
Target-Value Search Revisited

Carlos Linares López
Planning and Learning Group

Universidad Carlos III de Madrid
28911 Leganés (Madrid) - Spain

carlos.linares@uc3m.es

Roni Stern
SEAS

Harvard University
Cambridge, MA 02138 USA

roni.stern@gmail.com

Ariel Felner
Information Systems Engineering

Ben Gurion University
Beer-Sheva, Israel 85104

felner@bgu.ac.il

Abstract

This paper addresses the Target-Value Search
(TVS) problem, which is the problem of finding a
path between two nodes in a graph whose cost is as
close as possible to a given target value, T . This
problem has been previously addressed only for di-
rected acyclic graphs. In this work we develop the
theory required to solve this problem optimally for
any type of graphs. We modify traditional heuris-
tic search algorithms for this setting, and propose a
novel bidirectional search algorithm that is specif-
ically suited for TVS. The benefits of this bidirec-
tional search algorithm are discussed both theoreti-
cally and experimentally on several domains.

1 Introduction
Given a target value T , the Target-Value Search problem
(TVS) consists of finding a path in the search space from a
start state, s to the goal state, t, such that the cost of the path
is as close as possible to a given value, T . The problem was
recently introduced [Kuhn et al., 2008; Schmidt et al., 2009],
motivated by several applications, such as when planning a
tour of a given duration in a park. Another application for
TVS is diagnosis systems, where it has been shown that find-
ing the most informative test can be reduced to finding a test
of whose probability of success is equal to 0.5 [Liu et al.,
2008].

Previous work has addressed TVS only in the context of
directed acyclic graphs (DAGs) [Kuhn et al., 2008]. In ad-
dition, they performed only small-scale experiments, with
graphs having at most 70 nodes.

In this work, we address TVS for general graphs. We dis-
cuss the unique properties of TVS in comparison with a short-
est path (SP) search problem. In particular, we describe how
the role of an admissible heuristic in TVS differs from its role
in SP. Then, we describe how to modify existing SP search
algorithms such as A∗ and IDA∗ to TVS, and propose a novel
bidirectional approach especially suited for TVS. Lastly, we
describe how to define and use abstraction-based heuristics
for TVS, introducing the notion of Induced Transition Graph.
Experimental results on a number of classical search bench-
marks show the benefit of the proposed bidirectional search

coupled with the Induced Transition Graph heuristic over the
other approaches.

2 Problem Definition
In the target value search problem (TVS) we are given a
graph G = (V,E), two states s ∈ V and t ∈ V and a target
value T ∈ N. The task is to find a path P in G from s to t
such that the cost of the path c(P) is as close as possible to
T . Given a path P we denote its length with |P |. Also, we
define ∆T (P) = |T − c(P)|. Thus, a solution to TVS is a
path P that minimizes ∆T (P). We denote this minimal ∆T

by ∆∗T , and refer to a solution with ∆T (P) = 0 as a perfect
solution.

Since previous work on TVS addressed DAGs, only simple
paths, i.e., paths containing every vertex at most once, were
considered as possible solutions. By contrast, paths in general
graphs can contain the same vertex or edge many times. Thus,
there are several ways to define TVS for general graphs:

• TVS1: Only simple paths are allowed.

• TVS2: Revisiting vertices is allowed, but every edge can
only be visited once.

• TVS3: Every path is allowed —both states and edges
can be revisited.

Figure 1 shows one solution for each of TVS1, TVS2 and
TVS3 for the TVS problem where G is a 3 × 3 grid, s is the
bottom left corner, t is the upper right corner and T = 9.
Note that there is no perfect solution, so that solutions with
length 8 or 10 are equally preferable.

Choosing the most suited TVS variant depends on the exact
problem and domain that is being addressed. In this work
we address TVS2 (nodes can be revisited but not edges), and
focus on undirected graphs with unit edge cost.

2.1 Previous Approach for TVS
As mentioned above, previous work has addressed TVS only
in the context of DAGs [Kuhn et al., 2008]. For every node n,
they first stored the lowest and highest cost path from s to t
that passes via n. These values were stored in a data structure
similar to a pattern database (PDB) [Culberson and Schaeffer,
1996]. This PDB was then used in an A∗-like search to prune
nodes that can not be part of paths that have a smaller ∆T

than the current best solution. Later work generalized this

Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence

601

s

t

1 2
3

45

6

7 8

(a) TVS1: No cycles
s

t

1 2
3

4 5
6

7

8

(b) TVS2: Only nodes can be revisited
s

t

1
2

3

4

56

7

8
9
10

(c) TVS3: Edges can be revisited

Figure 1: Solutions to the different TVS variants in a 3× 3 grid with T = 9

PDB to hold several intervals of possible path costs for every
node in the PDB.

This previous approach can not be used directly for TVS2
on general graphs for several reasons. Remarkably, creating
the PDB requires traversing every possible path between s
and t. In DAGs, this can be done efficiently with dynamic
programming but is exponentially harder for general graphs,
which may contain cycles, as well as for very large implicitly
given graphs [Schmidt et al., 2009].

3 A∗ and IDA∗ for TVS
In this section, we modify two classical search algorithms,
namely A∗ [Hart et al., 1968] and IDA∗ [Korf, 1985]. It is
important to remark that, in the context of TVS, none of these
algorithms perform any kind of duplicate detection since dif-
ferent paths to the same node can have different suffixes or
continuations, depending on the nodes previously visited by
every path.

3.1 TVSA∗

A∗ is a best-first search algorithm that uses as an evaluation
function f(n) = g(n) + h(n), where g(n) is the sum of the
edge costs from s to n and h(n) is a lower bound on the path
cost from n to t. A∗ maintains two lists of nodes, an open list
(OPEN) and a closed list (CLOSED). Initially, OPEN con-
tains s and CLOSED is empty. In every iteration of A∗, the
node with the lowest f in OPEN is moved to CLOSED and its
children are generated. A generated child is added to OPEN,
unless it was already in OPEN or CLOSED with a lower g-
value. This pruning of previously generated nodes is called
duplicate detection. A∗ halts when t is expanded, in which
case g(t) is the lowest cost from s to t [Hart et al., 1968].

Next, we describe our adaptation of A∗ to TVS, which
we call TVSA∗. Pseudo-code for TVSA∗ is given in Algo-
rithm 1. Since we aim at finding the path with the lowest ∆T ,
the nodes in TVSA∗ are expanded according to a different
evaluation function than in A∗. Let ∆T (n) = |g(n) − T |.
TVSA∗ expands the node from OPEN that has the lowest
∆T (n). However, it first considers only the nodes in OPEN
with g(n) ≤ T (line 5). If no such nodes exists, TVSA∗
chooses the node with the lowest ∆T (n) among the nodes
with g(n) > T in OPEN.

Whenever a goal node is found, best∆ is updated with its
∆T if it is smaller than the current best∆ (line 13). Nodes
with f(n) ≥ T + best∆ can never lead to a solution with
lower ∆T than best∆, and are thus pruned (line 11). The

Algorithm 1: TVSA∗

Input: s, the start state
Input: t, the goal state
Input: T , the target value
Output: A path P from s to t with minimal ∆T (P)

1 OPEN← {s}
2 best∆ ←∞
3 while OPEN is not empty do
4 if OPEN contains a node with g(n) ≤ T then
5 best← arg min

n∈OPEN,g(n)≤T

{∆T (n)}

6 else
7 best← arg min

n∈OPEN
{∆T (n)}

8 if g(best) ≥ T + best∆ then
9 return best∆

10 if f(best) ≥ T + best∆ then
11 Continue

12 if (best = t) then
13 best∆ ← min(best∆, |T − g(best)|)
14 if best∆=0 then return best∆
15 ;

16 Expand(best)

17 return best∆

search halts when either a perfect solution is found or a node
with g(n) ≥ T + best∆ is chosen from OPEN (line 9).

Theorem 1 TVSA∗ is optimal and complete.

Proof. When TVSA∗ halts either (1) a perfect solution is
found (line 14), or (2) OPEN is empty (line 17) or (3) a node
with g(n) ≥ T + best∆ is chosen for expansion (line 9).
If a perfect solution is found then clearly no better solution
exists. If OPEN is empty, then all paths from s to t must have
been enumerated, and thus the best ∆T found is the smallest
possible. If a node with g(n) ≥ T + best∆ is chosen for
expansion, this means that all nodes with g < T + best∆
were expanded, then future solutions found by the search can
only have a cost that is larger than T + best∆. Thus, the ∆T

of these solutions would be larger than best∆. 2

3.2 TVSIDA∗

Iterative Deepening A∗ (IDA∗) is a known SP algorithm
[Korf, 1985] which mimics A∗ by performing a sequence
of depth-first searches (DFS). Each DFS is limited by a
given threshold, such that nodes with f -value larger than that

602

threshold are not expanded. If a goal is expanded, the search
halts. Otherwise, a new DFS starts with a larger threshold,
set to be the lowest f -value seen that was above the previous
threshold.

Next, we describe our modification of IDA∗, which we call
TVSIDA∗. When solving shortest path problems, A∗ has an
advantage over IDA∗ due to duplicate detection. In TVS this
advantages disappears, making an adaptation of IDA∗ to TVS
more appealing, potentially enjoying IDA∗’s benefits over
A∗, such as linear memory requirements and faster time per
node. TVSIDA∗ behaves as follows. First, a DFS iteration
is executed with a threshold set to be exactly T . If a solu-
tion is found (of length less or equal to T), its ∆T is stored
in a variable called best∆. If best∆ = 0, a perfect solution
was found and the search can halt. Otherwise, subsequent
iterations of DFS are performed, incrementing the threshold
just like in IDA∗, i.e., updating the current threshold to be the
minimum f -value seen above the current threshold. When-
ever a solution is found, its ∆T is computed and best∆ is
updated if the ∆T of the new solution is lower than the previ-
ous best∆. TVSIDA∗ halts when reaching a threshold that is
greater than or equal to T +best∆. Correctness proof follows
the proof given above for Theorem 1 and is omitted due to
lack of space.

4 Bidirectional TVS (BTVS)
Consider the differences between A∗ and TVSA∗. A∗
searches the state space, while TVSA∗ searches a space that
we call the path space, where every node corresponds to a
path from s. Naturally, the state space is substantially smaller
than the path space. Thus, A∗ will find a path to t faster
than TVSA∗. However, A∗ may not find the path to t with
the smallest ∆T while TVSA∗ is guaranteed to find this path
according to Theorem 1. Following, we propose a unique
bidirectional search that attempts to enjoy the complementary
benefits of state space and path space searches. In particular,
this algorithm reaches t fast like a state space search, and
is guaranteed to return a solution with the lowest ∆T like a
path space search. We call this algorithm Bidirectional Tar-
get Value Search (BTVS).

BTVS is composed of two alternating searches: a forward
search and a backward search. The forward search starts from
s and is performed on the state space, while the backward
search starts from t and is performed on the path space. Im-
portantly, the backward search, which potentially searches a
substantially larger space than the forward search, is limited
to only consider paths that are composed of nodes and edges
found by previous forward searches. BTVS alternates be-
tween the forward and the backward search until ∆∗T is found.
Next, we describe BTVS in details.

4.1 Forward Search
The forward search is a regular uniform-cost search (aka Di-
jkstra’s search) from s to t. Duplicate detection is performed,
and for every visited node nwe store the lowest g-value found
from s to n. This g value found for n in the forward search is
denoted by gf (n). When t is expanded, the lowest-cost path
to t was found and gf (t) is its cost. The ∆T of this solution
is stored in best∆. Next, the backward search is called.

Algorithm 2: High-level BTVS

1 Forward search until the lowest cost path is found
2 Backward search checking all paths in the induced graph
3 Forward search until all nodes with f < T + best∆ have been

expanded
4 Backward search checking all paths in the induced graph
5 return best∆

4.2 Backwards Search
The backwards search consists of running TVSIDA∗ from t to
s but considering only expanded nodes in the forward search
(i.e., the nodes in CLOSED). We call the graph that is com-
posed of these nodes and the edges between them the induced
graph of the forward search. The backward search is done
in the path space (i.e., no duplicate detection is done), possi-
bly considering paths that were pruned by the forward search.
During the backward search best∆ is updated if a solution is
found that has a lower ∆T than the current best∆. The back-
ward search halts only after all paths in the induced graph
of the forward search were visited or a perfect solution was
found in which case BTVS can halt.

In addition, the following pruning rule is performed dur-
ing the backwards search. It is based on the observation
that gf (n) is the cost of the shortest path from s to n. Let
gb(n) be the cost of the backward path from t to n. If
gf (n)+gb(n) ≥ T + best∆ then the backward search prunes
n, since continuing the backward search from n to s will only
find paths at least as large as gf (n), and thus a path with a
better ∆T than best∆ can not be found.

To speed up the backwards search, direct children of a node
n (which were direct anscestors of n in the forward search)
are sorted in increasing order of their deviation from the target
value T , computed for every child node c by gf (c) + gb(c).
This node ordering heuristic is intended to give preference to
nodes more likely to lead to paths with low ∆T . We observed
empirically that this enhancement is beneficial.

4.3 The BTVS Algorithm
Algorithm 2 describes in a high-level manner how BTVS uses
the forward and backward searches described above. First,
the forward search finds a lowest cost path from s to t (line 1).
Then, the backward search tries to find a path with lower
∆T , considering only the induced graph of the forward search
(line 2). Then, the forward search continues, expanding all
the nodes with g ≤ T+best∆ (line 3). Finally, a second back-
ward search is done to check all paths passing through these
nodes (line 4). We use the term BTVS iteration to denote
a single call for the forward search and then the backward
search. Only two iterations are performed and after them, the
path with the lowest ∆T is guaranteed to be found.

Theorem 2 BTVS is optimal and complete.

Proof. If the first iteration does not find a perfect solu-
tion, then the second forward search visits all the nodes with
g < T + best∆. These are all the nodes visited by TVSA∗.
Thus, the backward search will check all the possible paths
from s to t that would be checked by TVSA∗, and thus it is

603

s 1 2

1 2 3

2 3 t4

(a) Forward search
20 53 6

1 4

7

8

(b) Backwards search

Figure 2: The first iteration of BTVS for solving a pathfinding
problem from (0, 0) to (2, 2) with T = 9 in a 3× 3 grid

guaranteed to find the same quality of path as TVSA∗. Thus,
following Theorem 1 BTVS is also optimal and complete. 2

Figure 2 shows the first iteration of the BTVS algorithm on
the same problem shown in Figure 1. Figure 2(a) shows the
induced graph of the forward search, where the gf -cost from s
to reach every node is recorded. The forward search ends with
finding the shortest path P ∗ between s and t with a cost equal
to 4 units, so that the current deviation is ∆T (P ∗) = |9−4| =
5. In the backward search, DFS with a threshold equal to
the target value, 9, is started but only considering nodes in
CLOSED. The lowest ∆9 found by the backward search has a
cost of 8 so that the new best∆ = |9−8| = 1. Since a perfect
solution has not been found, the forward search of the second
iteration expands all nodes with g < T+best∆ = 9+1 = 10.

There can be many variations of BTVS, which alternate
differently between the forward and backward searches. The
variation described above is both optimal and complete, and
has performed better than other simple variants we have ex-
perimented with.

5 Abstractions and the Induced Transition
Graphs

Experimental results reported in the next section show that
BTVS is worse than TVSIDA∗. We identified two potential
sources of inefficiency that may explain this behavior. First,
consider the backward search phase of BTVS. It is applied af-
ter the forward search, and is intended to find solutions with
better ∆T than best∆. Naturally, it might be the case that
no better solution exists in the induced graph of the forward
search, and thus the backward search was redundant. Apply-
ing the backward search redundantly is one source of poten-
tial inefficiency of BTVS.

Another source of potential inefficiency is the forward
search in the second iteration of BTVS (line 3 in Algo-
rithm 2). In BTVS, this forward search continues until all
nodes with g < T + best∆ are expanded. However, when the
forward search expands a node, it may add more edges and
nodes to the induced graph of the forward search. Thus, it
is possible that applying the backward search even before all
the nodes with g < T + best∆ are expanded is beneficial.

Both inefficiencies could be remedied if one had an oracle
that would know when running the backward search may find
a better solution (i.e., one with ∆T < best∆). Next, we de-
scribe a novel heuristic method that suggests when the back-
ward search might lead to an improved solution. We prove

0

s′
1 2 3 4

t′2 4 4 2

2442

Figure 3: Induced Transition Graph of the forward search
shown in Figure 2(a)

that this method can detect with certainty when the backward
search can not lead to an improved solution, thus saving re-
dundant calls to the backward search. This method is based
on the Induced Transition Graph (ITG), defined next. We de-
note the combination of BTVS and ITG by T∗.

5.1 Induced Transition Graph
An ITG is an abstraction of a state space S that is defined
with respect to the information gathered during the forward
search. In particular, in an ITG all the nodes with the same gf
value are mapped into a single node. We label every node in
the ITG according to the gf value of the nodes in the original
search space that are mapped to it. An edge between nodes
i and j in the ITG exists iff the forward search encountered
an edge between a node n with gf (n) = i to a node m with
gf (m) = j. Every edge (i, j) in the ITG is labeled with
the number of times in the forward search that a node with
gf (·) = i generated a descendant with gf (·) = j. We denote
the label of edge (i, j) as #(i, j). Let s′ and t′ be the nodes
in the ITG s and t are mapped to. Clearly, gf (s′) = 0. It is
easy to see that the ITG can be built during the forward search
with a constant additional overhead.

Figure 3 shows the ITG of the CLOSED list generated by
the forward search shown in Figure 2(a) where the nodes s′
and t′ are highlighted.

Next, we describe how the ITG can be used to identify
cases where the backwards search of BTVS is not needed and
the incumbent solution, i.e., the path P seen so far with the
lowest ∆T (P), can be safely returned as the optimal solution
to TVS. We denote the incumbent solution by Pbest, and note
that ∆T (Pbest) = best∆.

A path P ′ in the ITG is called an ITG traversal if it is a path
from s′ to t′ such that every edge (i, j) exists in P ′ at most
#(i, j) times. It is easy to see that every path from s to t that
is found by the backwards search in the original state space
has a corresponding ITG traversal of the same length.

Thus, instead of performing the backwards search to check
if it contains a better path than Pbest, one can enumerate all
the ITG traversals and check whether there is an ITG traveral
P ′ such that |T − |P ′|| < best∆.
Theorem 3 If for every ITG traversal P ′ it holds that |T −
|P ′|| ≥ ∆T (Pbest) then the backwards search will not pro-
vide any solution better than Pbest and it can be avoided.
Proof. Proof by contradition. Assume that the above condi-
tion holds, and that there exists a path P ′′ that will be found
by the backwards search having ∆T (P ′′) < ∆T (Pbest). This
means that there exists an ITG traversal P ′ that corresponds
to P ′′ with |T − |P ′|| = |T − |P ′′|| < ∆T (Pbest), contra-
dicting the condition that |T − |P ′|| ≥ ∆T (Pbest). 2

Theorem 3 can be used to restrict the forward and back-
ward searches in the second iteration and thus, to address the

604

inefficiencies identified in BTVS as follows. Firstly, the for-
ward search of the second iteration invokes the ITG every
time that all nodes with f(n) = gf (s, t) + k have been ex-
panded with k ∈ N. In case the ITG returns a deviation
δ such that f(n) ≥ T + δ the forward search can immedi-
ately terminate since the value returned by the ITG is a lower
bound on the deviation wrt T . In this case, the backwards
search of the current iteration can be issued returning the op-
timal solution to the TVS. Another possible outcome is that
the ITG returns a null deviation meaning that there is poten-
tially an optimal solution. In this case, the backwards search
is run also but if the optimal solution is not found, T∗ enters
the next iteration resuming the forward search in exactly the
same point it left it —i. e., expanding the next node in OPEN.
Finally, the TVSIDA∗ systematically issued by BTVS in the
last iteration can be safely skipped if every ITG traversal GT
has a deviation which is larger or equal than the deviation of
the incumbent solution.

Note that the ITG concept can be applied to any state space
abstraction that preserves edges. We demonstrate it on g∗-
based abstractions as a domain-independent solution.

5.2 Using ITGs in Unit Edge Cost Domains
In this section we assume unit edge costs and show how
to check efficiently if there is an ITG traversal with ∆T <
best∆. This is done by using Dynamic Programming and ex-
ploiting a specific structure of the ITG occuring only in any
unit edge cost domain.

In unit edge cost domains, the ITG consists of a chain of
nodes as shown in Figure 3. This is because if all the edges
have unit cost, then two adjacent nodes in the original graph
can only have gf values that differ by one or zero. Therefore,
the length of the longest path between t′ and s′ = 0 in the
ITG is:

• Let li−1,i denote the number of transitions between (i−
1) and i in the ITG and li,i−1 the number of transitions in
the opposite direction, e. g., l0,1 = l1,0 = 2 in Figure 3.
• Let ci denote the number of self-loops observed from i

to itself.

Let Li denote the length of the longest path to reach 0 from
node i in the ITG without taking self-loops into account and
using only nodes from 0 to i. The length of such path can be
easily computed as:

Li = Li−1 +

{
2li,i−1 − 1 if li−1,i ≥ li,i−1

2li−1,i + 1 otherwise

whereL0 = 0. Then, the length of the longest path between t′
and 0 in the abstract state space using only nodes in the range
[0, t′] is Lt′ + Ct′ where Ct′ =

(∑t′

j=1 cj

)
, if self-loops are

taken into account.
However, the preceding result does not account for the

longest path between the goal node t′ and 0 since it only
considers nodes in the range [0, t′]. The following reason-
ing results from the observation that if T is the target value
from t′ then (T − δ) is the target-value after following a path
of length δ. Let gmax denote the leftmost node in the ITG

from which a transition has been observed, e.g., t′ = 4 in
Figure 3. Obviously, if Lgmax

+Cgmax
< T −(gmax − t′) then

T − (gmax − t′) − (Lgmax
+ Cgmax

) is a lower bound on the
deviation wrt T since the longest path from gmax is shorter
than the target value at gmax . Otherwise, if Lgmax

+ Cgmax
≥

T − (gmax − t′), then the parity rule is applied: if gmax has
the same parity than T − (gmax − t′) then the lower bound
is necessarily 0; otherwise, it is assumed to be 1 unless there
are self-loops (as they break parity) and the lower bound is 0.

6 Experimental Results
We evaluated the performance of TVSA∗, TVSIDA∗ and T∗
(BTVS with ITG) on three standard search benchmarks: 4-
connected grid pathfinding, the tile puzzle and the pancake
puzzle. We also report the number of solved instances by
BTVS to prove the usefulness of the ITGs . In every exper-
iment, a start state and goal state were chosen such that the
shortest distance between them is typically two. This was
done to emphasize the complexity of the TVS problem, as
finding a solution with a specific value can be very challeng-
ing even for states that are close to one another. All the ex-
periments have been performed on a Linux computer with a
time cutoff of 120 seconds and 2 Gb of memory.

6.1 4-Connected Grids Pathfinding
We first experimented with pathfinding in a 4-connected grid.
We used random 512x512 grids from the benchmark suite
of [Sturtevant, 2012], with 10%, 20%, 30% and 40% blocked
cells. Ten instances were randomly generated in every grid.
All target values in the range [2, 50] were tried. The Manhat-
tan distance heuristic was used for TVSA∗ and TVSIDA∗.

Table 1 shows the number of instances solved by each al-
gorithm, under our time and memory limitations. We differ-
entiated between instances where a perfect solution existed
(even T) and where such a solution did not exist, odd T . As
expected, those instances where there is no perfect solution
were harder for all the algorithms. This is because when
a perfect solution is found, all algorithms can immediately
halt. By contrast, when no perfect solution exists, all algo-
rithms need to check all paths with cost T + best∆ to verify
that the path with the lowest ∆T was found. The results from
Table 1 show clearly that T∗ is more efficient than the other
algorithms, solving substantially more instances. In general,
TVSA∗ performs worse than TVSIDA∗.

There is no remarkable difference in relative performance
for varying degrees of obstacles. Therefore, only the aver-
age running time over 10 random instances per target value
in a map with a 30% of obstacles is shown in Figure 4(a).
When plotting this Figure, the average is computed only over
the solved instances and this explains the decaying profile ex-
hibited by TVSA∗ and TVSIDA∗ for high values of T . For
other ratios of filled squares the same trend is verified: while
TVSIDA∗ and TVSA∗ solve less cases as T increases, T∗
solves them all always in less than 0.006 seconds each, i. e.,
3 and 4 orders of magnitude faster respectively.

6.2 The 8-puzzle
Ten instances were selected by hand to ensure that symme-
tries were avoided: eight of them at an optimal distance of

605

(a) Runtime, grid w. 30% of obstacles (b) Runtime, 8-puzzle (c) Runtime, 6-pancake

Figure 4: Average running time of all algorithms over 10 problems with different target values

Perfect Not-Perfect
Blocked 0.1 0.2 0.3 0.4 0.1 0.2 0.3 0.4
TVSA∗ 213 180 199 201 40 43 45 50

TVSIDA∗ 250 250 248 239 81 88 97 123
BTVS 250 250 250 250 80 86 96 130

T∗ 250 250 250 250 240 240 240 240

Table 1: # Instances solved, 512x512 grid

four moves and 2 of them of two moves. In total, 80 different
target values in steps of 50 were tried, 40 starting from T = 4
(having perfect solutions) and 40 starting with T = 5 (no
perfect solutions). As a heuristic for TVSA∗ and TVSIDA∗
we used the perfect heuristic function built with a PDB that
mapped all tiles except the blank. However, they solved only
35.8% (286), and 28.8% (230) of the problems, respectively.
While BTVS solved only 30 problems, T∗ solved all of the
800 instances. In this domain, T∗ runs five orders of magni-
tude faster than the other algorithms as shown in Figure 4(b).

Note that while TVSA∗ and TVSIDA∗ use the perfect
heuristic, T∗ does not use any heuristic. However, TVSA∗
and TVSIDA∗ could solve only ten instances when no per-
fect solution is available, and T∗ solved all these cases in less
than 2.7 seconds on average.

6.3 The Pancake Puzzle
We experimented on pancake puzzles with 5, 6, 7, 8 and 9
pancakes. Ten random instances were generated for each puz-
zle at distance two from the target. 40 even target values from
T = 2 and 40 odd ones starting from T = 3 were used in all
cases uniformly distributed until T = (N − 1)N !, which is
the diameter of an N -pancake puzzle. This totaled in 4,000
experiments.

TVSA∗ and TVSIDA∗ used the gap heuristic [Helmert,
2010] which is known to be very accurate for these sizes of
pancake puzzles. They solved 26.57% (1,063) and 24.17%
(967) of the cases respectively, while T∗ solved 99.45%
(3,978) of them. Table 2 shows the total number of solved
problems by all algorithms.

For all sizes of pancake puzzles, T∗ was able to solve much
more problems than TVSA∗ and TVSIDA∗. Moreover, any
problem that were solved by either TVSA∗ or TVSIDA∗ was

even
5 6 7 8 9

TVSA∗ 346 143 20 10 10
TVSIDA∗ 309 140 45 10 10
BTVS 42 10 10 10 10
T∗ 400 400 400 400 400

odd
5 6 7 8 9

TVSA∗ 353 141 20 10 10
TVSIDA∗ 268 119 46 10 10
BTVS 40 10 10 10 10
T∗ 378 400 400 400 400

Table 2: # instances solved, pancake puzzle

also solved by T∗ and much faster. In the larger pancake puz-
zles (with 8 and 9 pancakes), TVSA∗ and TVSIDA∗ failed
completely to solve problems with target values larger than
T = 2 or T = 3. Thus, the 6-Pancake has been chosen to
show the general trend on the overall running time – see Fig-
ure 4(c). In this case, T∗ ran four and five orders of magnitude
faster than TVSIDA∗ and TVSA∗, respectively

T∗ failed in 22 cases in the 5-Pancake for large odd values
of T near the maximum value. This effect was not observed
for larger pancakes since the difference between the target
value increased when distributing them uniformly. In fact,
it was observed that, for all algorithms, the overall effort to
find solutions is different if T is even or odd though there are
always optimal solutions.

7 Conclusions
In this work we addressed the TVS problem for general
graphs. We described two algorithms for it that are based on
the well-known A∗ and IDA∗ algorithms. In addition, we pro-
posed a novel bidirectional algorithm for TVS called BTVS
which runs a forward search to find nodes and edges in the
graph, and a backward search to find paths with cost closer to
the target value. An abstraction-based method called ITG is
then introduced to decide intelligently when to switch to the
backward search. The combination of BTVS and ITG, named
T∗, shows exceptional results on three well-known domains.

606

References
[Culberson and Schaeffer, 1996] Joseph C. Culberson and Jonathan

Schaeffer. Advances in Artificial Intelligence, chapter Searching
with pattern databases, pages 402–416. Springer-Verlag, 1996.

[Hart et al., 1968] P. E. Hart, N. J. Nilsson, and B. Raphael. A for-
mal basis for the heuristic determination of minimum cost paths.
IEEE Trans. Syst. Sci. Cybernet., 4(2):100–107, 1968.

[Helmert, 2010] Malte Helmert. Landmark heuristics for the pan-
cake problem. In Symposium on Combinatorial Search (SOCS-
10), pages 109–110, Atlanta, Georgia, United States, July 2010.

[Korf, 1985] Richard E. Korf. Depth-first iterative-deepening: An
optimal admissible tree search. Artificial Intelligence, 27:97–109,
1985.

[Kuhn et al., 2008] Lukas Kuhn, Tim Schmidt, Bob Price, Johan
de Kleer, Rong Zhou, and Minh Do. Heuristic search for target-
value path problem. In The First International Symposium on
Search Techniques in Artificial Intelligence and Robotics, 2008.

[Liu et al., 2008] J. Liu, J. de Kleer, L. Kuhn, B. Price, R. Zhou, and
S. Uckun. A unified information criterion for evaluating probe
and test selection. In Prognostics and Health Management, 2008.
PHM 2008. International Conference on, pages 1–8. IEEE, 2008.

[Schmidt et al., 2009] Tim Schmidt, Lukas Kuhn, Bob Price, Jo-
han de Kleer, and Rong Zhou. A depth-first approach to target-
value search. In Symposium on Combinatorial Search (SOCS-
09), 2009.

[Sturtevant, 2012] Nathan Sturtevant. Benchmarks for grid-based
pathfinding. Transactions on Computational Intelligence and AI
in Games, 4(2):144–148, 2012.

607

