On the Tip of My Thought: Playing the Guillotine Game

Giovanni Semeraro, Pasquale Lops, Pierpaolo Basile, Marco de Gemmis
Department of Informatics - University of Bari “Aldo Moro”, Italy
{semeraro, lops, basilepp, degemmis } @di.uniba.it

Abstract

In this paper we propose a system to solve a lan-
guage game, called Guillotine, which requires a
player with a strong cultural and linguistic back-
ground knowledge. The player observes a set of
five words, generally unrelated to each other, and in
one minute she has to provide a sixth word, seman-
tically connected to the others. Several knowledge
sources, such as a dictionary and a set of proverbs,
have been modeled and integrated in order to re-
alize a knowledge infusion process into the sys-
tem. The main motivation for designing an artifi-
cial player for Guillotine is the challenge of pro-
viding the machine with the cultural and linguistic
background knowledge which makes it similar to a
human being, with the ability of interpreting natu-
ral language documents and reasoning on their con-
tent. Experiments carried out showed promising re-
sults, and both the knowledge source modeling and
the reasoning mechanisms (implementing a spread-
ing activation algorithm to find out the solution)
seem to be appropriate. We are convinced that the
approach has a great potential for other more prac-
tical applications besides solving a language game,
such as semantic search.

1 Introduction

Words are popular features of many games, and they play a
central role in many language games. A language game is
defined as a game involving natural language in which word
meanings play an important role [Littman, 2000]. Language
games draw their challenge and excitement from the richness
and ambiguity of natural language. Furthermore this type of
games are inconsistent with the closed world assumption: no
fixed sets of rules are sufficient to define the game play, re-
lationships not explicitly stated to hold do not hold. In this
paper we present a system that tries to play the Guillotine
game. The Guillotine is a language game played in a show
on RAI, the Italian National Broadcasting Service, in which
a player is given a set of five words (clues), each linked in
some way to a specific word that represents the unique so-
lution of the game. She receives one word at a time, and
must choose between two different proposed words: one is

1543

correct, the other one is wrong. Each time she chooses the
wrong word, the prize money is divided by half (the reason
for the name Guillotine). The five words are generally un-
related to each other, but each of them is strongly related to
the word representing the solution. Once the five clues are
given, the player has one minute to provide the solution. An
example of the game follows: Given the five words Capital,
Pope, City, Colosseum, YellowAndRed, the solution is Rome,
because Rome is Capital of Italy, the Pope lives in Rome,
Rome is a City, the Colosseum is in Rome and YellowAndRed
is an alternative name for one of the Rome football teams.
Often the solution is not so intuitive and the player needs dif-
ferent knowledge sources to reason and find the correct word.
This paper presents OTTHO (On the Tip of my THOught),
an information system that tries to solve the final stage of the
game. We assume that the five words are provided at the same
time, neglecting the initial phase of choosing the words, that
only concerns the reduction of the initial prize.

The paper is structured as follows. Related work are briefly
analyzed in Section 2. Section 3 describes the system archi-
tecture, while details about the modeling of different types of
knowledge sources are in Section 4. The reasoning mecha-
nism for finding the solution of the game is in Section 5 and
experiments performed for evaluating the system are in Sec-
tion 6. Conclusions and future works are in Section 7.

2 Related Work

The work on intelligent computer games has a long history
[Maybury et al., 2006] and has been one of the most success-
ful and visible results of Artificial Intelligence research. We
are particularly interested to games related to the language.
The literature classifies these games in two main categories:
1) word games and 2) language games. Word games do not
involve true language, because word meanings are not impor-
tant. Examples of word games are Scrabble, in which play-
ers take turn placing letters in a grid to form words, and the
hangman, in which a player must identify a hidden word by
guessing letters from the alphabet. On the other side, lan-
guage games strongly involve natural language, since word
meanings play an important role. An example is Wheel of
Fortune, with three players competing to be the first to solve
a hangman-like puzzle, with the main difference that play-
ers are told the category of the answer, which provides a hint
to the meaning of the answer phrase. Another example is

Who Wants to be a Millionaire?, in which the player is asked
a series of multiple-choice trivial questions. This often re-
quires common sense or knowledge on popular culture be-
sides excellence in natural language processing. Another in-
teresting language game is solving crossword-puzzles. The
first experience reported in literature is Proverb [Littman et
al., 2002], that reached human-like performance on Ameri-
can crosswords using a great number of knowledge-specific
expert modules. Another remarkable system is WebCrow [Er-
nandes et al., 2005], the first solver for Italian crosswords and
the first system that tackles a language game using the Web
as knowledge base. Our philosophy for playing Guillotine is
different. Much of Proverb’s knowledge and success comes
from large libraries of clues and solutions to past crossword
puzzles. In Guillotine it makes no sense to learn from a set
of previously solved games. WebCrow and Millionaire take
their inspiration from the related work on question answering.
In the Millionaire a Web-based knowledge agent is adopted to
select one answer out of a small number of possible choices.
WebCrow relies on a Web Search Module to deal with en-
cyclopedic knowledge for the clue-answering process. Our
system accesses different knowledge sources as well, but it
is a bit different. Our “questions” are single words, and the
answer is a single word. Co-occurrences of terms, providing
the evidence of a strong relationship between words, is the
key factor for finding a set of candidate words that likely con-
tains the solution. We need to access several sources, such
as a dictionary, an encyclopedia, a list of proverbs, etc. As
for WebCrow and Millionaire, our system does not depend
on the used language since modeling sources is a language
independent process.

3 The System Architecture

Guillotine is a cultural and linguistic game, and for this rea-
son we need to define an extended knowledge base for rep-
resenting the cultural and linguistic background knowledge
of the player. A huge number of examples of the game has
been analyzed in order to identify a bunch of possible sources
to build the extended knowledge base for playing Guillo-
tine. The correlation existing between the clues and the so-
lution has been analyzed, and the following classes or types
of knowledge sources have been identified, ranked according
to the frequency with which they were helpful in finding the
solution of the game:

1) DICTIONARY: the word representing the solution is con-
tained in the description of a lemma or in some example
phrases using that lemma;

2) ENCYCLOPEDIA: as for the dictionary, the description of
an article contains the solution, but in this case it is necessary
to process a more detailed description of information;

3) PROVERBS AND APHORISMS: short pieces of text in
which the solution is found very close to the clues;

4) ACRONYMS: the solution is one term of the acronym;

5) TITLES OF MOVIES, SONGS, BOOKS, POETRIES.

In order to exploit these types of sources it is necessary
to organize data gathered from different sources of the same
type, to process that information in order to extract and model
relationships between words, and to define a reasoning mech-

[woro)i 7 x
s, |
H wonn\z) | i |Candidate words)

= i Encyclopedia | | | woda | £§:<>_»~\ —— *
i| worp3) ; \ word b)

= . H word ¢ Reasoning Solution

word e 0O

@ ; N e— word f ’_\‘a

Knowledge Base Explanation

]

:InDutclues
Figure 1: System architecture

anism that, given the clues, is able to select the correct so-
lution of the game among a set of candidate words. The ar-
chitecture of OTTHO, depicted in Figure 1, is modular and
allows to plug in additional ad-hoc modules for enriching the
background knowledge base without modifying the reasoning
mechanism.

4 Knowledge Base Modeling

It is important to model each type of knowledge source in
order to make it usable in an efficient and effective way by
the reasoning module. The above mentioned types of sources
have different characteristics, therefore different heuristics
should be used for building the model. Another important as-
pect is to define a uniform representation of that model. Since
we are interested in finding relationships existing between
words, the model of a knowledge source will be represented
by the set of correlations existing between terms occurring
in that specific source (a proverb, a definition in a dictionary,
etc). We decided to use a ferm-term matrix containing terms
occurring in the modeled knowledge source; each cell of the
matrix contains the weight representing the degree of correla-
tion between the term on the row and the one on the column.
The computation of the weights is different for each type of
knowledge source and takes into account several parameters,
as described in the following subsections.

4.1 Modeling a Dictionary

The dictionary is a valuable knowledge source since the anal-
ysis of several examples of the game showed that it helps to
find the solution (Section 6). We used the on-line De Mauro
Paravia Italian dictionary (old.demauroparavia.it), containing
160,000 lemmas. We obtained a lemma-term matrix contain-
ing weights representing the relationship between a lemma
and terms used to describe it in the dictionary. Each Web page
describing a lemma has been preprocessed in order to extract
the most relevant information useful for computing weights
in the matrix. More specifically, each Web page contains:
DEFINITION of the lemma, which describes its possible
meanings and some example phrases that use that lemma;
COLLOCATIONS, a group of words having a meaning not in-
ferable from the meaning of the single words. It is a valuable
source of information, albeit not available for all the lemmas.
The process for producing the matrix is as follows:

e The text of the Web page is processed in order to skip
the HTML tags, even if the formatting information is
preserved. Stopwords are eliminated and abbreviations
used in the definition of the lemma are expanded.

e Weights are computed using a strategy based on a TF-
IDF scheme, improved through the following heuristics:

1544

— the relationship between a lemma and a term de-
pends on the section in which the term occurs;

— terms in the description of the lemma formatted us-
ing bold or italic font are given higher weights than
other terms, since this generally represents a strong
relationship between that term and the lemma;

— terms occurring more than once in the definition are
more important than terms occurring only once;

— terms closer to the lemma are given higher weights
than other terms.

We also need to define some normalization criteria for
weights with respect to the length of the definition in which
the term occurs and the length of the entire dictionary. Given
a term t; occurring in the description of a lemma [;, the
weight w;; representing the correlation between ¢; and [; is:

%log(%) if t; occurs in DEFINITION
Wiy =
(keta)(145)

T(Coll;) I tj occurs in COLLOCATIONS

ey

e kg and k. are parameters useful to give higher scores to
terms in the DEFINITION or in the COLLOCATIONS;

e « is a boosting factor for terms formatted using italic or
bold font; (3 is a boosting factor for terms closer to the
lemma in the DEFINITION or COLLOCATIONS;

e N is the cardinality of the vocabulary, n; is the number
of distinct lemmas correlated with ¢;

o L(Def;) (L(Coll;)) is a normalization factor represent-
ing the length of DEFINITION (COLLOCATIONS).

The method computes a weight for each occurrence of ¢; in
the description of /;. Each weight is different depending on
the section in which the term occurs, the font used to write it
and the position with respect to the lemma. For terms occur-
ring more than once in the definition, the correlation between
t; and [; is obtained by summing all the single correlations
between the different occurrences of ¢; and /;.

The 3 boosting factor is computed using a Gaussian func-
tion G(x) (u = 0, o = 2), where z is the distance between
the term and the closest occurrence of the lemma among those
occurring in its description. We assign a null value to 3 when
the distance between the term and the lemma is > 5.

4.2 Modeling Proverbs

As for the dictionary, a TF-IDF strategy has been used for
defining the weights in the term-term matrix modeling the
knowledge source of proverbs'. The following heuristics for
improving the weight computation have been also exploited:

e Terms in a proverb are correlated with all other terms in
the same proverb;

e The closer the terms, the stronger their correlation, and
the shorter the sentence, the stronger the correlation be-
tween terms;

11,600 proverbs from http://web.tiscali.it/proverbiitaliani and
http://giavelli.interfree.it/proverbi_ita.html

o The greater the number of co-occurrences of two terms,
the weaker their correlation.

Given two terms ¢; and ¢, the correlation w;; is defined as:

o oce;j @)
dZStij . lenij

where dist;; is the smallest distance between occurrences of

t; and t; in the proverb, normalized with respect to the max-

imum distance observable in the proverb, len;; is the length

of the proverb containing terms ¢; and ¢;, normalized with

respect to the maximum length observable in the corpus, and:

log% ifng;; >0
occi; = 3)
0ifng;; =0
N is the total number of proverbs in the corpus and n;; is the
number of proverbs containing both ¢; and ¢;.

S What Comes to Mind, and Why: the
Reasoning Module

All of us have stored the meanings of thousands of words, as
well as their spelling, grammatical features, contextual rela-
tions [Spitzer, 2000]. How are these meanings organized and
coded? Is their organization, if there is any, different in each
human being? More than two thousands years ago, Aristotele
asserted that meanings are not unrelated within memory. He
knew from his own experience that words come to mind in
a sequence determined by meaningful relations of similarity
or contrast and, hence, that words must be stored in the same
way. You might try this out for yourself by performing this
lexical task: Please say, as quickly as possible, for each of the
five words in the following, the first word that comes to mind:
father, table, cold, sun, sing. There is a good chance that you
come up with the following associations: mother, chair, hot,
moon, song. In order to find the solution for Guillotine, a
human being has to perform a similar lexical decision task,
but even more complicated: in one minute she has to find
one word associated in some way to all the five clues. The
main difference is that the answer is not as easy as the first
word that comes to mind when reading the clues. Indeed,
since clues for Guillotine are more focused than in the clas-
sical lexical decision task, the human being has to perform a
memory retrieval task: the essential process to find the solu-
tion is the retrieval operation within the facts retained in her
own knowledge.

What we have done by modeling several sources is a kind
of “knowledge infusion” into the system, in order to create a
memory of world facts and linguistic knowledge. The next
step is to design an algorithm for retrieving the most appro-
priate pieces of knowledge associated with the clues, simulat-
ing the cognitive mechanism of a human being in the most
faithful way. A large number of studies on the meaningful
relations between “psychologically” associated words have
produced data that were interpreted some decades ago as ev-
idence for a network structure of semantic memory. Words
and their meanings are not stored alphabetically in the mind,
nor in a random way. Instead, they are stored in a network-
like structure [Anderson, 1983]. Within such a network, the

1545

meaning of a word is represented by nodes as well as by the
relations of these nodes with other nearby nodes. This theory
of mental organization of our lexicon inspired the design of
WordNet [Fellbaum, 1998]. The network theory of seman-
tic memory fits well with what has been termed the spread-
ing activation model. The pure spreading activation model
consists of a network data structure upon which simple pro-
cessing techniques are applied. The network data structure
consists of nodes interconnected by links. Links may be la-
beled and/or weighted and usually have directions. The pro-
cessing is initiated by labeling a set of source nodes with ac-
tivation weights and proceeds by iteratively propagating that
activation to other nodes linked to the source nodes. For each
iteration, a termination condition is checked in order to end
the search process over the network. We decided to adopt
this model as reasoning mechanism of OTTHO. In the net-
work for Guillotine, nodes represent words, while links de-
note associations between words, obtained from the sources
processed as described in Section 4. The spreading activa-
tion is triggered by words given as clues. The activation of
clues causes words with related meaning (as modeled in the
sources) to become active. At the end of the weight propaga-
tion process, the most “active” words represent good candi-
dates to be the solution of the game.

5.1 Building the Network

This section describes the method adopted to construct the
Spreading Activation Network (SAN) for Guillotine, along
with the weighting scheme for the edges. We assume that M
knowledge sources K .51, ..., K.S); have been modeled as
described in Section 4 and that five clues k1, ..., k5 are pro-
vided. The idea is to populate the graph with nodes by run-
ning n expansion phases (we set n = 4 since we noticed that
for n > 5 no nodes are activated; more details in Section 5.2).
For the sake of simplicity, together with the general method,
we will show an example with the only two clues apple and
sunrise, and the two sources DICTIONARY and PROVERBS.
Initially, source nodes Ny, ..., N5 are added to the network.
Each N; is labeled with the word k; given as a clue. In the
first expansion phase, for each k;, the most related words and
corresponding correlation weights are extracted from K S,,
(m =1,...,M). We take as the most related words for k;
only those k; with correlation weights w;; > X (in our exper-
iments A = 0.1). At the end of this query process, we get M
lists of pairs L} correlated with &;:

LG = <(km1aw’im1)? s

where k,,; is the 4t word extracted from KS,, and Wi,

is the correlation weight between k; and k. In our simple
example, at this stage we have:

dictionary — _ ((fryit. 1.42), (jam, 0.55), (peel, 0.26))
Lrrover = ((day,1.47), (doctor, 2.41), (away, 1.47))

LdiCtionary = <(begznmng, 145)7 (dayv 141)a

sunrise
(sunset,0.55))
proverbs __ < >

Slgg;légch pair (K, , Wi,) in L{", one node labeled with
Ky, is added to the SAN and linked to the source node k;.

The edges are oriented from the source node to the nodes of

; (kmh y Wimy,)>

apple

Figure 2: The SAN after two expansion stages

the related words and labeled with Wi - Thus, an edge rep-
resents the association between two words, while the correla-
tion weight measures the strength of that relationship. Once
the process is completed for each L}, the first stage is over.
In the next expansion phase, the same process continues for
the nodes added during the previous phase. Hence, new nodes
are linked to fruit, jam, etc. Notice that whether for some pair
(Km, s Wim,) in L}, a node labeled with k,,; is already in-
cluded in the SAN, and edge labeled with wj,,, is created
from k; to that node, without adding any new node. The sta-
tus of the SAN after two expansion stages for our small ex-
ample is depicted in Figure 2. After n — 1 expansion stages,
the SAN stops growing. During the n'" phase, we only look
for correlations with (no source) nodes already existing in the
SAN. For each pair (K, , wim,) in Lj", if a node labeled with
k:mj isin the SAN, an edge is created from k; to that node and
labeled with w, ;, otherwise the pair is discarded. The moti-
vation for this choice is that we want to avoid the addition of
nodes “too far” from the source nodes. Actually, the highest
n the lower the probability that new nodes added at the n!"
stage will be fired, due to the low activation input they would
receive. The final step for completing the SAN is the normal-
ization of the correlation weights (that might vary in different
ranges), since weights come from different sources and are
computed according to different heuristics. After normaliza-
tion all edge weights are in the [0, 1] interval.

5.2 The Spreading Activation Strategy

Our spreading activation strategy consists of iterations
(pulses). Given a SAN populated by nodes Ny, ..., Np,
each node has an associated activation value at iteration p,
A;(p). A firing threshold F' determines if a node is fired, that
is whether it can spread its activation value over the SAN.
At each iteration, every node propagates its activation to its
neighbors as a function of its current activation value and the
weights of the edges that connect it with its neighbors. The
spreading strategy is described in the following.

STEP #1 - INITIALIZATION: Iteration p = 1. The SAN is
initialized by setting all activation values A;(p) = 0, with ex-
ception of the clue nodes whose activation value is set to 1.
STEP #2 - MARKING: Each node N; with activation value
A;(p) > F is marked as FIRED.

STEP #3 - FIRING: For each fired node IV;, its output value
is computed as a function of its activation level:

(1—a))

where the factor 1 decreases the output of a node as
“pulses” go further in the SAN, while «; is a penalty factor

1546

that reduces the influence of a node N; on its neighbors
according to the number of associations branching out
from N;. Let NODES(n) be the set of nodes expanded
during the n'" stage of the SAN building procedure, in our
example NODES(1) = {apple, sunrise}, NODES(2) =
{fruit, jam, peel, doctor, away, day, beginning, sunset}.
Let 7 be the expansion stage for /NV;, the penalty factor is:

o — edges(N;))
>_N,eNoDES(n) €d9es(N;)

where edges(N;) is the number of edges branching out from
Nj;. In other words, «; is the fraction of all edges created in an
expansion stage branching out from a single node. For exam-
ple, in the SAN in Figure 2, agppre = 6/9 and ovsynser = 2/8.
The motivation for this choice is that a large fan-out means
that the node has very broad semantic meaning. The spread-
ing from this kind of node should be more limited than that
coming from “more specific” nodes.
STEP #4 - SPREADING: For each link connecting the FIRED
node NV; to the target nodes N;, adjust A,;(p) :

Aj(p+1) = Aj(p) + wi; Oi(p) (6)
Notice that, in order to avoid loops, once a node has been
fired it cannot be fired again.
STEP #5 - TERMINATION CHECK: p = p+ 1. If p <
mazxpulses A FIRED(p) then go to STEP #2 otherwise END
(FIRED(p) = true iff there is at least one node fired at pulse p).
The final result of the spreading activation process is the
activation level for each node in the SAN at termination time.
As an example, we reported in Table 1 the status after n = 2
pulses for some nodes belonging to the SAN depicted in Fig-
ure 2 (firing threshold 0.2). Activation values of fired nodes
are in bold. At pulse 1, only apple and sunrise are fired and
spread their output. The activation values of their neighbors
are updated. Notice that the activation value for node day has
been updated for spreading from both apple and sunrise. Af-
ter the second pulse, the best candidate for the solution is day,
whose activation value has been updated in both pulses.

6 Experimental Evaluation

The goal of experiments was to measure the number of games
solved by the system. A game is solved whether the solution
occurs in the Candidate Solutions List (CSL) produced by the
system, which contains the labels of the nodes with the high-
est activation levels at termination time. A CSL is obtained

Node Ai(1) O:i(1) Ai(2) 0i(2) Ai(3)
apple 1.00 0.33 1.00 0.00 1.00
sunrise 1.00 0.67 1.00 0.00 1.00
jam 0.00 0.00 0.18 0.00 0.18
doctor 0.00 0.00 0.80 0.40 0.80
away 0.00 0.00 0.49 0.15 0.49
day 0.00 0.00 1.43 0.72 1.57
sunset 0.00 0.00 0.37 0.14 0.37
cat 0.00 0.00 0.00 0.00 0.30

Table 1: Example of output and activation levels for nodes

from the SAN built for a game by selecting all the nodes NV,
whose activation values are greater than a fixed threshold A at
termination time. This constraint is set in order to avoid the
inclusion of “weak” solutions in the list. All selected nodes
are ranked according to their activation level (descending or-
der), and the labels of first £ nodes are included in the list.
Hereafter, CSL? denotes the CSL built with constraints &
and A. The reason for this evaluation method is that the rank-
ing of nodes might be a good strategy for determining some
candidate solutions, but more sophisticated techniques are
needed to select a unique answer among them, as the rules of
the game require. The answer is the candidate solution which
better “explains” the maximum number of clues. At the cur-
rent stage of the system, the component that picks up the an-
swer from the CSL, namely the SOLVER, is not yet complete,
therefore the evaluation is limited to the best & candidate solu-
tions in the CSL. The dataset is a collection of N = 50 games
attempted during the show by human players. On average,
they were able to provide the correct solution in 8 cases, thus
the “human accuracy” is 16%. For evaluating the system,
we adopted two performance measures: Absolute Accuracy
(AA) and Relative Accuracy (RA). Let N, ,ﬁ‘ be the number of
games for which the correct solution is found in C'SLy:

AA = N}/N (7)

Let #SOLV ABLEp;ctionary, Proverbs be the number of
games in the collection for which the solution can be
found searching the clues in the term-term matrices cor-
responding to the knowledge sources currently available
to the system. Relative Accuracy is the fraction of
#SOLV ABLEp;ctionary, Proverbs successfully solved:

RA = N/i\/#SOLVABLEDictionary,Proverbs (8)

For our dataset #SOLV ABLEpictionary, Proverbs = 42,
thus 84% of the solutions occurs in the sources available to
the system, that is these solutions are included in the SANs
built for these games. Anyway, the presence of the solution
in the SAN does not guarantee that the system is able to solve
the game easily. For example, if the solution for a game is
connected just to a single clue, the activation level of the so-
lution can be too low to be part of the CSL. To give a more
precise idea of the difficulty of the games in the dataset, we
also analyzed the coverage of the clues by using DICTIO-
NARY and PROVERBS. A clue is covered by the available
sources whether an entry for that clue is found in (at least)
one term-term matrix. The coverage of a game is defined as
the number of covered clues (it varies from O to 5). High cov-
erage coupled with the presence of the solution in the SAN
might be indicative of games that can be actually solved by
our system. Results of coverage analysis are in Table 2. Val-
ues in the 2nd column represent the number of games whose
coverage is reported in the Ist column. The 3rd column re-
ports #SOLV ABLEDictionary, Proverss (detailed with re-
spect to coverage), while the remaining columns show N},
where A = 0.1 and different values are set for k. For 4 of
the 42 solvable games (9.5%) the solution is hard to find out
due to low coverage (less than 3). Indeed, results obtained

COVERAGE ~ #GAMES #SOLVABLE ~ Np={' NXZ%Y NPT
1 1 0 - - -
2 2 1 0 0 0
3 3 3 0 0 0
4 12 10 1 1 6
5 32 28 3 4 20
50 42 4 5 26
Table 2: Coverage analysis
NpZie't NeZis' NiZieo Nitiso
AA 0.08 0.10 0.52 0.68
RA 0.10 0.12 0.62 0.90

Table 3: Accuracy of the system

manifested the high difficulty to solve games with low cov-
erage: none of them has been solved by the system. On the
other hand, 88% of games (44 out of 50) has coverage >4.
For 38 of them, the solution occurs in the SAN, therefore
90.4% of the solvable games (38 over 42) has high cover-
age. When stricter contraints are set for k£ and A (k = 10
or 15, A=0.1), the system is able to solve 5 games at most,
which corresponds to 13% of the solvable games with high
coverage. When a larger list of candidate solutions is gen-
erated (k = 100), this percentage increases up to 68%. De-
tailed results of accuracy, as defined in equations (7) and (8),
are reported in Table 3. When strict constraints are set on
the CSLs, both absolute and relative accuracy of the system
are lower than human accuracy (16%), even if the difference
is not so marked. By the way at this stage of development
the cultural knowledge of the artificial player is very limited.
More encouraging results are obtained by allowing more ex-
tended lists of candidate solutions (3rd and 4th columns in
Table 3). We are aware that it is not fair to compare these
higher accuracy values with human accuracy, but these results
suggest that the system can reach the solution in at least half
of the attempted games. The main conclusion after this first
stage of experiments is that the most promising strategy for
the development of the SOLVER module is to process large
lists of candidate solutions, without setting severe constraints
on them. As told before, the SOLVER should select the unique
answer which “better explains™ the input clues, thus it will
discard solutions not able to explain the clues rather than dis-
card a priori candidate solutions with low activation values.
We are also evaluating whether showing words in the CSLs
to the player might provide a useful hint to solve the game.

7 Conclusions and Future Work

We have proposed an artificial player for a language game
consisting in guessing a hidden word semantically related to
five words given as clues. The basic idea is to define a knowl-
edge base for representing the cultural and linguistic back-
ground knowledge of the player. This was realized by model-
ing several knowledge sources as term-term matrices, in order
to create a memory of world facts and linguistic knowledge
into the system. The brain of the artificial player is a spread-
ing activation algorithm able to retrieve the most appropriate

pieces of knowledge associated with the clues. Experiments
showed that the system accuracy is slightly lower than that
of the human player, but there is room for improvements:
indeed the system overall architecture allows to plug in ad-
ditional sources. We are currently working for integrating
encyclopedic knowledge (Wikipedia) and sources containing
movie and song titles. We are convinced that the proposed
approach has a great potential for other more practical ap-
plications. The system could be used for implementing an
alternative paradigm for associative retrieval on collections
of text documents [Crestani, 1997], in which an initial index-
ing phase of documents can spread further “hidden” terms for
retrieving other related documents. The identification of hid-
den terms might rely on the integration of specific pieces of
knowledge relevant for the domain of interest. This might
represent a valuable strategy for several domains, such as
search engine advertising, in which customers’ search terms
(and interests) need to be matched with those of advertisers
[Goldfarb and Tucker, 2008]. Spreading activation can be
also effectively combined with document retrieval for seman-
tic desktop search [Schumacher et al., 2008].

References

[Anderson, 1983] J. R. Anderson. A Spreading Activation
Theory of Memory. Journal of Verbal Learning and Ver-
bal Behavior, 22:261-295, 1983.

[Crestani, 1997] F. Crestani. Application of Spreading Acti-
vation Techniques in Information Retrieval. Artificial In-
telligence, 11(6):453-482, 1997.

[Ernandes et al., 2005] M. Ernandes, G. Angelini, and
M. Gori. WebCrow: A Web-Based System for Crossword
Solving. In M. M. Veloso and S. Kambhampati, editors,
Proc. 20t Nat. Conf. Artif. Intell., 17" Innov. Appl. Artif
Intell., pages 1412-1417. AAAI Press/MIT Press, 2005.

[Fellbaum, 1998] C. Fellbaum. WordNet: An Electronic Lex-
ical Database. MIT Press, 1998.

[Goldfarb and Tucker, 2008] A. Goldfarb and C. Tucker.
Economic and Business Dimensions: Search Engine Ad-
vertising. Comm. of the ACM, 51(11):22-24, 2008.

[Littman ef al., 2002] M. L. Littman, G. A. Keim, and
N. Shazeer. A probabilistic approach to solving crossword
puzzles. Artificial Intelligence, 134:23-55, 2002.

[Littman, 2000] M. L. Littman. Review: Computer Lan-
guage Games. In T. A. Marsland and 1. Frank, editors,
Computers and Games, 2nd Int.Conf., Revised Papers,
volume 2063 of LNCS, pages 396—404. Springer, 2000.

[Maybury et al., 2006] M. Maybury, O. Stock, and
W. Wahlster. Intelligent Interactive Entertainment Grand
Challenges. IEEE Intelligent Systems, 21(5):14—18, 2006.

[Schumacher et al., 2008] K. Schumacher, M. Sintek, and
L. Sauermann. Combining Fact and Document Retrieval
with Spreading Activation for Semantic Desktop Search.
In The Semantic Web: Research and Applications, Proc. of
ESWC 2008, LNCS 5021, pages 569-583. Springer, 2008.

[Spitzer, 2000] M. Spitzer. The Mind within the Net: Models
of Learning, Thinking, and Acting. MIT Press, 2000.

1548

