
Information-Lookahead Planning for AUV Mapping

Zeyn A Saigol
Richard W Dearden

Jeremy L Wyatt
School of Computer Science

University of Birmingham, UK
{zas, rwd, jlw}@cs.bham.ac.uk

Bramley J Murton
National Oceanography Centre

Southampton, UK
bjm@noc.soton.ac.uk

Abstract
Exploration for robotic mapping is typically han-
dled using greedy entropy reduction. Here we show
how to apply information lookahead planning to a
challenging instance of this problem in which an
Autonomous Underwater Vehicle (AUV) maps hy-
drothermal vents. Given a simulation of vent be-
haviour we derive an observation function to turn
the planning for mapping problem into a POMDP.
We test a variety of information state MDP al-
gorithms against greedy, systematic and reactive
search strategies. We show that directly rewarding
the AUV for visiting vents induces effective map-
ping strategies. We evaluate the algorithms in sim-
ulation and show that our information lookahead
method outperforms the others.

1 Introduction
How should a robot that is creating a map from data explore
its environment to build the most effective map as quickly as
possible? We explore this problem as one of information state
space planning when using Autonomous Underwater Vehi-
cles (AUVs) for underwater mapping. We address the specific
problem of prospecting for hydrothermal vents, which are su-
perheated outgassings of water found on mid-ocean ridges,
and are of great interest to marine scientists.

Hydrothermal vents are formed where continental plates
diverge and can be detected from a distance because they
emit a chemical-containing plume that rises several hundred
metres above the vent, and is spread by diffusion and ocean
currents over an area dozens of kilometres wide. The plume
is detected using a passive sensor that updates as the AUV
moves. Detecting a plume gives only limited information
about the location of the source vent, for several reasons; first,
because turbulent flows and changing currents mean there is
no steady chemical gradient that can be traced to the vent.
Second, it is not possible to relate the concentration of chem-
icals in the plume directly to the distance from a vent, be-
cause some vents are more active than others. Finally, vents
are often found in clusters (known as vent fields), and plumes
from several vents will mix. Current methods for mapping

hydrothermal vents employ a series of nested box surveys in
which the AUV “mows the lawn” in progressively smaller
areas, chosen after analysis of each survey. This is ineffi-
cient. If the AUV could perform on-board data analysis and
planning, rather than following an exhaustive search pattern,
it could cover a much larger area while still mapping all or
most vents.

Our problem decomposes into two parts, mapping and
planning. In mapping the AUV infers a map of likely lo-
cations for vents based on the observation history. As stated
above this is a challenging problem; however we focus on
planning so we adopt the recent vent mapping algorithm of
Jakuba [2007]. This gives an occupancy grid (OG) map, con-
taining the probability that there is a vent for each location.

The planning problem is as follows: Given such an OG
map, choose where to go in order to localise the vents as ef-
ficiently as possible. Because of the distal clues provided by
plume detections this planning for mapping problem is dif-
ferent from that tackled to support conventional mobile robot
mapping. For planning purposes the actions of the AUV are
simply moving in the world. We assume that sensing occurs
at every step, returning either that a vent has been found, that
the plume from a vent has been detected, or nothing. The
challenge is that we don’t just want to visit potential vents
given our current probability distribution over their locations,
but also to choose actions that give us more information about
where the vents might be. This kind of information-gathering
problem is best modelled as a partially observable Markov
decision problem (POMDP), but here the state space is far
too large to be solved by conventional POMDP methods.

The approach we take is to use our current state to con-
strain the reachable state space and to do forward search in
the belief space to identify reachable states and evaluate them.
Unfortunately, even with deterministic actions, the branching
factor of this search tree quickly makes it impractical to evalu-
ate, and we consider a number of possible heuristics to evalu-
ate the leaves of the tree. Details of the algorithm are given in
Section 3. Despite the limited lookahead that is computation-
ally feasible, the results we obtain show this to be an effective
approach in practice. However, the most intuitively plausible
heuristic we apply turns out to have surprisingly poor perfor-
mance in practice (see Section 5 and the discussion of why
this occurs in Section 6). We also compare the performance
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of our algorithm to two commonly-used approaches, a pre-
programmed mow-the-lawn search pattern and a reactive ap-
proach similar to chemotaxis [Farrell et al., 2003], neither
of which are able to find vents as effectively as the limited-
lookahead approach we describe.

2 Problem Definition
As we said above, we rely on an existing mapping algorithm
to compute an OG map based on observations [Jakuba, 2007].
It is designed specifically for creating a map of hydrothermal
vents using plume detection data obtained by an AUV. The
OG approach [Martin and Moravec, 1996] works by dividing
the space into a regular grid, and calculating cell occupancy
based on a series of sensor readings. In the AUV domain, be-
ing occupied means containing a vent; however classic OG al-
gorithms do not work for vent mapping because they assume
that a sensor reading is determined by a single test cell, and is
independent of previous sensor readings. In contrast, for vent
mapping the sensor can register a plume emitted from any
of a large number of neighbouring cells, and previous sensor
readings are vital to help narrow down which cells are likely
to have been responsible. As Jakuba points out, the errors
induced by this classic OG assumption are exacerbated when
the prior probability of occupancy is very low (as it will be
for vents, because only a handful of vents will be found over
a search area of several square kilometres).

Jakuba develops a more accurate OG approach, firstly by
compressing readings from multiple sensors into a binary de-
tection or non-detection of a hydrothermal plume. Given this
binary detection input, he is able to develop a tractable ap-
proximate algorithm that produces significantly better results
in low-prior environments than the standard OG algorithm.
The approach relies on a forward model of the behaviour of
the plume produced by a vent, which is used to estimate, for
each OG cell, the likelihood that a vent in that cell would
generate a detection at the location of the vehicle.

The OG mapping approach implies we have to divide the
search area into a grid of C cells, each of which can either
contain a vent or not. Since the map is two-dimensional, we
restrict the agent to move in two dimensions, which also sim-
plifies the planning problem. We also require the agent to
move only between adjacent grid cells (i.e. only North, East,
South or West). Actions are assumed to be deterministic, as
AUV ground-tracking navigation is quite reliable. Similarly,
we assume that the agent can move one cell in one timestep,
and there are a fixed number of timesteps in a mission, which
ignores the fact that certain paths and environmental condi-
tions may drain the battery faster than others.

This problem is best formally represented as a partially
observable Markov decision process (POMDP), because the
system state includes the location(s) of nearby vents, which
cannot be directly observed by the agent. A POMDP is de-
fined by the tuple 〈S, A, T,R, Z,H〉, where S is a set of
possible states, A is a set of actions available to the agent,
T = P (s′|s, a) is a state transition function, r = R(s, a)
is a reward function, Z is a set of possible observations, and
finally H = P (z|s, a) is an observation function. The aim
is for the agent to maximise its expected future discounted

reward, where the total reward following time t is given by
Rt =

∑∞
k=0 γkrt+k+1, using a discount factor γ, 0 < γ < 1.

We now present the exact model of the problem we use,
based on the requirements of planning within an OG frame-
work. Although the input to the OG algorithm is a single
observation p (whether or not a hydrothermal plume is de-
tected), our agent also needs to know when it has found a
vent, to ensure it doesn’t try to claim rewards by visiting the
same vent multiple times. We therefore introduce a deter-
ministic vent detector l, so the possible observations when
moving into cell c are:

l =
{

1 if a vent is found in cell c

0 otherwise

p =
{

1 if a plume is detected in cell c

0 otherwise

We derive the probabilities of each of these observations
from the forward model of [Jakuba, 2007]. We write P l,p

ij (O)
for the probability of observing l, p when moving from cell
i to cell j given OG O, and Oi for the probability accord-
ing to O of a vent in cell i. If the AUV is in the same cell
as a vent then it is overwhelmingly likely to detect a plume
from that vent, so we ignore plume detections when we find
a vent. Given we assume the vent detector is deterministic,
then P 1,.

ij (O) = Oj . The probability of seeing a plume but
not a vent is given by:

P 0,1
ij (O) =

(
1−Oj

)⎛⎝1− (
1− PF

)∏
c�=j

(1− P (dc))

⎞
⎠

where PF is the probability of a false positive plume detec-
tion, the product is over all cells c, and P (dc) is the probabil-
ity of detecting a plume from a source at c, and is computed
from the forward model for a vent. Finally, the probability of
seeing nothing is:

P 0,0
ij (O) =

(
1−Oj

) (
1− PF

)∏
c�=j

(1− P (dc))

The derivation of all these is given in full in the long version
of this paper [Saigol et al., 2009].

The components of the POMDP can now be described:
• The state s is composed of cAUV , the cell the AUV is in;

U, the ocean current vector; m, the actual vent locations
(a length-C vector of booleans indicating whether each
cell contains a vent); and v, a similar vector marking all
vents that have already been found. If U is discretised
into d× d bins, there are C · d2 · 2C · 2C possible states.

• The actions a are to move N/E/S/W, and the transition
function P (s′|s, a) is deterministic. Actions that would
leave the search area are not allowed.

• The reward is given by:

R(s, a, s′) =
{

Rvent if s′ is an unvisited vent
0 otherwise

where Rvent is a positive constant.
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Figure 1: Information-State MDP, where black circles repre-
sent actions and white circles are belief states.

• Set of possible observations, Z, is the set of distinct val-
ues for l (a vent is located) and p (a plume is detected).

• Observation function P (z|s, a). The observation proba-
bilities can be found from Jakuba’s forward model.

3 Algorithm
To find a policy in the POMDP defined above we use the
standard approach for POMDP solving and translate it to
an information state MDP (ISMDP), where the state space
is the probability distribution over the possible states of the
POMDP, known as the belief state.

In our ISMDP, the belief state b is comprised of:
• cAUV , the cell the AUV is in; U, the current; and v, the

list of previously-found vents (all of which are assumed
to be known exactly).

• The occupancy grid O. O is a length-C vector of val-
ues P (mc), the probability of cell c containing a vent
(which will be either zero or one for visited cells). The
OG defines a distribution over true vent locations m.

Note that using an OG approach has considerably reduced our
belief state space (the map contributes only C variables to the
belief state instead of 2C) because the occupancy grid is an
approximation where we assume the probability of each cell
being occupied is independent.

The actions in the ISMDP are identical to those in the
POMDP, deterministically moving N/E/S/W.

The transition function is given by

P (b′|b, a) =
∑
z∈Z

P (b′|b, a, z)P (z|b, a)

where P (b′|b, a, z) is zero for all belief states except the one
where b′ is the output from the OG algorithm applied to
b, a, z, and the observation model P (z|b, ac) is the probabil-
ity of observing z = (l, p) in cell c, as given by the equations
for P l,p

ij (O) above. Figure 1 shows the action/observation
transitions for the ISMDP.

The reward function for an action moving into cell c is
ρ(b, ac) =

∑
s∈S b(s)R(s, ac), but R(s, ac) = 0 for all

states except ones where the destination cell c contains a vent.
As the occupancy grid values for each cell represent the prob-
ability of it containing a vent independent of the rest of the

grid, the reward function is ρ(b, ac) = P (mc)Rvent for all
cells c that have not been visited, and zero for those that have,
because either there is definitely not a vent in them, or we
have already found that vent.

State-of-the-art POMDP solvers are able to solve some
classes of problems with as many as 30 million states
[Poupart and Boutilier, 2004]. With a grid size of 100 ×
100, which is adequate for a real ocean survey [Jakuba and
Yoerger, 2008], our problem has over 410000 states, so even
with the factored belief space due to using an OG it is far too
large to be solved by existing algorithms. We find an approx-
imate policy by forward search from the current belief state.

3.1 Information Lookahead
The information lookahead (IL) algorithm solves an ISMDP
approximately by only evaluating actions N steps into the fu-
ture. Actions values can be calculated in a recursive way: for
each action, find the new belief states we may end up in, and
then for each new belief state, find the value of each possible
action. The limited lookahead makes Q, the value of an ac-
tion a given a belief state b, also a function of r, the number
of steps left to take—the same belief state may be worth more
if the agent can take more steps following it. r is initially set
to N , and is reduced by one on each recursive call. When
the recursion ends, at r = 0, we have to provide a Q(b, a)
value, which could be an arbitrary value such as zero or be
heuristically chosen. For r > 0 the Q-value is given by:

Q(b, a, r) = ρ(b, a) + γ
∑

z

P (z|b, a) max
a′

Q(b′, a′, r − 1)

where γ is the discount factor, ρ(b, a) and P (z|b, a) are the
reward and observation functions defined above and b′ is cal-
culated using Jakuba’s OG update algorithm.

After looking ahead N steps, a heuristic value has to be
chosen for the terminal belief states, which should approxi-
mate the expected future reward following on from that belief
state. A basic heuristic is just to take the reward gained at the
agent’s final location, ρ(b, a), as the value, and results using
this heuristic are presented in Section 5, under the label of ’IL
algorithm’. However, this algorithm takes no account of OG
values more than N + 1 steps away from the agent’s starting
cell, so it was not expected to perform well.

As can be seen from Figure 1, the algorithm has a branch-
ing factor of nine: for each extra step taken, nine times as
many Q-values must be evaluated. This exponential increase
in calculations limits the lookahead N that can be practically
used; most experiments have been performed with N = 4.
Figure 2 shows the algorithm run-time on a 20 × 20 grid for
different values of N . Therefore, the algorithm is quite de-
pendent on a good heuristic to find values of belief states in
the base case, and a more sophisticated heuristic is described
in Section 3.2.

3.2 Certainty Equivalent Heuristic
The certainty equivalent (CE) heuristic finds a value for each
cell in the grid by assuming that the agent’s current belief
state is correct. In other words, it assumes that future observa-
tions will not improve the agent’s estimate of vent locations.
This collapses the problem to an MDP where the state s is
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Figure 2: Run-time of the IL-CE algorithm for different val-
ues of N , the number of steps of lookahead

just the cell the agent is in (dropping the list of visited vents
and fixing the OG), and this MDP can be solved by value iter-
ation much faster than the IL version of the problem (in fact,
because the transition function is deterministic, the algorithm
is simpler than value iteration).

The CE heuristic is not optimal because it takes no account
of potential information gain, but also because it allows the
agent to be rewarded multiple times from visiting the same
cell. For the IL algorithm, keeping track of the path of the
agent doesn’t result in any extra computational complexity,
because it evaluates paths explicitly; however, adding an (ar-
bitrary length) list of previously visited cells to the state space
of the MDP would make the problem nearly as intractable as
the original POMDP.

4 Previous Work
The overall vent finding problem is quite similar to SLAM
[Thrun et al., 2005]. The key difference here is that obser-
vations give information about a large number of cells in the
occupancy grid (due to ocean current acting on the water from
the vent), whereas in SLAM the number of cells that can af-
fect a particular observation is very small. This affects the
mapping in that it makes it very hard to determine which
cell caused a particular observation. It also affects the plan-
ning because it means that the information that can be gained
is not uniform over the grid—cells at the down-current end
of the grid allow observations of more potential vent loca-
tions than those at the up-current end. This makes the plan-
ning problem significantly harder than for most SLAM ap-
plications, where greedy entropy reduction techniques are
popular [Thrun et al., 2005], although there has been re-
cent work on lookahead methods [Kollar and Roy, 2008;
Martinez-Cantin et al., 2007].

The problem we address is closely related to the challenge
set in [Bresina et al., 2002], namely an oversubscribed plan-
ning problem with uncertainty and continuous quantities. In
our case, although we do not consider the continuous quanti-
ties, the state is not fully observable which means that tech-
niques such as those in [Feng et al., 2004], which can solve
fairly large problems, aren’t directly applicable.

The IL algorithm is a variation of the online POMDP al-
gorithms discussed in [Ross et al., 2008]. These algorithms
use forward search together with a heuristic to evaluate leaf
nodes, where most heuristics rely on solving a simplified ver-
sion of the POMDP offline (for example, QMDP [Littman et

al., 1995]) where future observations are ignored). As these
simplified versions have the same underlying state space as
the full POMDP, they are not applicable in our domain where
the number of states precludes any approach that assigns a
value to every possible state. Paquet et al. [2005] introduce
the RTBSS algorithm and apply it to a domain with a simi-
larly large state space, but they don’t describe their heuristic.

One can think of this as an observation planning problem,
in the sense that we are choosing observations to make in or-
der to maximise the number of vents found. Related work
in this area includes [Darrell, 1997], which uses reinforce-
ment learning in POMDPs to learn where to look in a ges-
ture recognition system, and [Sridharan et al., 2008], which
plans which object-recognition algorithms to apply to an im-
age. While these are both solving the problem of what ob-
servations to make, both are much more constrained than our
problem, in particular because each observation cost is inde-
pendent, unlike our case where moving to a location to make
an observation is a significant part of the cost.

5 Experiments and Results
We compared our algorithms to two existing approaches:
mowing-the-lawn (MTL) and chemotaxis. Mowing-the-lawn
means moving in straight, parallel tracklines, with a short per-
pendicular movement at either end of the line to get to the
next trackline. This approach is commonly used in marine
exploration to survey an area, and the trackline spacing can
be varied to obtain different survey resolutions.

The second comparison planner was a chemotaxis method
loosely based on the behaviour of the male silkworm moth,
as described in [Russell et al., 2003]: on detecting a plume
it firstly surges directly up-current for six timesteps, and then
searches in an increasing-radius spiral. If it detects a plume
again at any point, the behaviour is re-started from the begin-
ning. Prior to the first detection, our chemotaxis algorithm
follows an MTL pattern, and if it tries to exit the search area
at any point, it is redirected on a linear path approximately
toward the centre of the area at a randomly-chosen angle.

We evaluated four different versions of the MDP-like algo-
rithms: the IL-CE algorithm with a lookahead of four steps,
the IL algorithm (using the basic heuristic of immediate re-
ward) with lookaheads of both N = 1 and N = 4, and a
CE algorithm where no lookahead was performed. All algo-
rithms with discounting were run with γ = 0.9. Experiments
were performed on a 20× 20 grid and run for 160 timesteps.
We used five different experimental configurations where we
fixed the agent’s start location and the position and number
of vents. This allows a better comparison between algorithms
under different conditions, as starting down-current provides
a significant advantage over starting up-current of the vent,
as the agent is much more likely to detect the plume coming
from the vent. The configurations were:

v1down A single vent, with the agent starting down-current
of the vent.

v1up Single vent, starting up-current of the vent.

v2down Two vents, starting down-current of both vents.

v2up Two vents, starting up-current of both vents.
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Figure 3: Results of simulated vent prospecting using 6 different algorithms and 5 different configurations of vents and starting
position. All algorithms and configurations were evaluated over 50 trials, using a different random seed for each trial.

v5 Five vents, starting halfway between the up- and down-
current ends of the grid.

All configurations were run for 50 trials with each algorithm,
where each trial used a different random seed. For the MDP
algorithms, the only source of randomness was the dispersion
of plumes from the vents; for chemotaxis, the return-to-centre
angle was also chosen randomly; however, the MTL planner
was independent of the plume, so to get a measure of the
expected performance of MTL we fixed the agent’s start lo-
cation, but chose random locations for the vents.

We use two main criteria for evaluating the performance
of vent prospecting algorithms: μvent, the number of vents
found, and R, the return or total reward (both averaged over
all trials). The return is given by R =

∑T
k=1 γk−1rt+k,

where rt is 1 if a new vent is found on step t and 0 other-
wise, and the discount factor γ was increased to 0.99 because
otherwise the results were skewed by trials where a vent hap-
pened to be found very early in the trial.

The results for μvent and R are shown in Figure 3. IL-N4
is clearly the best performing algorithm, having the highest
μvent values for all configurations, and the highest mean re-
turns for four of the five configurations. IL-N1 and chemo-
taxis perform very similarly, which is interesting because de-
spite being very different algorithms, they both rely on very
local information for planning. IL-CE does unexpectedly
badly in most cases; however, it is better than the two ’lo-
cal’ algorithms (chemotaxis and IL-N1) when the agent starts
up-current of the vent(s), and information gain is important.

The execution times for one trial of 160 timesteps were:
IL-CE 4.0 hours, IL-N4 2.3 hrs, IL-N1 15 seconds, CE 10 s,
Chemotaxis and MTL both 4 s (2.4 Ghz Intel, 4 Gb RAM).

6 Discussion and Future Work
One of the challenges with this work is that we have no way
to compute the optimal behaviour, even for relatively small

occupancy grids. However, it is clear that information looka-
head with a four step lookahead does best of all the algorithms
we compared, but that even with a lookahead of one it still
does surprisingly well, finding more vents than the other al-
gorithms as the number of vents increases. An important fea-
ture of the IL algorithm is that although it is exponential in the
number of steps of lookahead, it is independent of the size of
the occupancy grid. The mapping algorithm is approximately
linear in the number of cells, so there is no reason why this
approach can’t be scaled to much larger grids.

A more interesting result is that using the CE heuristic ac-
tually hurts information lookahead to such an extent that not
only is IL-CE worse than IL with the simpler heuristic of the
occupancy grid probability, but it is even worse than CE with-
out any lookahead. This surprising result is due to the fact
that when the CE value is computed, a reward is given when
a state is revisited multiple times, so visiting high probability
states looks more attractive during the CE phase than during
IL because during IL the value of the state becomes zero once
it has been visited. Hence, as Figure 4 shows, the IL-CE algo-
rithm actually avoids high probability states, thinking it can
get more value for visiting them later. To prevent revisiting
states, we are investigating using a travelling salesman for-
mulation to calculate the CE value rather than dynamic pro-
gramming, but the computational cost is presently too high.

We are currently investigating other approaches to generat-
ing the heuristics. One issue is that on large grids four steps
of lookahead may be insufficient to see useful areas to ex-
plore. A hierarchical approach that generates heuristics for
finer-grained grids based on planning in more coarse-grained
ones holds some promise here.

The current mapping algorithm assumes all grid cells are
independent, whereas in reality, learning that there is a vent
at some location should ’explain away’ previous observations
and therefore reduce the probability of nearby cells. Our plan-
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ning algorithms should be agnostic about improving the map-
ping algorithm, but a better map may make a more significant
performance improvement than better planning.

Finally, our current approach is entirely two-dimensional.
Real AUV operations have to take the 3d behaviour of the
vent plume into account, and we plan in future to extend the
approach to a more realistic 3d ocean model.
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