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Abstract
Determining protein function constitutes an exercise
in integrating information derived from several het-
erogeneous high-throughput experiments. To utilize
the information spread across multiple sources in
a combined fashion, these data sources are trans-
formed into kernels. Several protein function predic-
tion methods follow a two-phased approach: they
first optimize the weights on individual kernels to
produce a composite kernel, and then train a classi-
fier on the composite kernel. As such, these methods
result in an optimal composite kernel, but not nec-
essarily in an optimal classifier. On the other hand,
some methods optimize the loss of binary classifiers,
and learn weights for the different kernels iteratively.
A protein has multiple functions, and each function
can be viewed as a label. These methods solve the
problem of optimizing weights on the input kernels
for each of the labels. This is computationally ex-
pensive and ignores inter-label correlations.

In this paper, we propose a method called Protein
Function Prediction by Integrating Multiple Kernels
(ProMK). ProMK iteratively optimizes the phases of
learning optimal weights and reducing the empirical
loss of a multi-label classifier for each of the
labels simultaneously, using a combined objective
function. ProMK can assign larger weights to
smooth kernels and downgrade the weights on
noisy kernels. We evaluate the ability of ProMK
to predict the function of proteins using several
standard benchmarks. We show that our approach
performs better than previously proposed protein
function prediction approaches that integrate data
from multiple networks, and multi-label multiple
kernel learning methods.

1 Introduction
Understanding biological mechanisms constitutes an exer-
cise in integrating information derived from several hetero-
∗This work is partially supported by grants from NSF IIS

(0905117, 1252318), NSFC (61070090, 61003174) and China Schol-
arship Council.

geneous high-throughput experiments. In modern day bi-
ology, for a given protein, the different forms of collected
data can be its sequence (linear chain of amino acids), its
three-dimensional structure, various interactions (e.g., protein-
protein interactions) and gene co-expression. Determining
the function of a protein using experimental approaches is
time consuming and expensive. As such, several computa-
tional approaches have been proposed to predict the func-
tion of a protein by integrating different sources of avail-
able data and have shown superior empirical performance
in comparison to training a protein function prediction model
only on one of the data sources [Lanckriet et al., 2004;
Mostafavi and Morris, 2010].

Several protein function prediction approaches involve
representing different data sources as individual kernels (or
graphs) and integrating the different kernels within a multiple
kernel learning framework [Lanckriet et al., 2004]. Each data
source is represented by a kernel function K that measures the
pairwise similarities between proteins. K also captures the un-
derlying biological complexity associated with the data. Multi-
ple kernels are integrated by finding optimal weights within a
semi-definite programming framework [Lanckriet et al., 2004].
Tsuda et al. [Tsuda et al., 2005] determine the optimal com-
bination of networks and predictions by taking advantage of
the dual problem. Mostafavi et al. [Mostafavi et al., 2008]
construct the optimal composite graph by solving a linear re-
gression problem. Alternatively, another set of approaches
use classifier ensembles to integrate the predictions from mod-
els trained on individual sources [Cesa-Bianchi et al., 2012;
Yu et al., 2012]. In this paper, we focus on protein function
prediction by integrating multiple kernels.

Proteins are multi-functional and each function can be
viewed as a label. Therefore, the protein function predic-
tion problem can be viewed as a multi-label learning prob-
lem [Tsoumakas et al., 2010]. The above described meth-
ods [Tsuda et al., 2005; Mostafavi et al., 2008] divide the
multi-label learning problem into multiple binary classifica-
tion problems and ignore label correlations, which are known
to be beneficial for multi-label classification [Tsoumakas et
al., 2010]. To make use of inter-label dependencies, Mostafavi
et al. [Mostafavi and Morris, 2010] proposed an approached
called Simultaneous Weights (SW). SW first determines the
optimal combination of weights by considering a group of
functions instead of a single one, and then trains multiple
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transductive binary classifiers on the composite kernel. Ex-
perimental results show that SW outperforms methods that
optimize separate composite kernel for each of the labels. Tang
et al. [Tang et al., 2009] proposed a unified framework, in
which selecting a specific composite kernel for each label and
using the same composite kernel for all the labels are the two
extreme cases. Their empirical study shows that if there is
enough training data, it is better to select a common composite
kernel for all the labels, since selecting a specific kernel for
each label is likely to lead to over-fitting. We refer to this
approach as Multi-label Multiple Kernel Learning with Sum
(MKL-Sum). Bucak et al. [Bucak et al., 2010] developed
Multi-label Multiple Kernel Learning by Stochastic Approxi-
mation (MKL-SA), and the time complexity of MKL-SA is
sub-linear with respect to the number of labels. In this paper,
we propose a method called Protein Function Prediction by
Integrating Multiple Kernels (ProMK). ProMK iteratively op-
timizes the process of learning weights for multiple kernels
with respect to all the labels and reduces the empirical loss of
a multi-label classifier simultaneously. We summarize our key
contributions as follows:

1. ProMK unifies composite kernel learning and classifica-
tion optimization within the same objective function, and
takes into account all the labels in the objective function.

2. ProMK can selectively integrate kernels, and is able to
assign smaller weights to noisy kernels, which are not
beneficial to the classification performance.

3. ProMK outperforms other related methods on various
multi-label evaluation metrics, across publicly available
protein datasets.

2 Problem Formulation
We assume that we are given R different data sources that de-
scribe the set of N proteins, which have one or more functions
(labels) from a total of C possible functions. Different data
sources provide different representations for proteins (e.g.,
vectors, sequences, or networks). To overcome their structural
differences, the R different sources of proteins can be trans-
formed into R kernels [Kr]

R
r=1(Kr ∈ RN×N ) by domain-

specific kernel functions, i.e., string kernel [Leslie and Kuang,
2004] for protein sequences and cluster kernel [Weston et al.,
2005] for PPI networks. Among the N proteins, the first l
proteins have known functions and the remaining u proteins
are not annotated (l + u = N ). Our objective is to integrate
these kernels into a composite kernel and predict the multiple
functions associated with the u unlabeled proteins.

2.1 Unified Objective Function
The objective function minimized by the traditional transduc-
tive classification problem is [Zhou et al., 2004]:

Φ(f) =
1

2

N∑
i,j=1

‖ fi√
Dii
− fj√

Djj
‖22Kij + λ

l∑
i=1

‖fi − yi‖22 (1)

where D is a diagonal matrix with Dii =
∑N
j=1Kij and Kij

is the similarity (or weight of interaction) between proteins
i and j. yi ∈ {0|1}C is the initial label assignment with

yic = 1 if sample i belongs to the c-th class, and yik(k 6=c) = 0;
if sample j is unlabeled, yjk(1≤k≤C) = 0. fi ∈ RC is the
predicted likelihood vector for sample i.

Eq. (1) is equivalent to

Φ(F ) = tr(FTLF ) + λtr((F − Y )TU(F − Y )) (2)

where L = I − D− 1
2KD−

1
2 is the Laplacian matrix, F =

[f1, f2, ..., fN ] and tr(·) is the matrix trace operation. λ > 0 is
a scalar value that controls the tradeoff between the first and
second terms. U is a diagonal matrix with Uii = 1 if i ≤ l
and Uii = 0 otherwise. The first term on the right-hand side
of Eq. (2) is the smoothness constraint, which enforces that
the difference between predictions fi and fj should be small
for two similar proteins i and j (i.e., proteins with similar
sequences or pairs interacting within the PPI network). The
second term on the right-hand side of Eq. (2) is the fitting
constraint, which enforces that the predictions in F do not
change too much for the initially labeled l proteins.

We propose an objective function for protein function pre-
diction by integrating multiple kernels as follows:

Ψ(f ,α) =
1

2

R∑
r=1

N∑
i,j=1

αr‖
fi√
Dr,ii

− fj√
Dr,jj

‖22Kr,ij

+λtr((F − Y )TU(F − Y ))

which can be rewritten as:

tr(FT (
R∑
r=1

αrLr)F ) + λtr((F − Y )TU(F − Y ))

s.t. αr ≥ 0,αT1 = 1 (3)

where α = [α1, α2, ..., αR]
T are the weights on theR kernels,

Dr is a diagonal matrix with Dr,ii =
∑N
j=1Kr,ij , Lr is the

Laplacian matrix on the r-th kernel, which is defined in the
same way as L in Eq. (2), and 1 ∈ RR×1 is a vector with
all elements equal to 1. In case of single-label learning, yi
is encoded such that only one of the C elements is set to 1.
In case of multi-label learning, we will use k of C encoding,
i.e., set k elements of yi to 1 if protein i have k different
functions, and different proteins may have different k values.
This coding scheme seems simple but yet effective. It was
also used in TRAnsductive Multi-label learning by label set
propagation (TRAM) [Kong et al., 2013] and worked well.
By using k of C coding, Eq. (3) can produce a composite
kernel that is coherent and optimal for all the labels, and can
constrain the prediction matrix F to be optimized across all
the labels. In addition, it also alleviates the small positive
samples problem, which is often more serious when casting a
multi-label learning problem as multiple binary classification
problems. By setting k = 1, Eq. (3) can also be applied
to single-label and multi-class multiple kernels integration.
Eq. (3) can also be viewed as combination of multiple graph
Laplacians [Argyriou et al., 2005].

By combining R kernels into a composite kernel, Eq. (3)
can exploit the complimentary information spread across dif-
ferent data sources. By minimizing Eq. (3), larger weights can
be assigned to the kernels that produce a smooth prediction F
(i.e., smaller value for tr(FTLrF )), and smaller weights are
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given to the kernels that output non-smooth predictions (i.e.,
larger value for tr(FTLrF )).

However, Eq. (3) has a trivial solution given by αr = 1,
when tr(FTLrF ) is the smallest. In this case, the weights on
all the other kernels are set to zero and only the r-th kernel
is selected. Since, complementary information (beneficial
for protein function prediction) often exists in more than one
kernel [Mostafavi and Morris, 2010; Yu et al., 2012], this
trivial solution should be avoided. To this end, we add an
l2-norm based regularization penalty on α in Eq. (3) and
obtain:

H(F,α) =

R∑
r=1

tr(FTαrLrF )

+λ1tr((F − Y )TU(F − Y )) + λ2‖α‖22
st. αr ≥ 0,αT1 = 1 (4)

where λ1, λ2 > 0 are used to control the loss on the annotated
proteins and the complexity of α, respectively. Kloft et al.
[Kloft et al., 2009] used lp-norm (p > 1) for non-sparse
multiple kernels integration, but their method is limited to
binary classification. By adding the l2-norm, Eq. (4) avoids the
trivial solution, and will also assign larger weights to smooth
kernels and smaller (or zeros) weights to non-smooth (or noisy)
kernels. These advantage will be verified in experimental
evaluation (Section 4).

2.2 Optimization Solution
Eq. (4) has two variables α and F and can be solved using an
EM-style [Dempster et al., 1977] algorithm, in which α and
F are iteratively considered as constants.
Step 1. We fix α and compute the partial derivative of
H(F,α) with respect to F :

∂H(F,α)

∂F
= 2(

R∑
r=1

(αrLr)F + λ1U(F − Y )) (5)

Setting ∂H(F,α)
∂F = 0 and solving for F , we obtain:

F = (λ1U +

R∑
r=1

αrLr)
−1UY (6)

We observe that ProMK computes the inverse of (λ1U +∑R
r=1 αrLr) once in each iteration, whereas previous ap-

proaches [Tsuda et al., 2005; Wang et al., 2009] optimize
the optimal set of weights (α) for each label separately, in
each iteration.
Step 2. We fix F and compute the partial derivative of
H(F,α) with respect to α. In this case, the second term
in Eq. (4) is a constant and can be ignored. We can rewrite
H(F,α) as follows:

H̃(F,α) =

R∑
r=1

αrtr(F
TLrF ) + λ2‖α‖22

st. αr ≥ 0,αT1 = 1 (7)
Let ur = tr(FTLrF ), µ = [u1, u2, · · · , uR]T , thus the equa-
tion can be transformed:

H ′(µ,α) = αTµ + λ2α
Tα

s.t. αr ≥ 0,αT1 = 1 (8)

Eq. (8) is a quadratic optimization problem with respect to
α, and can be formulated as a minimization problem:

J(α,β, η) = αTµ + λ2α
Tα−αTβ − η(αT1− 1) (9)

where β = [β1, β2, ..., βR]
T ≥ 0 and η ≥ 0 are the Karush-

Kuhn-Tucker (KKT) multipliers [Boyd and Vandenberghe,
2004]. The optimal α∗ should satisfy the following four con-
ditions [Boyd and Vandenberghe, 2004]:
i) Stationary condition: ∂J(α

∗,β,η)
∂α∗ = µ+2λ2α

∗−β−η1 = 0

ii) Feasible condition: α∗r ≥ 0 ,
∑R
r=1 α

∗
r − 1 = 0

iii) Dual feasibility: βr ≥ 0, 1 ≤ r ≤ R
iv) Complementary slackness: βrα∗r = 0, 1 ≤ r ≤ R
From the stationary condition, αr can be computed as:

αr =
βr + η − µr

2λ2
(10)

αr depends on the specification of βr and η, where the speci-
fication of βr can be divided into three cases:

(i) If η − µr > 0, since βr ≥ 0, we get αr > 0; because
of the complementary slackness, βrαr = 0, βr = 0 and
αr = (η − µr)/2λ2.

(ii) If η − µr < 0, since αr ≥ 0, it requires βr > 0. Due to
βrαr = 0, it follows αr = 0.

(iii) If η − µr = 0, since βrαr = 0 and αr = βr/2λ2,
βr = 0 and αr = 0.

From these cases and assuming µ1 ≤ µ2 ≤ · · · ≤ µR, there
exists η > 0 such that η − µp > 0 and η − µp+1 ≤ 0. αr has
the following solution:

αr =

{
η−µr
2λ2

, if r ≤ p
0, if r > p

(11)

Since
∑p
r=1 αr = 1, we can obtain the value for η as follows:

η =
2λ2 +

∑p
r=1 µr

p
(12)

From the solution of αr, we find that, if µr is smaller than µs,
η − µs > 0 and η − µr > 0, the r-th kernel will get a larger
weight than the s-th kernel, because the r-th kernel enforces
the smoothness constraint better than the s-th kernel.

From Eq. (11) we can see that αr = 0 if r > p, which
implies that the corresponding kernels are discarded. In fact,
these kernels have larger ur values, possibly due to distortion
of noisy features (or false positive interactions). Thus, by
adding ‖α‖22 in Eq. (4), ProMK can identify noisy kernels and
assigns small or zero weights to them. In Eq. (11), it is easy to
observe that if λ2 is set to a very small value, η ≈

∑p
r=1 µr/p,

then at least one kernel (corresponding to the smallest µr) will
be selected. When λ2 is very large, all the kernels will be
selected and assigned nearly equal weights. To find η that
satisfies η−µp > 0 and η−µp+1 ≤ 0, we decrease step by step
p from R to 1, as stated in Algorithm 1. The procedure for
ProMK is outlined in Algorithm 2. In Algorithm 2, maxit is
the specified maximum number of iterations, θ is the specified
threshold, F t and αt are the learned F and α in the t-th
iteration.
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Algorithm 1 A method to seek p and compute α

Input:
sorted µ1, µ2, ..., µR in increasing order, λ2

Output:
output p,α

1: Initialize p = R, η = 0.
2: while p > 0 do
3: η ← (2λ2 +

∑p
r=1 µr)/p.

4: if η − µp > 0 then
5: break.
6: else
7: p← p− 1.
8: end if
9: end while

10: αr ← (η − µr)/2λ2, for r = 1, ..., p.
11: αr ← 0, for r = p+ 1, ..., R.

Algorithm 2 ProMK: Protein Function Prediction by Integrat-
ing Multiple Kernels
Input:

{Kr}Rr=1 from R data sources, Y ← [y1,y2, . . . ,yl]
λ1, λ2, maxit, θ

Output:
Predicted likelihood score vectors {F (j)}Nj=l+1

1: Initialize α1
r ← 1/R, for r = 1, 2, ..., R, t← 1.

2: while t < maxit and |ε| > θ do
3: t← t+ 1.
4: Compute F t using Eq. (6).
5: Seek p and compute αt using Algorithm 1.
6: ε← H(F t,αt)−H(F t−1,αt−1).
7: end while

3 Experiment Setup
3.1 Datasets
We evaluate our approach on two protein datasets (Yeast and
Mouse) with multiple heterogeneous data sources. These
two datasets are obtained from the study of Mostafavi et al.
[Mostafavi and Morris, 2010]1, and annotated in the Gene On-
tology (GO) database [Ashburner et al., 2000]. Yeast includes
44 kernels derived from 44 different sources (i.e., protein se-
quences, PPI networks). Mouse includes 10 kernels derived
from 10 different data sources. We filtered the Yeast dataset to
include only those GO functions that have at least 100 and at
most 300 proteins. We filtered the Mouse dataset to include
only those GO functions that have at least 30 and at most 100
proteins. Table 1 shows the statistics of these two datasets.

To investigate the ability of ProMK on discarding noisy ker-
nels, we generated synthetic valid kernels and synthetic noisy
kernels from the Gene expression dataset2. The Gene dataset
was used in [Kong et al., 2013] and includes 2417 genes de-
scribed by 103 features in 14 function classes. We generate
5 kernels from the k = 5 nearest neighbor graph based on
5 different distance metric options of the function pdist2 in
Matlab ( (i) ‘Euclidean’, (ii) ‘Standardized Euclidean’, (iii)
‘Cosine’, (iv) ‘Correlation’ and (v) ‘Spearman’). The similar-
ity between two connected nodes is specified by the Gaussian

1http://morrislab.med.utoronto.ca/∼sara/SW/
2http://cse.seu.edu.cn/people/zhangml/files/Yeast.zip

heat kernel, and the Guassian kernel width σ is equal to the
average distance between the nodes and their k-th neighbors.
We refer to these 5 kernels derived from 5 distance functions
as valid kernels. We also added 15 synthetic noisy kernels.
For each node in a noisy kernel, we randomly choose k points
from all the data, and consider them as the ‘neighbors’; the
similarity between them is set as in the valid kernel. We repeat
this process three times for each distance function, thus pro-
ducing 15 noisy kernels. The statistics of this dataset is listed
in Table 1.

Table 1: Dataset statistics (Avg±Std means average number
of functions for each sample and its standard deviation)

Dataset #Networks #Samples #Labels Avg±Std
Yeast 44 1809 57 4.35± 3.28
Mouse 10 3443 239 3.72± 4.24
Gene 20 2417 14 4.24± 1.57

3.2 Comparative Methods and Parameter Setting
We compared our method with five state-of-the-art methods:
(i) SW [Mostafavi and Morris, 2010], (ii) OMG [Wang et al.,
2009], (iii) TRAM [Kong et al., 2013], (iv) MKL-Sum [Tang
et al., 2009] and (v) MKL-SA [Bucak et al., 2010]. ProMK
and the first three approaches are transductive methods and
the last two approaches are inductive methods. OMG was
initially proposed for binary classification, and is computa-
tional expensive for our datasets with a large number of labels.
We modified OMG to a multi-label version by using the trace
norm, and extended the label vector to a label matrix as in
ProMK. TRAM is proposed for multi-label learning on a sin-
gle kernel. To adapt it for our experiments, we train TRAM
on the composite kernel obtained by combining the individual
kernels with equal weight. MKL-SA and MKL-Sum optimize
the composite kernel for all the labels, and then apply SVM
on the composite kernel for each label.

Here we use four widely-used multi-label evaluation met-
rics, namely MicroF1, MacroF1, Ranking Loss and Average
Precision [Tsoumakas et al., 2010]. To maintain consistency
with the other evaluation metrics, we report 1-RankLoss in-
stead of RankingLoss. Thus, similarly to the other metrics, the
higher the value of 1-RankLoss, the better the performance.
MicroF1 and MacroF1 depend on transforming the predicted
likelihood score vector fi into a indicative binary label vector.
We choose the top m most probable label assignments. For
each instance, the m largest likelihood scores are chosen as
predicted labels [Yu et al., 2012], and m is specified as the
average number of functions (rounded to the next integer) of
each protein in each dataset. From Table 1: m is set to 5 for
Yeast, to 4 for Mouse and to 5 for Gene. Note, 1-RankingLoss
and Average Precision directly uses the predicted likelihoods
to evaluate the performance.

We adapted the original code of SW3, TRAM4, MKL-
Sum5 and MKL-SA6 for our experiments. Five-fold cross

3http://morrislab.med.utoronto.ca/∼sara/SW/
4http://lamda.nju.edu.cn/files/TRAM.zip
5http://www.public.asu.edu/∼ltang9/code/mkl-multiple-label/
6http://www.cse.msu.edu/∼bucakser/ML-MKL-SA.rar
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Table 2: Experimental results on Yeast (44 kernels), Mouse (10 kernels) and Gene (20 kernels)(avg±std).

Dataset Metric ProMK OMG SW MKL-Sum MKL-SA TRAM

Yeast

MicroF1 34.25±1.16 34.23±0.96 26.27±2.22 26.74±3.70 29.00±1.17 30.57±1.09
MacroF1 31.60±1.13 31.69±0.95 23.11±2.12 26.35±3.35 28.64±1.26 26.86±1.12

1-RankLoss 78.59±0.88 78.83±0.81 71.17±1.66 68.92±3.05 71.37±1.12 78.83±0.93
AvgPrec 48.56±1.26 48.71±1.16 35.95±2.50 38.11±4.83 40.60±1.50 45.88±1.44

Mouse

MicroF1 25.89±0.82 25.68±0.62 23.79±0.86 19.24±0.94 22.44±0.83 22.93 ±2.32
MacroF1 21.72±0.76 21.47±0.68 19.82±0.81 16.87±0.87 19.03±0.81 18.56 ±2.00

1-RankLoss 79.34±0.69 78.94±0.61 78.95±0.77 69.27±0.93 69.36±0.86 81.49 ±1.85
AvgPrec 39.62±1.01 39.29±0.83 35.19±1.16 29.00±1.37 34.02±1.04 37.59 ±3.34

Gene

MicroF1 65.79±0.64 64.06±0.72 58.13±0.74 63.14±0.61 60.37±0.71 50.30±0.59
MacroF1 42.67±0.69 36.89±0.67 24.42±0.38 41.27±0.79 41.35±0.78 26.40±0.47

1-RankLoss 83.47±0.53 81.98±0.55 78.86±0.56 79.01±0.68 76.27±0.71 65.05±0.47
AvgPrec 76.51±0.73 74.23±0.81 70.32±0.83 72.86±0.72 70.56±0.77 59.00±0.64
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Figure 1: Distribution of α(learned weights) on the 20 kernels: the first 5 kernels (K1 to K5) are synthetic valid kernels and the
other 15 (K6 to K20) are synthetic noisy kernels.

validation is used to select the optimal parameter values
for each comparing method (except for SW and TRAM,
which do not require explicit parameter tuning). For ProMK,
we vary λ1 and λ2 in {10−4, 10−3, ..., 103, 104}. OMG
has a similar optimization function as ProMK, but it uses
αqr (q is the exponent of αr) instead of αr. For OMG,
we choose q in {1.2, 1.5, 1.8, 2.0, 2.5, 3, 4, 5, 6}. For MKL-
Sum, we vary the soft margin parameter C of SVM in
{10−4, 10−3, ..., 103, 104}. For MKL-SA, we use the same
optimal C value found for MKL-Sum, and fix the approxi-
mation step size as η = 0.0001. We set maxit = 20 and
θ = 0.001 for ProMK. Although the objective function of
ProMK is not convex, ProMK often converges to local mini-
mum in no more than 10 iterations.

4 Experimental Analysis
4.1 Performance on Predicting Protein Function
We investigate the performance of ProMK by randomly sam-
pling different percentages (50%,60%,70% and 80%) of the
instances as labeled data and the remaining as unlabeled data
for testing. Each experiment (sampling) is performed 20 times.
In Table 2, we report the multi-label performance results av-
eraged across the 20 runs for the different samplings of la-
beled and unlabeled instances on the Yeast, Mouse and Gene
datasets. Note, the best results and its comparable results are
in boldface (statistical significance is examined via pairwise
t-test at 95% significance level).

We observe that ProMK has the best (or comparable to the
best) performance. For the experiment on the Yeast dataset (Ta-
ble 2), ProMK on average is 23.32% better than SW, 20.53%
better than MKL-Sum, 13.79% better than MKL-SA and
5.96% better than TRAM on the four metrics. ProMK and
OMG have similar performance on Yeast and Mouse datasets
(Table 2), but ProMK outperforms OMG on the Gene bench-
mark, which includes noisy kernels (more discussion on this is
in Section 4.2). Both OMG and ProMK combine the phases of
composite kernel learning and multi-label classification loss
optimization within a unified objective function. In contrast,
SW, MKL-Sum and MKL-SA first learn a composite kernel
and then train individual binary classification models on the
composite kernel. ProMK, OMG and TRAM have better per-
formance than MKL-Sum and MKL-SA on Yeast and Mouse.
The reason are two folds: (i) the former three methods do
multi-label classification and the latter two perform binary
classification; (ii) the former methods are transductive and the
latter two are inductive. ProMK and OMG also outperform
TRAM, which does not utilize composite kernel learning (uses
equal weights for different kernels). These results corroborate
the effectiveness of ProMK in integrating multiple kernels for
protein function prediction.

4.2 Kernel Relevance Estimation
We assess the ability of different approaches on estimat-
ing the usefulness of kernels by performing additional ex-
periments on Gene benchmark. We set 80% of the ex-
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amples for training and 20% for testing. For ProMK,
we vary λ2 in {10−4, 10−3, · · · , 103, 104} and record the
corresponding learned weights (α) across the 20 kernels.
We also record the weights of OMG (by varying q in
{1.2, 1.5, 1.8, 2.0, 2.5, 3, 4, 5, 6}) and MKL-Sum (by varying
C in {10−4, 10−3, · · · , 103, 104}) on the 20 kernels. The dis-
tribution of learned weights across the 20 kernels are shown
in Figure 1. For concise representation, we averaged the dis-
tributions of the weights for the noisy kernels. We observe
that ProMK can identify the noisy kernels and discard them
by assigning zero weights. On the contrary, neither OMG
nor MKL-Sum can identify and discard these noisy kernels.
OMG always gives similar weights to all the kernels, whether
valid or noisy. MKL-Sum sometimes gives larger weights
to the noisy kernels. In contrast, the weights given to valid
kernels by ProMK are never smaller than those assigned to
noisy kernels. This also explains the superiority of ProMK to
MKL-Sum and OMG on multiple kernel learning with noisy
kernels (as shown in Table 2 for Gene). We also note that
from the solution αr of OMG [Wang et al., 2009] (q > 1),
OMG cannot assign zero weights to kernels:

αOMG
r =

( 1
λ1‖F−Y ‖22+tr(FTLrF )

)
1

q−1∑R
r=1(

1
λ1‖F−Y ‖22+tr(FTLrF )

)
1

q−1

We also study the normalized trace values µr =
tr(FTLrF ) using ProMK and OMG for the Gene benchmark
(Due to space constraint, we do not report these results here).
We observe that the µr values for ProMK on valid kernels are
smaller than the µr values for OMG on valid kernels. Also,
the µr values for ProMK on noisy kernels are larger than the
µr values for OMG on noisy kernels. As seen in Eq. (11),
µr determines the value of the weight αr. As such, ProMK
can assign larger weights to valid kernels and smaller weights
to noisy kernels (see Figure 1) than OMG. For the Yeast and
Mouse benchmarks, ProMK and OMG both learn nearly equal
weights for all the kernels. We notice that the µr values for
the different kernels are very close to each other, which makes
it harder to determine the importance of individual kernels. In
both these datasets, the kernels represent heterogeneous net-
works and they seem to provide complementary information
as determined by experimental results reported in Section 4.3.

4.3 On the Benefit of Optimizing Kernel Weights
We also performed experiments to investigate the benefit of
optimizing kernel weights. For these experiments, we first
construct a composite kernel by equally-weighting and adding
individual kernels. Then we apply the proposed multi-label
classifier (see Eq. (3)) on the composite kernel. We refer to
this approach as ProMK-Same and compare the performance
of ProMK with ProMK-Same. We also apply the ProMK
approach on each of the individual kernels, and report the best
and worst performance in Table 3.

We observe that ProMK always shows the best (or com-
parable to the best) performance. ProMK always outper-
forms ProMK-Same on Gene dataset. This is because ProMK
can identify the synthetic noisy kernels, and discard or as-
sign zero weights to them. Simply combining kernels with

equal weights often results in a sub-optimal composite ker-
nel. ProMK achieves a performance that is no worse than the
ProMK on any individual kernels.

ProMK-Same outperforms ProMK on any single kernel of
Yeast and Mouse benchmarks. ProMK(Worst) always loses to
ProMK(Best) and other comparing methods. These facts are
indicative of the complementary information spread across dif-
ferent kernels, and that different kernels hold different quality
of information. ProMK and ProMK-Same have comparable
performance on the Yeast and Mouse datasets. This also ex-
plains why ProMK sets nearly equal weights to all the kernels
for these benchmarks.

Table 3: ProMK vs. ProMK-Same on Yeast, Mouse and
Gene.
Dataset Metric ProMK ProMK-Same Best Worst

Yeast

MicroF1 36.09±1.12 34.69±1.25 19.58±1.16 8.65±0.60
MacroF1 33.35±0.91 32.04±1.11 17.72±1.25 2.53±0.25
1-RankLoss 80.04±1.01 79.61±1.19 65.85±1.35 3.54±0.50
AvgPrec 50.49±1.28 49.98±1.63 30.71±1.32 15.77±0.56

Mouse

MicroF1 27.19±1.20 26.80±0.81 23.96±0.80 1.64±0.40
MacroF1 22.68±0.91 22.16±0.58 20.66±0.58 1.45±0.55
1-RankLoss 80.35±1.06 80.42±0.63 73.66±0.53 2.22±0.39
AvgPrec 41.65±1.48 40.67±0.93 37.04±0.93 6.90±0.46

Gene

MicroF1 65.87±1.16 61.70±1.24 65.71±0.85 56.60±1.04
MacroF1 43.40±0.90 31.12±0.83 43.41±0.83 28.10±0.42
1-RankLoss 83.50±0.85 80.55±0.80 83.47±0.67 77.59±0.73
AvgPrec 76.54±1.31 72.33±0.99 76.59±0.92 69.13±0.85

4.4 Run Time Analysis
We also record the average run time on the three datasets in Ta-
ble 4. The experiments are conducted on Windows 7 platform
with Intel E8400 processor and 4GB memory. We can see that
the run time of ProMK is ranking in the median amongst all
the comparing methods. However, ProMK generally achieves
the best (or comparable to the best) performance amongst the
six methods. SW does not compute the inverse of a matrix
during the learning of a composite kernel, and thus takes less
time than OMG and ProMK. TRAM does not learn weights
on kernels and is the fastest. MKL-Sum and MKL-SA apply
SVM on the composite kernel, they cost much more time than
other methods.

Table 4: Runtime comparison (in seconds).
Dataset ProMK OMG SW MKL-Sum MKL-SA TRAM
Yeast 40.82 45.23 13.25 175.20 129.22 1.94
Mouse 89.28 111.97 24.48 517.45 220.15 5.97
Gene 45.51 42.79 7.35 65.17 112.62 2.70
Total 175.61 199.99 45.08 757.82 461.99 10.61

5 Conclusion
In this paper, we proposed a protein function prediction
method using multiple kernels integration to exploit heteroge-
neous data sources. Different from traditional multiple kernel
learning methods, which consist of two separate steps (kernel
integration and classifier training), or seeking a composite ker-
nel and training a binary classifier for each label independently,
ProMK can integrate multiple kernels into a composite kernel,
and train a multi-label classifier on the composite kernel for all
the labels simultaneously. In addition, ProMK can identify and
give zero weights to noisy kernels. Our experimental results
show that ProMK performs better than other related methods.
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