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Abstract

Kernel discriminant analysis (KDA) is an effective
approach for supervised nonlinear dimensionality
reduction. Probabilistic models can be used with
KDA to improve its robustness. However, the state
of the art of such models could only handle bi-
nary class problems, which confines their applica-
tion in many real world problems. To overcome
this limitation, we propose a novel nonparametric
probabilistic model based on Gaussian Process for
KDA to handle multiclass problems. The model
provides a novel Bayesian interpretation for KDA,
which allows its parameters to be automatically
tuned through the optimization of the marginal log-
likelihood of the data. Empirical study demon-
strates the efficacy of the proposed model.

1

Learning in high-dimensional spaces is challenging due to
the curse of dimensionality [Hastie et al., 2001]. Linear and
kernel discriminant analysis provide effective means to re-
duce dimensionality [McLachlan, 1992]. As an extension of
the linear discriminant analysis (LDA), kernel discriminant
analysis (KDA) extends LDA to the kernel-induced feature
space [Scholkopf and Smola, 2002], so that the non-linear
structures in the data can be handled effectively [Mika et al.,
1999]. KDA has been shown to be effective in many appli-
cations, such as image processing [Belhumeur et al., 1997]
and text information retrieval [Howland er al., 2003], where
KDA is used to generate low dimensional representations of
the original data for subsequent analysis. KDA is known to
be prone to overfitting, which causes the model to be sensi-
tive to noise. One effective way to address the problem is to
apply regularization for variance reduction [Friedman, 1989].
Various model selection approaches have been proposed to
determine a good regularization parameter value from a fi-
nite set of candidate values based on cross-validation, which
is, however, time consuming. In addition, the performance
of cross-validation could also be influenced by the quality of
the candidate set. Therefore it is important to study how to
automatically determine the model parameters for KDA to
improve its robustness.
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Probabilistic models have been proposed for LDA and
KDA. For example in [Centeno and Lawrence, 2006], by
relating Rayleighs coefficient to a noise model, the authors
showed that their model is equivalent to KDA. The authors
also demonstrated that through a Bayesian model selection
approach [Gelman et al., 1995], parameters in their model
can be efficiently tuned to avoid the cost of cross-validation.
However, due to the coding scheme used in designing, exist-
ing models are limited to binary class problems, which signif-
icantly confines their application in real world problems. To
address the limitation, in this paper, we develop a nonpara-
metric probabilistic model for KDA based on Gaussian Pro-
cess (GP) to handle multiclass problems. We show that un-
der a mild assumption, which holds in most real applications,
the proposed model is equivalent to KDA, when the noise
terms approach zero. The proposed model provides a novel
Bayesian interpretation for KDA, which allows its parame-
ters to be automatically tuned through the optimization of the
marginal log-likelihood of the data. We show that the opti-
mization problem can be formulated as a DC-programming
problem [Horst and Thoai, 1999], which can be solved ef-
ficiently. As a probabilistic model based on GP, many well
studied techniques for GP can be directly applied to the pro-
posed model and enable it, for example, to handle prob-
lems with large scale data [Snelson, 2007], and learn from
multiple heterogenous data sources [Lanckriet et al., 2004;
Rasmussen and Ghahramani, 2002]. The proposed model
substantially extends the capability of KDA. To evaluate its
performance, we conduct experiments on benchmark data
sets. Experimental results demonstrate its efficacy.

2 Background

We first define the notations used in the rest of this paper.
We use ¢ (X) = {¢(x1),...,¢(x,)} to denote a data set
of n samples, where ¢ (x;) is the mapping of the ith sam-
ple x; in the kernel-induced feature space. Assume the data
has ¢ classes, and y = {y1,...,yn} denotes the class label,
with y; € {1,...,c} being the label of the ith sample. Let

ki; = ¢ (x:)" ¢ (x;4), and let K denote the kernel matrix
with k; ; as its i-j th element. Let P = I — n~=1117 be the
centering matrix. K. = PK P denotes the centered kernel
matrix, such that samples in the feature space induced from

K, are centered: ¢.(x) = ¢(x;)—p(x), ¢(x) = %Z B(xi).



In this paper, we use uppercase characters to denote matrices,
boldface lowercase characters to denote vectors, and standard
lowercase characters to denote scalars. Also, we use I to de-
note the identity matrix and 1 the vector of all ones. Below
we give a brief introduction to KDA and GP.

Kernel Discriminant Analysis (KDA): Given the kernel ma-
trix K and the class label y, KDA determines a transfor-
mation matrix B to project samples, such that they can be
best separated. Analogous to LDA, given K, the centered
K, we denote StK = K_K,. as the total scatter matrix,
SE = n K. YYTK, as the between-class scatter matrix,
and SK = SK — SK as the within-class scatter matrix. In

the definition of SX,Y € R™*¢ is the coding matrix derived

from y as [Ye, 2007]:
m

[ n
Yij = " \/7

KDA maximizes the separability of the samples in the
dimensionality-reduced space by simultaneously minimizing
trace(BT SK B) and maximizing trace(B” S/ B), which cor-
respond to the within-class distance and the between-class
distance, respectively. KDA solves the following optimiza-
tion problem:

Yyi=17J
)]

otherwise.

BTSEp

B = arg mgx {trace (( )_1 BTS,f(B)} )]

However, the above formulation is prone to overfitting. Reg-
ularization is commonly applied to alleviate the problem:
max {trace ((BT (SF 4+ AK,) B)_1 BTSlf(B> } .3

And its optimal solution can be obtained by computing the
principal eigenvectors of the following eigenvalue problem:

“

Here (-)™ denotes the matrix pseudo inverse [Golub and Van
Loan, 1996]. Choosing a proper A value is crucial to KDA.

(SE +2K)" 5Eb, = Bb;.

Gaussian Process (GP) Regression: A Gaussian Process
(GP) is a stochastic process defining a nonparametric prior
over functions [Rasmussen and Williams, 2006]. A real func-
tion f : RY — R follows a GP, denoted as GP(h; k), if for
any finite number of data points x1,...,X,, f = {f (x;)}7;
follows a multivariate Gaussian distribution A (h, K), with
a mean function h = {h(x;)}?_; and a covariance matrix
K = {r(x;,%;)}}'j—1. Itis common to set h = 0. Given
the training data and a test point x.,, GP regression assumes
p(y«xs) = [p(yslfe)p (fe)dfs, where fo = f(x.) and
p (y«|f«) is an isotropic Gaussian with the variance \ speci-
fying the system noise. By marginalizing f,., we can obtain
the joint distribution of y and y., which takes the form:

V(2o ). s

where o corresponds to the system noise. Using Equation (5),
we can obtain the conditional distribution of p (f, | ¥ ), which

Kx x +0* kxx,
kx*,X

y
Y

kx. X
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is also a Gaussian with its mean and variance given by:

f* ~ N(f*‘m*vaz)v (6)
Mme = ke x (Kxx+0°I)"y, 7
02 = kpow. —keox (Kxx +0°1)  kxx.. (8

3 PKDA: A Probabilistic Model for Kernel
Discriminant Analysis

We propose a probabilistic model for KDA based on Gaus-
sian Process. We call the model, “Probabilistic Kernel Dis-
criminant Analysis” or PKDA. Existing probabilistic models
for discriminant analysis, such as the ones proposed in [Toffe,
2006] and [Centeno and Lawrence, 2006] rely on regressing
the samples to [-1, +1] or [n/n1,-n/n2], where n1 and ngy are
the numbers of samples in positive and negative classes, re-
spectively. The coding scheme only works for binary class
problems. In PKDA, we propose to regress samples to Y de-
fined in Equation (1). We can show that assuming the samples
are linearly independent in the kernel-induced feature space,
PKDA is equivalent to KDA, when the noise terms approach
zero. We first present the PKDA model as follows:

Definition 1 Given a centered kernel matrix K., the Proba-
bilistic Kernel Discriminant Analysis, or the PKDA, consists
of a set of ¢ Gaussian Processes,

GPi(h; Ke), 1=1,... )

where c is the number of classes, and the lth GP, GP;, uses
v: € R” as its observations with y; being the lth column of
Y defined in Equation (1).

Figure 1 shows the graphical model of PKDA. The model
contains ¢ GPs making predictions with noisy observations.
In the model, the ¢ GPs share the same covariance matrix
K. For the lth GP, )\ 012 is its noise term, which is
analogous to the regularization parameter in KDA, and h; is
its mean vector. Following the convention, we fix h; = 0.
y; is its observation, which is the /th column of Y, where
Y = [y1,...,¥¢ is defined as in Equation (1). Given a test
data point ¢ (x ), the PKDA model projects ¢ (x. ) to a vector
of ¢ dimensions: y. = (¥« 1,---,Y«c) With the ith element
following the predictive distribution specified as:

(X*)> )

Jc7

07 (10)

Yui ~ N (Yai | mi (x4

yl,n

(. J

Figure 1: The graphical model for probabilistic kernel dis-
criminant analysis (PKDA). Following the convention, we fix
h; =0,andY = [y, ...,¥y] is defined as in Equation (1).



and m; (x.) and o2 (x,) are given by Equations (7) and (8).
With the computed m; (x.) and o2 (x.), the projections of
the test point can be either sampled from the normal distri-
butions specified in Equation (10), or obtained directly using
m(z,) = (my1(zs),...,me(zs)), which maximizes the like-
lihood of the observations. In theorem 1 below, we show the
equivalent relationship between KDA and PKDA under cer-
tain mild conditions.

Theorem 1 Assume that samples are linearly independent
in the kernel-induced feature space. When the noise terms
N — 0,1 =1,...,¢ the projection determined by the ex-
pectation of the predictive distributions of PKDA is equiv-
alent to that generated by KDA. More specifically, for
m(z,) = (my (x.),...,me(x.))" and k, = Kx ., we
have m(z,.) = BTk, up to an expansion with a dummy vari-
able and an orthogonal transformation.

Here the equivalence means that the distance among samples
under different projections are the same'. Various projections
can be obtained by applying orthogonal transformations on an
existing projection or by increasing the dimensionality of the
inputs by adding dummy variables which has 0 as their only
value. We first present two lemmas, which pave the way for
the proof. The first lemma tells that the assumption used in
the theorem is indeed very mild.

Lemma 1 When the RBF kernel function is used, as long as
X1, ...,Xy are all distinct, the kernel matrix K is of full rank.

Proof of the lemma can be found in [Micchelli, 1984]. The
Lemma tells that when RBF kernel function is used, as long
as the samples are different, K will be of full rank, which
means that the samples will be linearly independent in the
feature space induced by K. In real applications, it is usu-
ally sensible to assume that the given samples are all dis-
tinct, therefore when RBF kernel function is used, the linear
independent assumption will always hold. Let the compact
SVD [Golub and Van Loan, 1996] of K. be K. = U; ZtUlT,
and the full SVD of U{'Y be UL'Y = PX,Q, we have:

Lemma 2 When samples are linearly independent in the ker-
nel induced feature space, we have %7 = diag(1,...,1,0).

Proof: Let S5 = Sf — Sff = K.(I - LYY")K.. I -
n~'Y'YT is positive semidefinite (psd) since:

1
x7 <I — YYT> x
n

c nj
j=1 1

n 2
N 2 1 A
> ()5 (%)
This means SX is also psd. Let G be a matrix defined as:

1=

—1

ag=uv( > " V) v=-w.m), an
0 1

where U consists of the whole set of singular vectors of K,

and Us contains the singular vectors corresponding to the

IThis definition for equivalence is sensible , since in many clas-
sification and clustering approaches, such as the SVM and k-means,
only the distance among samples are used to fit model.

zero singular values. Under the assumption, we know that
rank(K)=n and rank(K.)=n — 1. Therefore U, contains only
one column: Uy = [(1/4/n)1]. With the definition of G, it
can be shown that, GT'SF G = diag (1,0), GTSKG = diag
(£2,0) and GTSE G = diag(X,,, 0), therefore we have: diag
(I1,0) = diag(X,,0) + diag(3s,0). Since SX and S are
all positive semidefinite, the diagonal elements of X, and >,
must be nonnegative. Itis easy to verify that rank(S/*) < c¢—1
and rank(S,,) < n — c. Therefore we have: rank(diag(7,0))
< rank(diag(X,,, 0)) + rank(diag(Xy,0))=n — 1. Thus, we
can conclude that all nonzero diagonal entries in X, are 1.
Note that rank(U{'Y") = rank(Y") = ¢ — 1 since U{ contains
orthonormal columns, thus the number of nonzero diagonal
entries in 3, is ¢ — 1. This completes the proof. ]

We are now ready to prove the theorem, which establishes
the equivalence between KDA and PKDA.

Proof of Theorem 1: We can show that for any input ¢(z, ),
my(z,) = KT (K. + MI) "'y, Therefore, when \; — 0,
the expectation of the predictive distributions in PKDA ac-
tually projects data with a transformation matrix defined as
B = (K.)" Y. The equivalence between KDA and PKDA
can be established by studying the relationship beitweeAn B

and B. We first study the structure of matrix B. B =
K'Y = U5 'UTY. Recall that UTY = PY,Q. Let
P =[py,...,pc)- We have:

B=U2p1,....pS@Q. (12)

Next we see the structure of B can be expressed as:
(SK)YT sE =u, s PP S, UT.

Since PTY,UL'U,;S; ' P = 1, it can be verified that the top
¢ — 1 eigenvectors of (StK )Jr Sk are given by the first ¢ — 1
columns of U; 3, ! P. Therefore we have:

B=U1% " [p1,. ., Pe1l- (13)
As Q is orthogonal, and 7 =diag(1,...,1,0), the two pro-
jections are essentially equivalent. |

3.1 Efficient Model Selection for PKDA

Theorem 1 establishes the connection between PKDA and
KDA. Given a kernel K and the class label vector y, PKDA
projects test points onto the reduced space where the data
can be well separated. Below we show how to automatically
determine the proper value for the regularization parameters
(or the noise terms) by minimizing the negative log marginal
likelihood. Denote K = K. + A, where A\ > 0. For each
GP in PKDA model, its negative log marginal likelihood is:

_ 1 e 1 .
“log P (y|K) - inK_ly—F?log‘K‘—&—glong (14)

Minimizing the negative log marginal likelihood specifies the
following nonlinear constrained optimization problem:
m)%n —log P (y| K.+ A\I)

st. A>0. (15)
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Let K. = USUT, U = [w,...,un], % = uly and
¥ =diag(ay, . .., an). We have:
N
_ 1 9?2 1
- P( K) - . .36
08 y| Oc22<a7‘,+)\ Ogai+>\> (16)

i=1
In the equation, the constant term 3 log 27 is ignored. The
equation shows that the optimization problem specified in
Equation (15) is a DC (difference of convex functions) Pro-
gramming [Horst and Thoai, 1999] problem, and efficient
techniques such as the DC algorithm (DCA) [An and Tao,
2005] can be applied. To minimize Equation (16), we define:

JO) = =log P (yIK) =g =N, (A7)
where
g(\) = li %\, log 270 (18)
2 im1 (67} + )\ 2
1 1
h(A)—QZ<logal+)\>. (19)

Let g*(z) = supy {#A — g (M)} be the conjugate function of
g(A) and O be the subdifferential operator, it is easy to see
that the following equations for h(\) and dg*(z) hold:

N

0] 1 1
o) = 5;%“’ (20)
0g* (z) = arg m;fxx{z)\ —g(N)} (21)

Equation (21) can be solved by minimizing the convex func-
tion g (A) — 21, subject to the nonnegative constrains on
A. The above equations, can be used in DCA proposed in
[An and Tao, 2005] to compute solutions for the optimization
problem specified in Equation (16). In our experiments we
found that DCA usually returns globally optimal solutions.

The model parameters of PKDA can also be tuned by op-
timizing the leave-one-out log predictive probability [Ras-
mussen and Williams, 2006] in a similar way.

Time Complexity of PKDA: It turns out that the model se-
lection step for PKDA does not increase the computation cost
significantly, since the SVD of K. generated in the model
selection step is also used in the subsequent prediction step.
We provide the complexity analysis for PKDA. Assume there
are n training and m test samples. Calculating the SVD
for K, has a cost of O(n3). The results from SVD will be
used for model selection and the prediction of the test points.
DC-Programming can usually be solved in O(n?) operations.
Given the SVD of K., computing its inverse costs O(n?) op-
erations and the projection step for the m test samples costs
O(emn?) operations. Therefore, the total time complexity of
PKDA is O(max(n, cm)n?). The complexities of PKDA and
KDA are of the same order.

4 Empirical Study

In this section, we empirically evaluate the performance of
PKDA. Nine data sets are used in the experiments. They
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Dataset Inst Dim  Classes rank(K)
AR10P 130 2400 10 130
ORLI10P 100 10304 10 100
TXT4C 3933 8298 4 3933
TXT2C 1425 4322 2 1425
DNA 3001 180 3 3001
SPLICE 3005 60 3 3005
SOLAR 158 12 6 158
SOYBEAN 531 35 15 531
ADVERTISE 800 1558 2 800

Table 1: Statistics of the benchmark data sets.

are: two image data sets, AR10P? and ORLI10P?; five UCI
data sets [Murphy and Aha, 1994]: DNA, SPLICE, SOLAR,
SOYBEAN and ADVERTISE; and two text data sets from the
20-news-group data: TXT4C and TXT2C*. The details of the
benchmark data sets are summarized in Table 1. The last col-
umn of Table 1 lists the rank of the kernels obtained on each
data set using the RBF kernel. It shows that all kernels are
of full rank, that is, samples are linearly independent in the
kernel-induced space. The results suggest that the condition
assumed in Theorem 1 is indeed very mild.

In the experiment, the parameters in PKDA are obtained
in two ways: using the proposed automatic tuning mech-
anism (PKDA-OP) and using cross-validation (PKDA-CV).
We compare PKDA with KDA, whose parameters are also
obtained in two ways: using a default value (A=0, KDA) and
using cross-validation (KDA-CV). To evaluate the qualities
of the dimensionality-reduced spaces found by different ap-
proaches, we train a 1-nearest-neighbor (1-nn) classifier in
each space, and use its accuracy to determine how well the
samples from different classes are separated in that space.
A higher accuracy suggests a higher quality of the space in
terms of sample separability. We also train a support vector
machine (SVM) [Vapnik, 1995] using the given kernel and
record its accuracy. Note that SVM is a classifier rather than
a dimension reduction approach. We include SVM in the ex-
periment to verify whether the accuracy of the 1-nn obtained
in the dimensionality-reduced space is reasonably good. The
parameter of the SVM is obtained in two ways: using a
default parameter (C=1, SVM) and using cross-validation
(SVM-CV). We implemented PKDA and KDA in Matlab and
LibSVM [Chang and Lin, 2001] is used for SVM. We use the
RBF kernel function to construct the kernels. Each algorithm
is tested for 25 times on each data set by randomly sampling
(at most) 200 instances from each class and we split the data
into training and test sets of a ratio 4:1. The obtained av-
eraged accuracy rates are presented in the paper. For PKDA-
CV, KDA-CV and SVM-CV we apply 5-fold cross-validation
on the training data. For CV based model selection, choosing
the candidate parameter values is a difficult problem. In the

Zhttp://rvl1.ecn.purdue.edu/ aleix/aleix face DB.html. Data set is
subsampled down to the size of 60x40 = 2400

3http://www.uk.research.att.com/facedatabase.html. Data set is
subsampled down to the size of 100x 100 = 10000

4TXT4C: Baseball, Hockey, PC and MAC; TXT2C: Religion
and Atheism. http://people.csail.mit.edu/jrennie/20Newsgroups/



experiments, to improve the probability that there is at least
one good regularization parameter value for each CV based
algorithm on each data set, we picked 20 candidates from a
wide range between 0 and 10%.

4.1 Experimental Results

Below we present the experimental results comparing differ-
ent approaches on the quality of the dimensionality-reduced
spaces they generated, and their efficiency.

Accuracy Comparison

Table 2 presents the accuracy of different approaches on the
nine benchmark data sets. Based on the accuracy results, we
summarize the following observations.

First, compared to KDA using the default parameter value
A = 0, PKDA-OP performs much better. On 7 out of 9 data
sets, PKDA-OP performs significantly better than KDA. We
observed that on several data sets, such as the DNA and the
SOYBEAN data, the performance of KDA is poor. This is
likely due to overfitting. This suggests that it is necessary to
apply regularization to make KDA more robust.

Second, when comparing PKDA-OP with PKDA-CV, we
observed that the two approaches perform equally well. Com-
pared to cross-validation, the automatic tuning mechanism
does not need to run PKDA multiple times on different splits
of the training data, therefore it is more efficient. In our ex-
periments, we observed that the computational cost of PKDA-
OP is usually comparable to that of KDA and is significantly
lower than that of KDA-CV and PKDA-CV. It is known
that picking the right candidate parameter values in cross-
validation may not be easy. The proposed tuning process can
also automatically find good values for the parameters.

Third, in comparison with KDA-CV, we found that PKDA
is significantly better on 4 out of 9 data sets. We also no-
ticed that comparing KDA with KDA-CV, KDA-CV performs
significantly better, which verifies the effectiveness of cross-
validation as well as the regularization.

Finally, comparing PKDA-OP with SVM-CYV, we observed
that by using the dimensionality-reduced spaces generated by
PKDA-OP, the 1-nn classifier is able to achieve accuracy rates
comparable to those of the SVM with cross-validation. This
result clearly shows the high quality of the dimensionality-
reduced spaces generated by PKDA-OP.

Overall, on the 9 benchmark data sets, PKDA-OP+1nn
achieved the best average accuracy of 0.88 which is followed
by SVM-CV (0.87), PKDA-CV+1nn (0.87), SVM (0.84),
KDA-CV+1nn (0.83) and KDA+1nn (0.67).

Efficiency Comparison

On the nine benchmark data sets, the averaged running time
of PKDA-OP, KDA PKDA-CV and KDA-CV are: 1.58s,
1.27s, 114.63s and 114.04s, respectively. PKDA-OP has al-
most the same running time as KDA, while having the advan-
tage of being able to automatically tune its model parameters.
Figure 2 plots the running time of PKDA-OP, KDA, PKDA-
CV, KDA-CV on five benchmark data sets, on which algo-
rithms have relatively longer running time than on the other
four benchmark data sets. The plots in the figure show that
compared with cross-validation, the automatic tuning mecha-
nism is significantly faster. We observed similar trends on the
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Figure 2: Efficiency comparison on five data sets. y-axis is
for running time in logarithmic scale measured by seconds.

other four data sets. The results on efficiency comparison is
consistent with our complexity analysis for PKDA.

The results demonstrated that the proposed multiclass
probabilistic model for KDA is robust and efficient.

5 Conclusion

In this paper, we proposed a probabilistic model for KDA,
which is able to handle multiclass problems. The proposed
model is based on Gaussian Process and its model parame-
ters can be automatically tuned in an efficient way. Experi-
mental results demonstrated that the proposed model offers
good performance, and is very efficient. Based on Gaus-
sian Process, the proposed model can handle large scale data
via approximation methods, such as BCM [Tresp, 2000] and
SPGP [Snelson and Ghahramani, 2006]. Also as a probabilis-
tic model, PKDA allows the integration of multiple hetero-
geneous data sources via Bayesian mixture models [Svensen
and Bishop, 2005], which leads to an interesting nonlinear
kernel combination formulation: Mixture of Discriminant
Gaussian Process (MPKDA). Our preliminary results show
that MPKDA outperforms the existing linear kernel combi-
nation approaches [Ye et al., 2008]. This forms one line of
our ongoing research work.
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