorithm can
find the largest coefficient in about the same amount of time
as the best-first algorithm, while requiring far less memory.
With a boosting approach in mind, both algorithms are pre-
sented here as if the task were to find the single largest co-
efficient. With simple modification, the algorithms can be
used to find the r largest coefficients or to find all coefficients
larger than a threshold, which would be done in the find-all-
large-coefficients approach.

4.1 Best-First Search

The best-first search algorithm is outlined in Figure 2. Like
the other search algorithms, it begins at the root node. After
expanding the first node, however, it explores the space in
order of maxα∈β |f̂X(α)|, where β is the node’s label. Nodes
are stored in a priority queue in which the highest priority
element is the node with the largest coefficient bound.

Since nodes are visited in best-first order, relatively few
nodes are visited unnecessarily. However, the entire frontier
of the search must be stored in memory, which can exhaust
resources fairly quickly if the search becomes large.

1042

FindLargeCoef-BestFirst(X)
initialNode.β ← ∗n
initialNode.Xβ ← X
priorityQueue.insert(initialNode)
while priorityQueue.front() is not a solution

node← priorityQueue.removeFront()
i← GetInputToSetNext(node)
priorityQueue.insert(CreateChild(node, i, 0))
priorityQueue.insert(CreateChild(node, i, 1))

return priorityQueue.front().β

Figure 2: The best-first search algorithm. Nodes are stored in
a priority queue that always places the node with the largest
coefficient bound at the front.

FindLargeCoef-BranchAndBound(X)
initialNode.β ← ∗n
initialNode.Xβ ← X
stack.push(initialNode)
while stack is not empty

node← stack.pop()
if maxα∈node.β |f̂X(α)| > |f̂X(αbest)|

if node is a solution
αbest ← node.β

else
i← GetInputToSetNext(node)
stack.push(CreateChild(node, i, 1))
stack.push(CreateChild(node, i, 0))

return αbest

Figure 3: The branch-and-bound search algorithm. Nodes
are visited depth-first, and nodes whose coefficient bound is
below the largest coefficient found so far (|f̂X(αbest)|) are
pruned from the search.

4.2 Branch-and-Bound Search

The branch-and-bound search algorithm is outlined in Figure
3. It is a depth-first search in which search paths are pruned
whenever a node’s coefficient bound (maxα∈β |f̂X(α)|) is be-
low the best solution found so far (|f̂X(αbest)|). Figure 3 il-
lustrates the use of a stack to perform this search, although it
can be implemented using recursion as well.

The branch-and-bound algorithm will tend to visit more
nodes than the best-first algorithm, but it has less overhead,
so it can visit more nodes per second. In addition, its mem-
ory usage is linear in n, the number of inputs. If examples
at each node are stored in a hash table of size h, then the
algorithm’s space complexity is O(n(|X| + h)). By com-
parison, the space complexity of the best-first algorithm is
O(m(|X| + h)), where m, n ≤ m ≤ 2n, is the number of
nodes expanded during search. (For every node expanded and
removed from the queue, two are added, so the queue size in-
creases by one each time a node is expanded.)

4.3 Variable Ordering

In both algorithms, when a node is expanded, an input i for
which βi = ∗ is selected to be set to 0 and 1 in the child nodes
(as indicated by the GetInputToSetNext function in Figures 2
and 3). The choice of i does not affect the completeness of

Table 1: Data set summary.

Data Set Inputs Examples
Chess 38 3,196

German 24 1,000
Heart 20 270
Pima 8 768

SPECT 22 267
Voting 16 435
WBC1 9 699
WBC2 32 198
WBC3 30 569

either algorithm, so inputs could be processed in an arbitrary
order. However, both algorithms benefit greatly from a dy-
namic variable ordering scheme.

The variable ordering heuristic used in the experiments that
follow selects an input according to the following:

argmin
i

(
max

α∈βi←0

∣∣∣f̂X(α)
∣∣∣ + max

α∈βi←1

∣∣∣f̂X(α)
∣∣∣
)

(7)

in which βi←0 and βi←1 denote the labels of the child nodes
that result from setting βi to 0 and 1, respectively. This
heuristic chooses the input that results in the tightest (i.e.,
smallest) combined coefficient bounds in the children. By
obtaining tighter bounds more quickly, it is possible to more
quickly determine which portions of the space can be ignored.

4.4 Complete Search Results

This section compares the performance of the algorithms on
several data sets [Newman et al., 1998], which are summa-
rized in Table 1. Each data set represents a Boolean classifi-
cation problem. In each data set, non-Boolean input features
were converted into Boolean features. Each numeric input
feature was converted into a single Boolean feature that in-
dicated whether the value was above or below a threshold.
Each nominal input feature was converted into a group of m
Boolean features (one for each possible value of the feature),
where only the Boolean feature corresponding to the correct
nominal value would be true in an example. The number of
inputs listed in Table 1 is the number of inputs after convert-
ing non-Boolean inputs to Boolean.

Tables 2-4 compare the performance of the best-first and
branch-and-bound algorithms, both with and without the vari-
able ordering heuristic, when used to find the largest coeffi-
cient for each of the data sets. Tables 2, 3, and 4 show the av-
erage number of nodes expanded, the average amount of time
required, and the average memory usage, respectively. (Note
that for two of the data sets the best-first algorithm without
the variable ordering heuristic ran out of memory, so results
are not displayed in those two cases.)

As the node counts in Table 2 show, the variable ordering
heuristic drastically reduces the number of nodes visited by
both algorithms on the larger search problems. Table 3 shows
that this improvement in the number of visited nodes leads to
smaller run times as well, in spite of the added computation
required to compute the heuristic.

Comparing the best-first and branch-and-bound algo-
rithms, Table 2 shows that the best-first algorithm typically

1043

Table 2: Average number of nodes visited while searching for
the largest Fourier coefficient. The variable ordering heuristic
(H) reduces the number of nodes visited by both algorithms,
while the best-first (BFS) algorithm usually visits fewer nodes
than the branch-and-bound (B&B) algorithm.

Data Set B&B BFS B&B+H BFS+H
Chess 432,986.1 - 2,012.5 296.0

German 4,097.8 3,912.2 155.0 135.5
Heart 4,072.8 3,935.4 196.4 184.4
Pima 33.4 20.0 33.8 13.3

SPECT 8,007.9 8,040.8 1,170.2 1,170.7
Voting 52.2 28.3 26.0 26.0
WBC1 24.8 21.6 17.0 17.0
WBC2 252,833.5 - 479.3 339.3
WBC3 6,936.2 6,500.7 106.1 101.8

Table 3: Average time (in seconds) to find the largest Fourier
coefficient. Although the best-first algorithm (BFS) usually
visits fewer nodes, its run time is roughly equivalent to that
of the branch-and-bound (B&B) algorithm.

Data Set B&B BFS B&B+H BFS+H
Chess 242.16 - 1.39 0.91

German 1.11 1.94 0.11 0.12
Heart 0.40 0.58 0.04 0.05
Pima 0.00 0.00 0.00 0.00

SPECT 1.11 2.08 0.42 0.46
Voting 0.00 0.00 0.00 0.00
WBC1 0.00 0.00 0.00 0.00
WBC2 23.36 - 0.11 0.12
WBC3 1.48 2.55 0.05 0.05

visits fewer nodes. However, Table 3 shows that the algo-
rithms require about the same amount of time to find a solu-
tion, so the additional overhead of the best-first algorithm ap-
pears to offset the potential gain of visiting fewer nodes. Ta-
ble 4 demonstrates the branch-and-bound algorithm’s mem-
ory advantage. Perhaps more important than the differences
observed here, however, is the fact that the branch-and-bound
algorithm’s worst-case memory complexity is linear in n,
while the best-first search algorithm’s is exponential.

5 Incomplete Search Techniques

An alternative to the previously introduced complete search
algorithms is an incomplete algorithm that may not always
find the largest coefficients but is guaranteed to finish its
search quickly and usually finds good solutions.

5.1 Beam Search

The beamed breadth-first search described in Figure 4 ex-
plores the search space in a breadth-first manner, but at each
level of the tree it prunes all but the best k nodes, ensuring
that the number of nodes under consideration stays tractable.

The number of nodes that will be considered by the beam
search algorithm is O(nk), where k is the width of the beam.
Thus, unlike the complete algorithms, its worst-case time
complexity is not exponential in n. Its space complexity is

Table 4: Average memory usage (in terms of the number of
nodes) during a search for the largest Fourier coefficient. The
branch-and-bound (B&B) algorithm’s memory usage is pro-
portional to the number of inputs, and tends to be much less
than that of the best-first algorithm (BFS), whose memory us-
age is proportional to the number of visited nodes.

Data Set B&B/B&B+H BFS BFS+H
Chess 39 - 297.0

German 25 3,913.2 136.5
Heart 21 3,936.4 185.4
Pima 9 21.0 14.3

SPECT 23 8,041.8 1,170.7
Voting 17 29.3 27.0
WBC1 10 22.6 18.0
WBC2 33 - 340.3
WBC3 31 6,501.7 102.8

FindLargeCoef-BeamSearch(X , k)
initialNode.β ← ∗n
initialNode.Xβ ← X
bestNodes← ∅ ∪ initialNode
for j ← 1 to n

priorityQueue← ∅
for each node ∈ bestNodes

i← GetInputToSetNext(node)
priorityQueue.insert(CreateChild(node, i, 0))
priorityQueue.insert(CreateChild(node, i, 1))

bestNodes← ∅
while bestNodes.size() ≤ k

node← priorityQueue.removeFront()
bestNodes← bestNodes ∪ node

return bestNodes.best().β

Figure 4: The beam search algorithm. The search space is ex-
plored breadth-first, with all but the k most promising nodes
at each level being pruned.

O(k(|X| + h)), where, as before, h is the size of the hash
table containing the examples in a node.

Like the best-first and branch-and-bound algorithms, the
beam search algorithm can use an arbitrary variable ordering,
but it can benefit from a good heuristic. Here, the motivation
for the heuristic is different. In the case of the compete al-
gorithms, the heuristic is used to reduce the number of nodes
in the search space that need to be visited and has no effect
on the solution. For the beam search, however, the number
of nodes that will be considered is fixed, and the heuristic is
used to improve the solution.

Without a heuristic, it is possible for early decisions to be
made on inputs for which there is little information, meaning
that partially-defined labels that lead to good solutions might
get pruned before the inputs that would reveal their useful-
ness were considered. The variable selection heuristic defined
previously (Equation 7) favors inputs that tighten the coeffi-
cient bounds in the child nodes, making it less likely for good
nodes to be pruned.

1044

Table 5: Learning accuracy when using a single basis func-
tion obtained by a beam search of the given width. A bold
highlight indicates a result that is not significantly worse (sta-
tistically) than the infinite-beam result. In most cases, a rela-
tively small beam is sufficient to match the accuracy obtained
with an infinitely large beam.

Beam Width
Data Set 1 2 4 8 ∞

Chess 62.8% 73.7% 74.7% 75.0% 75.1%
German 58.5% 68.8% 71.1% 71.9% 72.7%
Heart 53.3% 59.8% 73.7% 74.7% 72.9%
Pima 67.2% 73.1% 73.6% 73.8% 73.7%

SPECT 59.5% 61.8% 75.0% 77.6% 77.6%
Voting 82.8% 96.0% 96.0% 96.0% 96.0%
WBC1 83.7% 89.7% 91.7% 91.2% 91.3%
WBC2 55.4% 54.4% 60.2% 61.0% 72.2%
WBC3 80.8% 88.9% 88.9% 89.0% 87.6%

5.2 Incomplete Search Results

Table 5 shows the result of attempting to learn functions with
a single basis function that is found by a beam search. The
accuracies shown are the average test accuracies (over 100
trials) when training and testing on random 90%/10% train-
ing/test splits of the data. A bold highlight indicates a result
that is not significantly worse than the result obtained with
a complete search, as measured by a paired random permu-
tation test (p = 0.05). As the table shows, the beam does
not usually need to be very wide before the beam search does
about as well as a complete search.

In fact, sometimes the beam search performs better. Al-
though we expect that basis functions with larger coefficients
will usually be better models of the unknown function f , a
larger coefficient only implies greater correlation with X , and
not necessarily with f . This uncertainty is advantageous to
the beam search, as its solutions, which may be sub-optimal
with respect to X , may often be as good for the learning task
as the solutions returned by a complete search.

Table 6 shows that the beam search can find its solutions in
less time than the branch-and-bound algorithm. The com-
putational advantage of the beam search will be more im-
portant when spectral techniques are applied to higher di-
mensional problems involving hundreds or thousands of in-
put features. Preliminary experiments with natural language
processing tasks involving thousands of input features sug-
gest that the beam search approach can still be used to find
good solutions long after it has become infeasible to compute
exact solutions.

6 Conclusion

In this paper we have considered the problem of finding large
coefficients in the Fourier spectrum, which is a central task
in Fourier-based learning. We have described a technique for
efficiently bounding Fourier spectra that can be incorporated
into different types of search algorithms.

Empirical results show that a complete branch-and-bound
algorithm based on the technique outperforms a previously
introduced best-first algorithm by finding solutions in the

Table 6: Average training time (in seconds) of the spec-
tral learning algorithm when using the branch-and-bound and
beam search algorithms to find coefficients. On the larger
problems (shown here), the beam search is much faster, and
its solutions (see Table 5) are usually equally good. (On the
smaller problems the difference in time is negligible.)

Data Set B&B+H Beam (width = 8)
Chess 1.49 0.23

German 0.12 0.04
Heart 0.04 0.01

SPECT 0.48 0.02
WBC2 0.13 0.02

same amount of time while using less memory. Mean-
while, experiments with an incomplete beam search algo-
rithm demonstrate that even using a small beam width it is
possible to find solutions that result in learning accuracy com-
parable to that obtained by a complete algorithm.

References

[Donoho and Johnstone, 1994] D. Donoho and I. John-
stone. Ideal Spatial Adaptation by Wavelet Shrinkage.
Biometrika, 1994.

[Donoho and Johnstone, 1995] D. Donoho and I. Johnstone.
Adapting to Unknown Smoothness via Wavelet Shrinkage.
Journal of the American Statistical Association, 1995.

[Drake and Ventura, 2005] A. Drake and D. Ventura. A prac-
tical generalization of Fourier-based learning. In Proceed-
ings of the 22nd International Conference on Machine
Learning, pages 185–192, 2005.

[Jackson, 1997] J. Jackson. An efficient membership-query
algorithm for learning DNF with respect to the uniform
distribution. Journal of Computer and System Sciences,
55:414–440, 1997.

[Kargupta et al., 1999] H. Kargupta, B. Park, D. Hersh-
bereger, and E. Johnson. Collective data mining: A new
perspective toward distributed data mining. In Advances
in Distributed Data Mining. AAAI/MIT Press, 1999.

[Kushilevitz and Mansour, 1993] E. Kushilevitz and Y. Man-
sour. Learning decision trees using the Fourier spectrum.
SIAM Journal on Computing, 22(6):1331–1348, 1993.

[Linial et al., 1993] N. Linial, Y. Mansour, and N. Nisan.
Constant depth circuits, Fourier transform, and learnabil-
ity. Journal of the ACM, 40(3):607–620, 1993.

[Mansour and Sahar, 2000] Y. Mansour and S. Sahar. Imple-
mentation issues in the Fourier transform algorithm. Ma-
chine Learning, 14:5–33, 2000.

[Newman et al., 1998] D.J. Newman, S. Hettich, C.L. Blake,
and C.J. Merz. UCI repository of machine learning
databases, 1998.

1045

