
Can Movies and Books Collaborate?
Cross-Domain Collaborative Filtering for Sparsity Reduction

Bin Li1, Qiang Yang2 and Xiangyang Xue1

1School of Computer Science, Fudan University, Shanghai, China
2Department of Computer Science & Engineering,

Hong Kong University of Science & Technology, Hong Kong, China

libin@fudan.edu.cn, qyang@cse.ust.hk, xyxue@fudan.edu.cn

Abstract

The sparsity problem in collaborative filtering (CF)
is a major bottleneck for most CF methods. In this
paper, we consider a novel approach for alleviat-
ing the sparsity problem in CF by transferring user-
item rating patterns from a dense auxiliary rating
matrix in other domains (e.g., a popular movie rat-
ing website) to a sparse rating matrix in a target
domain (e.g., a new book rating website). We do
not require that the users and items in the two do-
mains be identical or even overlap. Based on the
limited ratings in the target matrix, we establish a
bridge between the two rating matrices at a cluster-
level of user-item rating patterns in order to transfer
more useful knowledge from the auxiliary task do-
main. We first compress the ratings in the auxiliary
rating matrix into an informative and yet compact
cluster-level rating pattern representation referred
to as a codebook. Then, we propose an efficient al-
gorithm for reconstructing the target rating matrix
by expanding the codebook. We perform extensive
empirical tests to show that our method is effective
in addressing the data sparsity problem by transfer-
ring the useful knowledge from the auxiliary tasks,
as compared to many state-of-the-art CF methods.

1 Introduction

Collaborative filtering (CF) in recommender systems boils
down to analyzing the tabular data, i.e., the user-item rat-
ing matrix. Memory-based methods [Resnick et al., 1994;
Sarwar et al., 2005] aim at finding like-minded users in the
rating matrix to predict the active user’s ratings. Model-based
methods [Hofmann and Puzicha, 1999; Si and Jin, 2003]

model the user-item rating patterns based on the observed
ratings in the rating matrix. Recently, the matrix factoriza-
tion approach [Srebro and Jaakkola, 2003] has also been in-
troduced. Most of these methods are based on the observed
ratings in a rating matrix.

However, in real-world recommender systems, users can
rate a very limited number of items, so the rating matrix is
always extremely sparse. The available rating data that can
be used for k-NN search, probabilistic modeling, or matrix

factorization are radically insufficient. The sparsity problem
has become a major bottleneck for most CF methods.

Although we can not fabricate more observed ratings in the
considered rating matrix, we may borrow useful knowledge
from another rating matrix in a different domain. Consider
the following case: A new book rating website has opened.
Due to a lack of visiting in the beginning, very few ratings
can be used for collaborative filtering. Now suppose that we
already have a dense movie rating matrix available on a pop-
ular movie rating website. Then, we ask, can we establish
a bridge between the two rating matrices and transfer useful
rating patterns from the movie rating matrix to the book rat-
ing matrix? Since movies and books are somewhat related
(they have some correspondence in genre and the users of the
both rating websites may reflect similar social aspects [Coyle
and Smyth, 2008]), we believe that the rating matrices in dif-
ferent domains can share similar user-item rating patterns.
Thus, transfer of knowledge can be beneficial. Furthermore,
this knowledge-transfer idea can be generalized to any related
real-world domains. For example, movies, books, and music
are related in entertainment; mobile phones, notebook PCs,
and digital cameras are related in electronic products.

Fig. 1 illustrates the underlying correspondence of the user-
item rating patterns between two toy rating matrices, where
we take movie and book domains for example. By permu-
tating the rows (users) and columns (items) in the two matri-
ces, the underlying correspondence can be discovered: User
groups {2, 3}, {1, 5}, {4, 6} and item groups {a, e}, {b, f}
in the movie rating matrix correspond to user groups
{1, 4, 5}, {2, 6}, {3, 7} and item groups {c, d}, {a, b, e} in
the book rating matrix, respectively. In the real world, the
user group {X, Y, Z} may be students, professors, and en-
gineers, while the item group {A, B} may be comedies and
dramas. Based on such a correspondence, the user-item rating
patterns can be transferred from one rating matrix to another.

In this paper, we consider how to alleviate the sparsity
problem in collaborative filtering by transferring user-item
rating knowledge from one task to other related tasks. We
call the task of interest the “target task” and the related task
the “auxiliary task”. The target task is represented as a sparse
p × q rating matrix, Xtgt, containing few observed ratings
and would only result in poor prediction results. Meanwhile,
we also get an auxiliary task from another domain, which is
related to the target one (the aforementioned correspondence

2052

6
5

4
3

2
1

3
2

?
3

3
2

2
3

2
1

1
3

1
3

1
?

2
3

?
3

1
2

2
3

3
2

3
3

?
2

2
3

2
1

1
?

a b c d e f

6
4

5
1

3
2

3
?

2
2

3
3

3
3

2
2

3
?

2
2

3
3

1
1

2
2

3
?

1
1

1
1

3
3

?
2

?
1

3
3

2
2

a e b f c d

Z

Y
X

3

2
3

2

3
1

1

3
2

A B C

7

6
5

4
3

2
1

?

3
1

1
2

3
?

2

?
?

1
2

3
1

3

2
?

3
?

2
3

3

2
3

?
3

?
3

2

3
1

?
?

3
1

a b c d e

7

3
6

2
5

4
1

3

?
2

2
?

3
3

3

3
2

?
3

?
3

?

2
3

3
1

1
?

2

2
?

3
?

1
1

2

?
3

3
1

?
1

c d a b e

Z

Y
X

3

2
3

2

3
1

A B

⇓

⇑
cluster-level

rating pattern
correspondence

movie (auxiliary) after permutation

book (target) after permutation

⇒ ⇒

⇒ ⇒

Figure 1: The correspondence of the user-item rating patterns
between two toy rating matrices. The missing values are de-
noted by ‘?’. The book rating matrix has a subset cluster-level
rating patterns of the movie rating matrix.

underlies the relatedness and the rating scales in both rating
matrices should be consistent, e.g., 1 − 5) and has a dense
n × m rating matrix, Xaux. In this paper, we show how
to learn informative and yet compact cluster-level user-item
rating patterns from the auxiliary rating matrix and transfer
them to the target rating matrix, to enable better prediction
results in the target task. We refer to this collection of pat-
terns to be transferred as a “codebook”, which is a k × l
(k < n, k < p, l < m, l < q) cluster-level user-item rat-
ing matrix that encodes the user-item clusters in Xaux. By
assuming the user-item rating patterns in Xtgt is similar to
Xaux, we can reconstruct the target rating matrix by expand-
ing the codebook. If the codebook is expressive enough to
describe various user-item rating patterns, the reconstructed
rating matrix can fit the true target rating matrix well.

2 Codebook Construction

In collaborative filtering, users with similar tastes or items
with similar attributes usually behave very similarly. For ex-
ample, in Fig. 1, users in X prefer items in A to B, and items
in B are liked by users in Y but disliked by users in X . This
observation suggests that users and items can be clustered
into groups. If users and items can be well clustered, a much
more compact user-item rating matrix, which only comprises
the representatives of all the user/item clusters, is able to sum-
marize and compress the original redundant rating matrix. As
a result, we only need the cluster indicators for the users and
items to recover the original rating matrix. This is why the
transferred knowledge is called a “codebook”.

Definition 2.1 (Codebook). Codebook is a k×l matrix which
compresses the cluster-level user-item rating patterns of k
user clusters and l item clusters in the original rating matrix.

Ideally, if the users/items in the same clusters are identical,

we only need to select one user/item pair from each user/item
cluster to form the codebook. However, in real-world cases,
the users/items in the same cluster cannot be identical. A nat-
ural choice is to use the cluster centroid as the prototype for
each cluster. To this end, we need to simultaneously clus-
ter the rows (users) and columns (items) of the rating ma-
trix. For codebook construction, what we need are only the
user and item cluster indicators, and for this we can choose
any co-clustering algorithms. In this paper, we adopt the or-
thogonal nonnegative matrix tri-factorization (ONMTF) al-
gorithm [Ding et al., 2006], since it is proved to be equiv-
alent to a two-way K-means clustering algorithm and easy
to implement. The auxiliary rating matrix Xaux can then be
tri-factorized as follows

min
U≥0,V≥0,S≥0

∥∥Xaux − USV
�

∥∥2

F
(1)

s.t. U
�
U = I,V�

V = I,

where U ∈ R
n×k
+ , V ∈ R

m×l
+ , S ∈ R

k×l
+ (R+ means non-

negative real number), and ‖·‖F denotes the Frobenius norm.
Due to the nonnegativity and orthogonality constraints for U

and V, each row of U and V can have only one nonnegative
entry, which is the cluster indicator for the user/item in that
row. The constrained optimization problem (1) can be solved
efficiently by using equations (28–30) in [Ding et al., 2006].
Due to space limitations, we skip them here.

The current form of the user/item cluster indicators, U and
V, may not have interpretable meanings for the user/item
memberships. For simplicity, in this paper we use binary
data to represent U and V by setting the nonnegative entry
in each row to be 1 and the others to be 0. Then, these binary
user/item cluster indicators form a (hard membership) matrix,
denoted by Uaux and Vaux, for the auxiliary rating matrix.

We can construct the codebook B as follows

B = [U�
auxXauxVaux] � [U�

aux11
�
Vaux], (2)

where � means entry-wise division. Eq. (2) means averaging
all the ratings in each user-item co-cluster as an entry in the
codebook, i.e., the cluster-level rating pattern. The details for
codebook construction are summarized in Algorithm 1.

From Eq. (2), the codebook B is either the user basis of the
row space of XauxVaux or the item basis of the column space
of U

�
auxXaux. Therefore, the codebook can be viewed as the

“two-sided basis” for Xaux such that Xaux can be recovered
by duplicating the rows and columns of the codebook.

A remaining task is to select the user/item cluster numbers,
k and l. Too many clusters may comprise redundant informa-
tion such that more computational cost is incurred during the
codebook construction and transfer. Having too few clusters
may make it insufficient to encode the user/item data and may
cause the algorithm to miss much useful information. There-
fore, a suitable size for the codebook should be not only ex-
pressive enough to compress most information in the data but
also compact enough for computational efficiency.

3 Codebook Transfer

After obtaining the codebook, the user-item rating patterns
can be transferred from Xaux to Xtgt. By assuming that there

2053

Algorithm 1 Codebook Construction

Input: An n×m auxiliary rating matrix Xaux; the numbers
of user and item clusters k and l.

Output: A k × l codebook B learned from Xaux.
1: Randomly initialize U

(0), V(0), and S
(0) in Eq. (1).

2: for t ← 1, . . . , T do
3: Update U

(t−1), V
(t−1), S

(t−1) using Eqs. (28–30)

in [Ding et al., 2006], and obtain U
(t), V(t), S(t).

4: end for
5: Allocate spaces for Uaux and Vaux.
6: for i ← 1, . . . , n do

7: ĵ = argmaxj∈{1,...,k}{Uij}.

8: [Uaux]iĵ ← 1; [Uaux]ij ← 0 for j ∈ {1, . . . , k}/ĵ.

9: end for
10: for i ← 1, . . . , m do

11: ĵ = argmaxj∈{1,...,l}{Vij}.

12: [Vaux]iĵ ← 1; [Vaux]ij ← 0 for j ∈ {1, . . . , l}/ĵ.

13: end for
14: Calculate the codebook B using Eq. (2).

exists implicit correspondence between the user/item clusters
of the auxiliary task and those of the target task (like the il-
lustration in Fig. 1), Xtgt can then be reconstructed by ex-
panding the codebook; i.e., this can be done by duplicating
certain rows and columns in the codebook. The duplication
of the i-th row/column in the codebook means that there are a
set of users/items in Xtgt that behaves like the i-th user/item
cluster prototype in Xaux.

The reconstruction process of Xtgt expands the codebook
as it reduces the differences based on a certain loss function
(in this paper, we adopt the quadratic loss function) between
the observed ratings in Xtgt and the corresponding entries
in the reconstructed rating matrix. Here we employ a binary
weighting matrix W of the same size as Xtgt to mask the
unobserved entries, where Wij = 1 if [Xtgt]ij is rated and
Wij = 0 otherwise. Consequently, only the quadratic losses
at the observed entries in Xtgt are taken into account in the
objective function

min
Utgt∈{0,1}p×k

Vtgt∈{0,1}q×l

∥∥[Xtgt − UtgtBV
�
tgt] ◦ W

∥∥2

F
(3)

s.t. Utgt1 = 1,Vtgt1 = 1,

where ◦ denotes the entry-wise product. The constraints indi-
cate that each row in Utgt or Vtgt is the cluster membership
of the user or item. In this work, we only consider the case
that each user/item can only belong to one user/item cluster.
Thus, Utgt and Vtgt can only take binary values {0, 1}, and
only one ‘1’ can be in each row of Utgt and Vtgt. The opti-
mization problem (3) becomes a binary integer programming
problem, which is known to be NP-hard. In the sequel, we
propose an efficient algorithm to search for the local mini-
mum solution (Algorithm 2).

Proposition 3.1. Algorithm 2 monotonically decreases the
objective function (3).

Proof. Algorithm 2 alternatively updating Utgt and Vtgt, so

Algorithm 2 Codebook Transfer

Input: The p× q target rating matrix Xtgt; the p× q weight-
ing matrix W; the k × l codebook B.

Output: The filled-in p × q target rating matrix X̃tgt.
1: Allocate spaces for Utgt and Vtgt.
2: for i ← 1, . . . , m do

3: Randomly select ĵ from {1, . . . , l}.

4: [V
(0)
tgt]iĵ ← 1; [V

(0)
tgt]ij ← 0 for j ∈ {1, . . . , l}/ĵ.

5: end for
6: for t ← 1, . . . , T do
7: for i ← 1, . . . , p do

8: ĵ = argminj

∥∥[Xtgt]i∗ − [B[V
(t−1)
tgt]�]j∗

∥∥2

Wi∗
.

9: [U
(t)
tgt]iĵ ← 1; [U

(t)
tgt]ij ← 0 for j ∈ {1, . . . , k}/ĵ.

10: end for
11: for i ← 1, . . . , q do

12: ĵ = argminj

∥∥[Xtgt]∗i − [U
(t)
tgtB]∗j

∥∥2

W∗i
.

13: [V
(t)
tgt]iĵ ← 1; [V

(t)
tgt]ij ← 0 for j ∈ {1, . . . , l}/ĵ.

14: end for
15: end for
16: Calculate the filled-in rating matrix X̃tgt using Eq. (8).

we only need to prove that, at the t-th (t > 0) iterative round,
the following two inequalities always hold

∥∥[Xtgt − U
(t−1)
tgt B[V

(t−1)
tgt]�] ◦ W

∥∥2

F
≥

∥∥[Xtgt − U
(t)
tgtB[V

(t−1)
tgt]�] ◦ W

∥∥2

F
(4)

and
∥∥[Xtgt − U

(t)
tgtB[V

(t−1)
tgt]�] ◦ W

∥∥2

F
≥

∥∥[Xtgt − U
(t)
tgtB[V

(t)
tgt]

�] ◦ W
∥∥2

F
. (5)

We first prove Eq. (4). When Utgt is updated, Vtgt is fixed.

∥∥[Xtgt − U
(t−1)
tgt B[V

(t−1)
tgt]�] ◦ W

∥∥2

F

=

n∑

i=1

k∑

j=1

[U
(t−1)
tgt]ij

∥∥[Xtgt]i∗ − [B[V
(t−1)
tgt]�]j∗

∥∥2

Wi∗

=

n∑

i=1

∥∥[Xtgt]i∗ − [B[V
(t−1)
tgt]�]

δ([U
(t−1)
tgt]i∗)∗

∥∥2

Wi∗
(6)

≥

n∑

i=1

∥∥[Xtgt]i∗ − [B[V
(t−1)
tgt]�]

δ([U
(t)
tgt]i∗)∗

∥∥2

Wi∗
(7)

=
∥∥[Xtgt − U

(t)
tgtB[V

(t−1)
tgt]�] ◦ W

∥∥2

F

where [·]i∗ (or [·]∗i) denotes the i-th row (or column) in a ma-
trix, and ‖x‖2

Wi∗
= x

�diag(Wi∗)x is the weighted l2-norm.

The indicator function δ(·) returns the index of the largest
component in a vector. Eq. (6) is obtained based on the fact
that each user only belongs to one cluster (i.e., only one ‘1’

in [U
(t−1)
tgt]i∗). Thus, we can replace the sum of [U

(t−1)
tgt]i∗-

weighted quadratic losses by only one quadratic loss indexed

by the indicator function δ([U
(t−1)
tgt]i∗), which tells that the

2054

2∗
3
1

1
2

3
1∗

2

3∗
1∗
1
2

3
1

3

2
3∗
3
3∗
2
3

3

2
3

3∗
3

2∗
3

2

3
1

1∗
2∗
3
1

0

0
1

1
0

0
1

0

1
0

0
0

1
0

1

0
0

0
1

0
0

Z

Y
X

3

2
3

2

3
1

1

3
2

A B C

0

1
0

0

1
0

0

0
1

0

0
1

0

1
0

⇐ × ×

codebook

Utgt

V
�
tgt

reconstructed

Figure 2: Target rating matrix reconstruction. The entries
with ‘*’ are the filled-in missing values; the ones without ‘*’
are identical to those in the original rating matrix (loss is 0).

cluster to which the i-th user (i.e., [Xtgt]i∗) belongs at the
(t−1)-th iterative round. The inequality between Eq. (6) and
Eq. (7) can be obtained, at the t-th iterative round, by finding

the nearest cluster centroid in [B[V
(t−1)
tgt]�]j∗, j = 1, . . . , k,

for the i-th user based on the distance metric ‖ · ‖2
Wi∗

.

Eq. (5) can also be proved in the same way as Eq. (4). Al-
ternatively updating Utgt and Vtgt can monotonically reduce
the value of the objective function (3) and make it converge
to a local minimum.

Algorithm 2 is very efficient. It takes a computational com-
plexity of O(T (pk + ql)) and can always converge to a local
minimum in few rounds; in our empirical tests in Section 5,
it usually takes less than ten rounds (T < 10). Thus, one
can run the algorithm multiple times with different random
initializations for Vtgt to search a better local minimum.

It is worth noting that the value of the objective function
(3) is also an index of the relatedness between the target and
auxiliary tasks. The smaller the value is, the better the rating
patterns are corresponded to each other. In contrast, a large
value implies a weak correspondence which may lead to po-
tential negative transfer [Rosenstein et al., 2005].

Once the user and item membership (cluster indicator) ma-
trices Utgt and Vtgt are obtained, we can reconstruct the tar-
get rating matrix Xtgt by duplicating the rows and columns

of the codebook using UtgtBV
�
tgt. Fig. 2 illustrates the tar-

get rating matrix reconstruction for the book rating matrix
(viewed as the target task) in Fig. 1 by expanding the code-
book learned from the movie rating matrix (viewed as the
auxiliary task) in Fig. 1. Then the filled-in target rating ma-

trix, X̃tgt, is defined as

X̃tgt = W ◦ Xtgt + [1− W] ◦ [UtgtBV
�
tgt], (8)

which can be used as the training data set for memory-based
collaborative filtering.

We summarize the proposed cross-domain collaborative
filtering method via codebook transfer (CBT) as the follow-
ing three steps: 1) Construct the codebook B from Xaux us-
ing Algorithm 1; 2) based on B, fill in the missing values

in Xtgt using Algorithm 2 and get X̃tgt; 3) take X̃tgt as the
training data set for memory-based collaborative filtering.

4 Related Work

In the proposed method, user-item rating patterns are learned
from a dense auxiliary rating matrix and transferred to a
sparse target rating matrix in the form of a codebook, which
are two-sided prototypes (basis) of both users and items. This
knowledge transfer fashion is similar to the self-taught learn-
ing (STL) [Raina et al., 2007] in transfer learning area. STL
first learns an abundant data representation (basis) from a
large collection of auxiliary data. It then represents the test
data as the linear combination of a set of basis. A ma-
jor difference from our work is that STL transfers one-sided
data representation (in row spaces) while our method trans-
fers two-sided data representation (in both row and column
space). Furthermore, the application domain of STL is image
analysis, whereas we focus on collaborative filtering.

Codebook modeling is also related to model-based collab-
orative filtering methods, such as two-sided clustering (TSC)
model [Hofmann and Puzicha, 1999] and flexible mixture
model (FMM) [Si and Jin, 2003]. TSC is defined as

P (r, i, j) = P (i)P (j)P (r|ui, vj)φ(ui, vj),

where ui denotes the user cluster to which the i-th user be-
longs, vj the item cluster to which the j-th item belongs, and
φ(·, ·) the cluster association parameter. The entry Buv in the
codebook perform the same role as P (r|u, v)φ(u, v) in TSC.
FMM is also a probabilistic model defined as

P (r, i, j) =
∑

u,v

P (i|u)P (j|v)P (r|u, v)P (u)P (v),

where u denotes user cluster, v item cluster, and r rating. The
entry Buv in the codebook can explicitly correspond to the
joint probability, P (r|u, v)P (u)P (v), in FMM. In the above
models, the user-item rating patterns are modeled in the prob-
abilistic framework; whereas in this work, for the simplicity
of transfer, user-item rating patterns are modeled using hard-
membership clustering rather than probabilistic models.

In collaborative filtering, several research works have been
done on sparsity reduction and similarity enhancement. [Wil-
son et al., 2003] exploits the implicit similarity knowledge
via item-item association rule mining and case-based reason-
ing. [Xue et al., 2005] smooths the rating matrix by the aver-
age rating values within user clusters. [George and Merugu,
2005] models rating patterns by simultaneously clustering
users and items. [Chen et al., 2007] also simultaneously clus-
ters users and items and fuses the user-based and item-based
search results. However, these methods restrict themselves to
learning in the target task domain only. In contrast, we aim at
establishing the correspondence between a target task and an
auxiliary task, in order to seek more useful knowledge from
the auxiliary task.

5 Experiments

In this section, we focus on investigating whether additional
knowledge can be really gained from the auxiliary rating ma-
trix in other domains to remedy the sparse rating matrices in
the target domain. We aim to validate that transferring useful
information from a dense auxiliary rating matrix is more ef-
fective than mining the limited knowledge in the sparse target
rating matrix itself.

2055

5.1 Data sets

We use the following data sets in our empirical tests.

• EachMovie1 (Auxiliary task): A movie rating data set
comprising 2.8 million ratings (scales 1–6) by 72,916
users on 1628 movies. Since Xaux is assumed to be
denser than Xtgt, we extract a sub-matrix to simulate
the auxiliary task by selecting 500 users and 500 movies
with most ratings (rating ratio 54.6%), and the missing
values for each user is simply filled in with her aver-
age rating. For a rating-scale consistency with the target
tasks, we replace 6 with 5 in the rating matrix to make
the rating scales from 1 to 5.

• MovieLens2 (Target task): A movie rating data set com-
prising 100,000 ratings (scales 1–5) by 943 users on
1682 movies. We randomly select 500 users with more
than 40 ratings and 1000 movies (rating ratio 11.6%).

• Book-Crossing3 (Target task): A book rating data set
comprising more than 1.1 million ratings (scales 1–10)
by 278,858 users on 271,379 books. We randomly select
500 users and 1000 books with most ratings (rating ratio
3.02%). We also normalize the rating scales from 1 to 5.

5.2 Compared Methods

Our proposed method aims at filling in the missing values in
the rating matrix to alleviate the sparsity problem in the simi-
larity computation between training and test users. Thus, our
method is compared with the state-of-the-art methods which
also focus on missing-value problems:

• PCC (baseline): Do not handle the missing values.

• CBS (Scalable cluster-based smoothing [Xue et al.,
2005]): Take the average of the observed ratings in the
same user cluster to fill in the missing values. The num-
ber of user clusters is set to 50.

• WLR (Weighted low-rank approximation [Srebro and
Jaakkola, 2003]): Fill in the missing values with cor-
responding entries in the reconstructed low-rank matrix.
The dimension of the latent space is set to 50.

• CBT (Codebook transfer, the proposed method): Fill in
the missing values with corresponding entries in the re-
constructed rating matrix by expanding the codebook.
The numbers of both user and item clusters are set to 50.

After filling in the missing values in the two target rating ma-
trices, we evaluate the knowledge gains by different methods
in the same framework, i.e., to find the top K nearest neigh-
bors (K = 20) based on the Pearson correlation coefficients
(PCC) similarity to predict test user ratings.

5.3 Evaluation Protocol

Following [Xue et al., 2005], we evaluate the algorithm per-
formance under different configurations. The first 100, 200,
and 300 users in the both target data sets are used for train-
ing, respectively, and the last 200 users for testing. For each

1http://www.cs.cmu.edu/˜lebanon/IR-lab.htm
2http://www.grouplens.org/node/73
3http://www.informatik.uni-freiburg.de/˜cziegler/BX/

Table 1: MAE on MovieLens (average over 10 splits)

Training Set Method Given5 Given10 Given15

ML100

PCC 0.930 0.883 0.873
CBS 0.874 0.845 0.839
WLR 0.915 0.875 0.890
CBT 0.840 0.802 0.786

ML200

PCC 0.905 0.878 0.878
CBS 0.871 0.833 0.828
WLR 0.941 0.903 0.883
CBT 0.839 0.800 0.784

ML300

PCC 0.897 0.882 0.885
CBS 0.870 0.834 0.819
WLR 1.018 0.962 0.938
CBT 0.840 0.801 0.785

Table 2: MAE on Book-Crossing (average over 10 splits)

Training Set Method Given5 Given10 Given15

BX100

PCC 0.677 0.710 0.693
CBS 0.664 0.655 0.641
WLR 1.170 1.182 1.174
CBT 0.614 0.611 0.593

BX200

PCC 0.687 0.719 0.695
CBS 0.661 0.644 0.630
WLR 0.965 1.024 0.991
CBT 0.614 0.600 0.581

BX300

PCC 0.688 0.712 0.682
CBS 0.659 0.655 0.633
WLR 0.842 0.837 0.829
CBT 0.605 0.592 0.574

test user, three different sizes of the observed ratings (Given5,
Given10, Given15) are provided for computing PCC and the
remaining ratings are used for evaluation. Note that in our
experiments, the given observed rating indices are randomly
selected 10 times, so that the reported results in Table 1 and 2
are the average results over ten splits.

The evaluation metric we adopt is Mean Absolute Error
(MAE): (

∑
i∈T |ri − r̃i|)/|T |, where T denotes the set of test

ratings, ri is ground truth and r̃i is predicted rating. A smaller
value of MAE means a better performance.

5.4 Results

The comparison results are reported in Table 1 and 2. As
expected, our method clearly outperforms all the other com-
pared methods under all the testing configurations on both
target data sets. CBS performs slightly better than the base-
line, which implies that the users in the same cluster do share
common rating patterns. WLR performs even worse than the
baseline because of the extreme sparsity of the two target rat-
ing matrices, which can lead to a poor low-rank approxima-
tion and introduce noise instead of knowledge. The experi-
mental results show that our proposed method CBT is more
effective in alleviating the sparsity problem by transferring
useful knowledge from the dense auxiliary rating matrix, as

2056

compared to the methods which aim at mining the knowledge
in the sparse target rating matrix from a single target domain.

It is also worth noting that, with the number of given ob-
served ratings increasing (from 5 to 15), the performance im-
provements of our method are most notable among the com-
pared methods. Given one more observed rating for a test
user, the amount of improvement indicates how much novel
useful knowledge that has been introduced by the correspond-
ing column in the target rating matrix (e.g., given the second
rating of the test user observable, the second column in the
rating matrix then can be used for computing PCC for this
test user). Since most of the ratings in the target rating matrix
for computing PCC are filled-in values, we can conclude that
our method can fill in the most informative values, owing to
the use of knowledge transfer.

5.5 Discussion

Although our proposed CBT method can clearly outperform
the other compared methods on the both target data sets, we
can see that there still exists some room for further perfor-
mance improvements. We consider that a crucial problem that
holds back further improvements lies in the inherent problem
of the data sets; i.e., the users and items in the rating matri-
ces may not always be able to be grouped into high quality
clusters. We observe that the average ratings of the three data
sets are far larger than the medians (given the median being
3, the average ratings are 3.66, 3.58, and 4.21 for the three
data sets, respectively). This may be caused by the fact that
the items with the most ratings are usually the most popular
ones. In other words, users are willing to rate their favorite
items to recommend them to others, but have little interest to
rate the items they dislike. Given that no clear user and item
groups can be discovered for these cases, it is hard to learn a
good cluster-level rating pattern representation.

6 Conclusion

In this paper, we presented a novel cross-domain collabora-
tive filtering method via codebook-based knowledge transfer
(CBT) for recommender systems, which can transfer useful
knowledge from the auxiliary rating matrix in some other do-
mains to remedy the sparsity of the rating matrix in a target
domain. The knowledge is transferred in the form of a code-
book, which is learned from an auxiliary rating matrix by
compressing the cluster-level user-item rating patterns into
an informative and yet compact representation. The sparse
target rating matrix can thus be reconstructed by expand-
ing the codebook. The experimental results show that code-
book transfer can clearly outperform the many state-of-the-
art methods. This can validate that, in collaborative filtering,
additional useful information indeed can be gained from the
auxiliary tasks in other domains to aid the target task.

Acknowledgments

Bin Li and Qiang Yang are supported by Hong Kong CERG
Grant 621307; Bin Li and Xiangyang Xue are supported in
part by Shanghai Leading Academic Discipline Project (No.
B114) and NSF of China (No. 60873178).

References
[Chen et al., 2007] Gang Chen, Fei Wang, and Changshui

Zhang. Collaborative filtering using orthogonal nonneg-
ative matrix tri-factorization. In Proc. of the IEEE Int’l
Conf. on Data Mining Workshops, pages 303–308, 2007.

[Coyle and Smyth, 2008] Maurice Coyle and Barry Smyth.
Web search shared: Social aspects of a collaborative,
community-based search network. In Proc. of the 15th
Int’l Conf. on Adaptive Hypermedia and Adaptive Web-
Based Systems, pages 103–112, 2008.

[Ding et al., 2006] Chris Ding, Tao Li, Wei Peng, and Hae-
sun Park. Orthogonal nonnegative matrix tri-factorizations
for clustering. In Proc. of the 12th ACM SIGKDD Int’l
Conf., pages 126–135, 2006.

[George and Merugu, 2005] Thomas George and Srujana
Merugu. A scalable collaborative filtering framework
based on co-clustering. In Proc. of the Fifth IEEE Int’l
Conf. on Data Mining, pages 625–628, 2005.

[Hofmann and Puzicha, 1999] Thomas Hofmann and Jan
Puzicha. Latent class models for collaborative filtering. In
Proc. of the 16th Int’l Joint Conf. on Artificial Intelligence,
pages 688–693, 1999.

[Raina et al., 2007] Rajat Raina, Alexis Battle, Honglak Lee,
Benjamin Packer, and Andrew Ng. Self-taught learning:
Transfer learning from unlabeled data. In Proc. of the 24th
Int’l Conf. on Machine Learning, pages 759–766, 2007.

[Resnick et al., 1994] Paul Resnick, Neophytos Iacovou,
Mitesh Suchak, Peter Bergstrom, and John Riedl. Grou-
pLens: An open architecture for collaborative filtering of
netnews. In Proc. of the ACM Conf. on Computer Sup-
ported Cooperative Work, pages 175–186, 1994.

[Rosenstein et al., 2005] Michael T. Rosenstein, Zvika
Marx, and Leslie Pack Kaelbling. To transfer or not to
transfer. In Proc. of the NIPS Workshop on Inductive
Transfer: 10 Years Later, 2005.

[Sarwar et al., 2005] Badrul Sarwar, George Karypis, Joseph
Konstan, and John Riedl. Item-based collaborative filter-
ing recommendation algorithms. In Proc. of the 10th Int’l
World Wide Web Conf., pages 285–295, 2005.

[Si and Jin, 2003] Luo Si and Rong Jin. Flexible mixture
model for collaborative filtering. In Proc. of the 20th Int’l
Conf. on Machine Learning, pages 704–711, 2003.

[Srebro and Jaakkola, 2003] Nathan Srebro and Tommi
Jaakkola. Weighted low-rank approximations. In Proc. of
the 20th Int’l Conf. on Machine Learning, pages 720–727,
2003.

[Wilson et al., 2003] David C. Wilson, Barry Smyth, and
Derry O’sullivan. Sparsity reduction in collaborative rec-
ommendation: A case-based approach. Int’l Journal of
Pattern Recognition and Artificial Intelligence, 17(5):863–
884, 2003.

[Xue et al., 2005] Gui-Rong Xue, Chenxi Lin, Qiang Yang,
Wensi Xi, Hua-Jun Zeng, Yong Yu, and Zheng Chen. Scal-
able collaborative filtering using cluster-based smoothing.
In Proc. of the 28th SIGIR Conf., pages 114–121, 2005.

2057

