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Abstract
Real-world problems generally involve several an-
tagonistic objectives, like quality and cost for de-
sign problems, or makespan and cost for plan-
ning problems. The only approaches to multiob-
jective AI Planning rely on metrics, that can incor-
porate several objectives in some linear combina-
tions, and metric sensitive planners, that are able
to give different plans for different metrics, and
hence to eventually approximate the Pareto front
of the multiobjective problem, i.e. the set of opti-
mal trade-offs between the antagonistic objectives.
Divide-and-Evolve (DAE) is an evolutionary plan-
ner that embeds a classical planner and feeds it
with a sequence of subproblems of the problem at
hand. Like all Evolutionary Algorithms, DAE can
be turned into a Pareto-based multiobjective solver,
even though using an embedded planner that is not
metric sensitive. The Pareto-based multiobjective
planner MO-DAE thus avoids the drawbacks of the
aggregation method. Furthermore, using YAHSP
as the embedded planner, it outperforms in many
cases the metric-based approach using LPG met-
ric sensitive planner, as witnessed by experimental
results on original multiobjective benchmarks built
upon IPC-2011 domains.

1 Introduction
Multiobjective problems are ubiquitous in the real world,
where most situations often involve at least two antagonis-
tic objectives, such as maximizing some quality criterion (or
even criteria) while minimizing some costs – and quality
increase cannot be obtained without corresponding cost in-
crease. This is true in AI planning too, as witnessed by look-
ing at the most popular test problems that have been used
in IPC competitions. Many domains have been defined in
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both categories of actions with cost and temporal planning:
the more general problem is to minimize both the makespan
(where high quality solutions correspond to small makespan
values) and the cost of a given plan, while these two objec-
tives are in general antagonistic1.

Given two solutions A and B of such multiobjective prob-
lems, A is obviously to be preferred to B in the case when the
objective values for A are all better than the objective values
of B: in such case, A is said to Pareto-dominate B. However,
Pareto-dominance is not a total order, and most solutions are
not comparable for this relationship. The set of interest when
facing a multiobjective problem is the so-called Pareto set
of all solutions of the search space that are not dominated
by any other solution: such non-dominated solutions are the
best possible trade-offs between the antagonistic objectives,
in that there is no way to improve on one objective without
degrading at least another one. Figure 1 depicts a simple case
of a two objectives AI Planning problem, and presents both
the design space, space of solutions plans, and its projection
on the objective space, here the (makespan⇥cost) space (both
to be minimized). The Pareto front (circles on the right fig-
ure) is the image of the Pareto set in the objective space.

Sometimes, the user/decision maker might have a very pre-
cise idea of the relative losses induced by the degradation
of one of the objectives with respect to the improvement of
another. It is then possible to turn the multiobjective opti-
mization problem into a single-objective optimization prob-
lem, e.g., by optimizing some weighted sum (or any other
monotonous function) of the objectives, in the so-called ag-
gregation method. Any optimizer can then be used to solve
the aggregated problem. However, this approach requires
some a priori knowledge of the trade-off between the objec-
tives, and/or numerous runs of the optimizer on different ag-
gregations of the objectives. Furthermore, linear aggregation
(the weighted sum case) is not able to identify the complete
Pareto front in case it is not convex.

To address this multidimensional issue, Pareto-based algo-
rithms have been designed in order to directly identify the

1Though some costs might be proportional to durations in some
domains.
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0: (move−up−slow slow1−0 n6 n7) [6]

1: (board p0 slow0−0 n1 n0 n1) [0]

2: (move−down−slow slow0−0 n1 n0) [6]

.....

34: (board p4 slow0−0 n4 n0 n1) [0]

35: (move−down−slow slow0−0 n4 n3) [6]

36: (leave p3 slow1−0 n5 n2 n1) [0]

37: (leave p4 slow0−0 n3 n1 n0) [0]

38: (leave p1 slow1−0 n5 n1 n0) [0]

0: (board p4 fast1 n0 n0 n1) [0]

1: (move−up−fast fast1 n0 n8) [25]

2: (board p1 slow1−0 n4 n0 n1) [0]

3: (move−up−slow slow1−0 n4 n7) [8]

4: (move−up−slow slow0−0 n1 n3) [7]

6: (leave p1 slow1−0 n6 n1 n0) [0]

.....

96: (move−down−fast fast1 n6 n0) [19]

97: (leave p2 fast1 n0 n2 n1) [0]

98: (move−up−fast fast1 n0 n6) [19]

99: (leave p1 fast1 n6 n1 n0) [0]

5: (move−down−slow slow1−0 n7 n6) [6]

0: (move−up−slow slow1−0 n4 n5) [6]

1: (move−down−fast fast1 n6 n2) [13]

2: (move−down−slow slow0−0 n4 n3) [6]

3: (board p0 slow0−0 n3 n0 n1) [0]

......

19: (leave p2 slow1−0 n6 n1 n0) [0]

20: (move−down−slow slow1−0 n6 n4) [7]

21: (leave p1 slow0−0 n4 n1 n0) [0]

22: (board p1 slow1−0 n4 n0 n1) [0]

23: (move−up−slow slow1−0 n4 n5) [6]

24: (leave p1 slow1−0 n5 n1 n0) [0]Plan A
mksp: 45
cost: 48

mksp: 9
Plan B

cost: 54

Plan C
mksp: 24
cost: 18

C
o
st

Makespan

Design space: space of solution plans Objective space

Figure 1: Design and objective spaces for a two-objectives
planning problem. The hatched+grey area contains all images
of possible solutions plans; this area defines the hypervolume
of the set of circles, and the hypervolume contribution of each
point is the grey area of the corresponding small rectangle
(see Section 3). Circles are Pareto-optimal (non-dominated)
solutions, aka the Pareto front of the problem at hand.

complete Pareto front, by computing a set of approximate
non-dominated solutions. This one can then be offered to
the decision maker so that she/he can make an informed de-
cision when choosing a solution. Efficient Pareto-based mul-
tiobjective algorithms have been designed using ideas from
Evolutionary Algorithms, that can easily be turned into Mul-
tiobjective Evolutionary Algorithms (MOEAs) by modifying
their selection process to account for Pareto dominance [Deb,
2001].

In the domain of AI planning, most works only ad-
dress single-objective problems, and the very few recent ap-
proaches rely on metric sensitive planners to optimize met-
rics built as weighted sums of the objectives (more in Section
2). This paper introduces MO-DAE, the first (to the best of
our knowledge) truly Pareto-based Multiobjective AI Plan-
ning System. MO-DAE is a multi-objectivization of DAE,
a domain-independent satisficing planner that has been orig-
inally designed for single-objective planning [Schoenauer et
al., 2006; Bibaı̈ et al., 2010a], and won the IPC-2011 tempo-
ral deterministic satisficing track at ICAPS 2011. DAE uses
an Evolutionary Algorithm (EA) to evolve sequences of par-
tial states for the problem at hand, calling an embedded plan-
ner to solve in turn each subproblem of the sequence. If the
embedded planner is able to compute metrics along any plan
it builds, then MO-DAE will take care of the global search for
the Pareto front, without the need for the embedded planner
to be metric sensitive. After a brief survey of Multiobjective
Evolutionary Algorithms (MOEAs, Section 3), Section 4.2
details DAE and MO-DAE.

Although there exist many single-objective planning
benchmarks, thanks to the IPC competitions, none has been
proposed yet for multiobjective planning. Both a specific tun-
able artificial benchmark, and a general method to turn some
well-known IPC benchmarks into multiobjective domains are
presented in Section 5. In Section 6, MO-DAEYAHSP, the in-
stantiation of MO-DAEX with YAHSP [Vidal, 2004] as the
embedded planner, is validated on these instances, and com-
pared to the metric-based approach using the metric sensi-
tive planner LPG [Gerevini et al., 2008], following Sroka and
Long [2012b]. Finally, Section 7 discusses these results and

sketches the directions for further research.

2 Multiobjective AI Planning
Temporal planning and numerical state variables have been
formalized in PDDL2.1 [Fox and Long, 2003], as well as met-
ric functions that allow to optimize an aggregation of some
criteria based on time and numerical variables. This language
has been extended in PDDL3 [Gerevini and Long, 2006] in
order to express preferences and soft constraints, which de
facto increase the expressivity and complexity of the metric
function to be optimized. However, even though optimizing
such functions is a standard way to tackle multiobjective op-
timization problems, its extension to Pareto-based multiob-
jective optimization is not straightforward and nothing had
been proposed in AI Planning for that purpose until very re-
cently. Indeed, all the literature about multi-criteria/objective
planning, such as the works on the planners GRT [Refanidis
and Vlahavas, 2003], SAPA [Do and Kambhampati, 2003] or
LPG [Gerevini et al., 2008], are concerned with optimizing
an aggregation of the objectives.

The concept of metric sensitive planners has been recently
defined in Sroka and Long [2012a], in order to identify plan-
ners able to give diverse solutions when faced with – possibly
small – variations of the metric function. With such a planner,
the Pareto front can be approximated by adequately weight-
ing an aggregation of the objectives and running the planner
several times within some time limits. An example of such a
metric function is ↵⇥makespan+(1�↵)⇥cost, where alpha
is sampled in [0, 1]. The authors experimented several candi-
dates and retained LPG which exhibited by far the best per-
formance in terms of metric sensitivity and generated Pareto
front quality [Sroka and Long, 2012b]. For this reason, this
approach, named here MO-LPG, will also be used as a base-
line for the validation here (Section 6). To overcome the met-
ric insensitivity limitation of other planners, Sroka and Long
[2012a] suggest to add artificial bounds on numerical vari-
ables, which gave comparable results with the other planners
in comparison with MO-LPG. However, this requires signif-
icantly more engineering, as defining the bounds requires an
in-depth analysis of the planning problem, while defining ob-
jective weights is straightforward.

3 Multiobjective Evolutionary Algorithms
Evolutionary Algorithms (EAs) [Eiben and Smith, 2003] are
heuristic stochastic search algorithms that crudely mimic nat-
ural evolution. A population of individuals (a set of poten-
tial solutions in the search space) evolves according to two
main driving forces: reproduction through blind variations
(random moves in the search space) and natural selection,
aka “survival of the fittest”. Blind variations depend on the
search space, and are usually classified into crossover opera-
tors, that involve two or more parent individuals to create one
offspring, and mutation operators, that modify a single parent
to create one offspring. Selection is applied to choose which
parents will reproduce, and also which from the parents plus
offspring will survive to the next generation. It can be deter-
ministic or stochastic, but has to be biased toward the fittest
individuals.
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In the case of single-objective optimization of some ob-
jective function F (e.g., to be minimized), the fitness of
an individual x simply is the value F(x). In the case of
multiobjective optimization, however, Pareto-dominance is
not a total order, and hence cannot be used as sole selec-
tion criterion. Several Pareto-based Multiobjective Evolu-
tionary Algorithms (MOEAs) have thus been proposed, that
use some diversity measure as a secondary criterion when
Pareto-dominance cannot distinguish between individuals.

Several indicators have been proposed for comparing the
results of different multiobjective optimization algorithms,
i.e., that compare sets of solutions. The most popular is the
hypervolume indicator (Figure 1), because it is the only one
that has been proved to-date to be consistent with the Pareto-
dominance relation. But indicators can also be used to build
a fitness function for some MOEAs: the fitness of an indi-
vidual (compared to the other individuals in the population)
is its contribution to the indicator of the population, i.e., the
difference between the indicator of the whole population and
that of the population without it. Such MOEAs are called In-
dicator Based Evolutionary Algorithms (IBEA) [Zitzler and
Künzli, 2004] – and IBEAH, that will be used throughout this
paper, is the one using the hypervolume indicator.

4 Divide-and-Evolve

4.1 Single-Objective Divide-and-Evolve
This section introduces the main principles of the satisficing
planner DAE, referring to [Bibaı̈ et al., 2010a] for a com-
prehensive presentation. Given a planning problem P =
hA,O, I,Gi, where A denotes the set of atoms, O the set
of actions, I the initial state, and G the goal state, DAEX
searches the space of sequences of partial states (si)i2[0,n+1],
with s0 = I and sn+1 = G: DAEX looks for the se-
quence such that the plan � obtained by compressing sub-
plans �i found by some embedded planner X as solutions
of Pi = hA,O, ŝi, si+1ii2[0,n] has the best possible quality
(with ŝi denoting the final state reached by applying �i�1

from ŝi�1). Each intermediate state (si)i2[1,n] is first seen
as a set of goals and then completed as a new initial state
for the next step by simply applying the plan found to reach
it. In order to reduce the number of atoms used to describe
these states, DAE relies on the admissible heuristic function
h1 [Haslum and Geffner, 2000]: only the ones that are pos-
sibly true according to h1 are considered. Furthermore, mu-
tually exclusive atoms, which can be computed at low cost,
are also forbidden in intermediate states si. These two rules
are strictly imposed during the random initialization phase,
and progressively relaxed during the search phase. The com-
pression of subplans is required by temporal planning where
actions can run concurrently: a simple concatenation would
obviously not produce the minimal makespan.

Due to the weak structure of the search space (variable-
length sequences of variable-length lists of atoms), Evolu-
tionary Algorithms (EAs) have been chosen as the method
of choice: EAs are metaheuristics that are flexible enough
to explore such spaces, as long as they are provided with
some stochastic variation operators (aka move operators in

the heuristic search community) – and of course some objec-
tive function to optimize.

Variation operators in DAE are (i) a crossover opera-
tor, a straightforward adaptation of the standard one-point
crossover to variable-length sequences; and (ii) different mu-
tation operators, that modify the sequence at hand either at
the sequence level, or at the state level, randomly adding or
removing one item (state or atom).

The objective value is obtained by running the embedded
planner on the successive subproblems. When the goal state
is reached, a feasibility fitness is computed based on the com-
pression of solution subplans, favoring quality; otherwise, an
unfeasibility fitness is computed, implementing a gradient to-
wards satisfiability (see [Bibaı̈ et al., 2010a] for details).

DAE can embed any existing planner, and has to-date been
successful with both the optimal planner CPT [Vidal and
Geffner, 2004] and the lookahead heuristic-based satisficing
planner YAHSP [Vidal, 2004]. The latter has been demon-
strated to outperform the former when used within DAE
[Bibaı̈ et al., 2010b], so only DAEYAHSP has been considered
in this work.

4.2 Multiobjective Divide-and-Evolve
Two modifications of DAEYAHSP are needed to turn it into a
MOEA: (i) use some multiobjective selection (Section 3) in
lieu of the single-objective tournament selection that is used
in the single-objective context; (ii) use the embedded plan-
ner to compute the values of both objectives (e.g., makespan
and cost). The former modification is straightforward, and
several alternatives have been experimented within [Khouad-
jia et al., 2013]. The conclusion is that IBEAH [Zitzler
and Künzli, 2004] (see Section 3) performs best on instances
MULTIZENO (see Section 5) – and only this one will be men-
tioned in the following.

As explained above, the computation of the fitness is done
by YAHSP – and YAHSP, like all known planners to-date,
is a single-objective planner. It is nevertheless possible, since
PDDL 2.1, to specify other metrics that are to be computed
throughout the execution of the final plan. For the metric sen-
sitive planners, this metric is directly used to bias the search,
while some other planners, like YAHSP, simply compute it
along the solution plan without interfering with the search.
However, because YAHSP is both a temporal planner and a
cost planner, two strategies are possible for YAHSP within
MO-DAE: it can be asked to optimize only the makespan
(resp. the cost), and to simply compute the cost (resp. the
makespan) when executing the solution plan.

In MO-DAEYAHSP, the choice between both strategies
is governed by user-defined weights. For each individual,
the actual strategy is randomly chosen according to those
weights, and applied to all subproblems of the individual. An-
other important feature of YAHSP for the computation of the
objectives of MO-DAEYAHSP is its stochasticity: YAHSP
explores the plan space stochastically, and different runs on
the same instance with different random seeds give different
answers. This stochasticity, and the effect of the choice of
YAHSP strategy, can be observed on Figure 4a, that rep-
resent the different objective values of the same individual
obtained within MO-DAEYAHSP when YAHSP uses either
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Dur. A B C
1 2 2 2
2 4 4 3
3 6 6 4
4 3 3 1
5 5 5 2
6 3 3 1
7 2 2 2
8 4 4 3
9 6 6 4

Cost
1 30 30 30
2 20 11 29
3 10 10 10

Figure 2: Schematic view, and 3 instances, of MULTIZENO
benchmark. Flight durations are attached to the possible
routes (white circles), costs/risks are attached to landing in
the central cities (grey circles). Three sets of values are given
on the right, corresponding to Pareto fronts of Figure 3.

the makespan strategy, or the cost strategy, or strategies that
are independently randomly chosen for each subproblem: the
bias is clear when a unique strategy is chosen for the MUL-
TIZENO9 instance, and the corresponding part of the objec-
tive space is sampled, while the hybrid strategy spreads the
values in-between these two clouds of points. Note that on
some other instances (OPENSTACKS, FLOORTILE, see Sec-
tion 5), the three strategies are absolutely indistinguishable
(not shown here).

Some preliminary experiments were also conducted in
order to try to take advantage of the stochastic nature of
YAHSP evaluations, running YAHSP several times for each
individual and keeping the best plan. But surprisingly, even
without considering the additional CPU cost, such approach
proved detrimental on the quality of the Pareto approxima-
tion: such observation had also been made when trying to
hybridize EAs with local search methods (iterated YAHSP
can indeed be viewed as some sort of local search) - the local
search should not try to improve the solutions too early.

Final note regarding the evaluation: the strategy weights,
like all parameters of MO-DAEYAHSP, have been tuned using
ParamILS (see Section 6.1), and it turned out that the optimal
values for MO-DAEYAHSP have always been equal weights:
something that was to be expected, as no objective should be
preferred to the other.

5 Benchmark Domains and Instances
Two approaches were used to design multiobjective bench-
mark problems: first, using a highly simplified version of the
well-known IPC domain ZENOTRAVEL, a simple and easy to
tune domain was built, and the exact Pareto front can be eas-
ily identified for all its instances. The other approach is based
on modifying IPC-2011 problems.

5.1 MULTIZENO Instances
The MULTIZENO problem domain involves cities, passen-
gers, and planes. One plane can carry at most one passen-
ger from one city to another (action fly), following an ex-
isting link of Figure 2, with corresponding flight durations
(see Table). Costs are landing taxes for each of the middle
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Figure 3: Pareto fronts for the instances from Figure 2.

cities. All instances in this work have 2 planes, all passengers
are initially in city 0, and must reach city 4. The sim-
plest non-trivial instance MULTIZENO3 has 3 passengers. In
its default configuration (column A in Table), the makespan-
optimal solution has a total makespan of 8, as the reader will
easily find out. But all flights have to land in city 1, result-
ing in a cost of 120. The alternative route through city 2
(resp. city 3) has a makespan of 16 (resp. 24), and a cost
of 80 (resp. 40). By increasing the number of passengers,
and modifying the flight durations and landing costs, differ-
ent trade-offs are made possible. Figure 3 displays the 3 exact
Pareto fronts (in the makespan ⇥ cost space) corresponding
to the durations and costs of the table in Figure 2, for a total
of 6 passengers (aka MULTIZENO6). Note that the second
objective could also be considered as a risk [Khouadjia et al.,
2013], and the objective is then to minimize the maximum
risk encountered during the execution of the plan. This vari-
ant of MULTIZENO domain will not be considered here.

5.2 Multi-Objectivization of IPC Problems
Two satisficing tracks were open at IPC-2011: sequential sat-
isficing, i.e., sequential STRIPS planning in which actions
have a cost and where the total cost is to be minimized, and
temporal satisficing, where actions have a duration and can
be run in parallel and where the total makespan is to be min-
imized2. Three possible ways of generating multiobjective
instances have been considered. When the domains appeared
in both tracks, with the same instances, and when the cost
increases as the makespan decreases, a simple merge of both
instances is enough. This was the case for domain ELEVA-
TORS.

For some domains, the cost values of the cost instance
did not ensure that both objectives would be antagonistic.
This is the case for CREWPLANNING, FLOORTILE, and PAR-
CPRINTER. For these instances we arbitrarily set the cost
values to a maximum cost minus the value of the duration.
FLOORTILE will be the typical domain from this category
considered here. Finally, for the OPENSTACKS domain, the
cost version has a single costly action, that penalizes the use
of a new stack: such scheme is very general in scheduling
applications with resources (with more resources, things get
done faster, but cost more). For this domain, this cost action
was simply added to the temporal domain.

6 Experiments
The goal of the following experiments is to assess the effi-
ciency of MO-DAEYAHSP, and its robustness with respect

2www.plg.inf.uc3m.es/ipc2011-deterministic
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to some variety of planning domains and the size of the in-
stances. The instances presented in Section 5 will be used in
turn, and the performance of MO-DAEYAHSP will also be as-
sessed against the baseline MO-LPG, the approach proposed
in Sroka and Long [2012b] (see Section 2) which will also be
evaluated. The experimental conditions will first be detailed.

6.1 Parameter Tuning – Experimental Conditions
DAEYAHSP, and even more so, MO-DAEYAHSP, have a num-
ber of free parameters that need to be tuned in order to ob-
tain the best possible results. It is well-known that param-
eter tuning can make a complete difference between failure
and success for the same algorithm on the same problem. In
this work, all user-defined parameters have been tuned us-
ing the framework PARAMILS [Hutter et al., 2009], that han-
dles any parameterized algorithm whose parameters can be
discretized, and uses some Iterated Local Search (ILS) to ex-
plore the space of parameter configurations. Furthermore, be-
cause the goal of this work is to demonstrate the efficiency of
MO-DAE to robustly find a good approximation of the Pareto
front of multiobjective AI Planning problems, those parame-
ters were tuned anew for one instance of moderate complexity
in each domain (see Section 5.2), and the resulting parameter
set was used for all instances of the same domain. This rep-
resents a trade-off between CPU cost and performance: there
is little hope to ever find some universal parameters for DAE,
that would allow DAE to obtain its best quality performance
on all possible instances; on the other hand, such best qual-
ity can obviously be obtained by optimizing the parameters
anew for each new instance, but at the price of a huge CPU
cost. On the other hand, following Sroka and Long [2012b],
within MO-LPG, LPG was ran in local-search mode, and
given the same overall CPU time for its multiple restarts.

The main goal of the experiments presented here is to as-
sess the ability of MO-DAEYAHSP to find good quality ap-
proximations of the Pareto front. Hence the performance of
the different algorithms will be reported w.r.t. the quality
of the identified Pareto front after an arbitrary CPU time of
30 min (long enough to allow the algorithms to reach some
steady population, as confirmed by preliminary runs). All
runs were conducted on one core of the same 24-cores server
with Xeon X5650@2.67GHz processors, running Ubuntu
10.04 Lucid. DAE was implement within the PARADISEO-
MOEO framework [Liefooghe et al., 2007]. For all exper-
iments, 11 independent runs were performed. All the per-
formance assessment procedures, including the hypervolume
calculations, have been achieved using the PISA performance
assessment tool suite [Bleuler et al., 2003].

6.2 Results on MULTIZENO Instances
Experiments have been conducted on the 3, 6 and 9 passen-
gers versions of MULTIZENO (Section 5.1), with the Lin-
ear configuration (Figure 3-a). The MULTIZENO3 instance
proved to be too easy, and both MO-DAEYAHSP and MO-
LPG could rapidly find the complete Pareto front. For MUL-
TIZENO6, the situation is drastically different for MO-LPG,
that is only able to find a few points far away from the Pareto
front (see Figure 4c). On the other hand, MO-DAEYAHSP per-
fectly identifies the complete Pareto front in all runs for the

“Linear” and “Concave” cases, while 2 runs out of 11 miss
one point each in the “Convex” case. Finally, when tack-
ling MULTIZENO9 (and while MO-LPG fails to find a single
feasible plan), MO-DAEYAHSP is able to approach the true
Pareto front rather robustly, as witnessed by Figure 4b, that
represents the aggregated 11 Pareto fronts of the 11 indepen-
dent runs.

6.3 Results on Modified IPC-2011 Instances
Figure 5 exhibits some results on multi-objectivized IPC-
2011 instances (Section 5.2) for MO-DAEYAHSP and MO-
LPG. Indeed, because the exact Pareto front of these in-
stances is unknown, the only possible assessment of MO-
DAEYAHSP is by comparison to MO-LPG results.

For the ELEVATORS domain, instances 1, 5, 10 were ex-
perimented. For instance 1 (Figure 5a), MO-DAEYAHSP and
MO-LPG find exactly the same Pareto front, but MO-LPG
is unable to find any solution for instances 5 and above. On
the other hand, MO-DAEYAHSP identifies some Pareto front,
as can be seen for instance 10 on Figure 5d.

On the OPENSTACKS domain, experiments involved in-
stances 1, 5, 10, 15 and 20. For the small instances, 5 (Fig-
ure 5b), and 1 and 10 (not shown), MO-DAEYAHSP clearly
finds a much better Pareto front than MO-LPG. For larger
instances (15 and 20, not shown), the situation is even worse
for MO-LPG, that only finds very poor solutions (w.r.t. the
ones found by MO-DAEYAHSP). As an illustration of how
both algorithms explore the objective space, Figures 5e and
5f show that the complete solution set computed by DAE
(merge of the 11 independent approximations) is nicely dis-
tributed along the Pareto front, whereas the solutions of LPG
are much more scattered in the design space.

The situation changes for FLOORTILE domain: instances
0, 3 and 4 were used, and here MO-LPG outperforms MO-
DAEYAHSP, as can be seen for instance 3 in Figure 5c. How-
ever, as the instance size increases (instance 4 and above), the
gap between LPG and DAE decreases (not shown here).

7 Discussion and Conclusion
Not all planners are metric sensitive, in the sense advocated
by Sroka and Long [2012a]: the main contribution of this
work is to demonstrate the ability of the MO-DAE approach
to turn any planner into a multiobjective planner, provided it
can reason on either objectives alone (e.g., the makespan and
the cost), as has been done here with YAHSP. The result-
ing algorithm is a truly Pareto-based multiobjective planner,
that consistently outperforms the MO-LPG metric-based ap-
proach on all instances tested here except the small FLOOR-
TILE instances. MO-DAEYAHSP is able to solve much larger
instances, and to find most of the time better approximations
of the Pareto front than MO-LPG. More work is needed to
improve even more the MO-DAE approach to multiobjective
planning. But we strongly believe that the rationale underly-
ing the original DAE is still valid, and that the decomposition-
based approach that it implements will push upward the com-
plexity of the problems that we can solve.

The second contribution of this work is the proposition for
procedures to build multiobjective benchmark suites for AI
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Figure 4: Experiments on MULTIZENO instances (see text for details).
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Figure 5: Pareto fronts identified by DAE and LPG for multi-objectivized IPC-2011 instances (a – c) and complete solution
sets found by DAE (d and e) and by LPG (f), though displayed with different scales.

Planning. There is no need to advocate the usefulness of
large and diverse benchmark suites: in the context of single-
objective optimization, advances in research (from the differ-
ent versions of PDDL to the numerous powerful planners we
know of today) have coevolved together with the design of
the successive IPC benchmarks. Because multiobjective opti-
mization is mandatory in order to tackle real-world problems,
we strongly believe that progress in multiobjective planners
requires as well the design of meaningful multiobjective AI
Planning benchmarks with gradual difficulties. The MULTI-
ZENO suite detailed here is a first step in this direction: it
is a tunable artificial testbed, and was shown to be able to
generate interesting Pareto fronts (e.g. convex with a knee
as well as non-convex). Furthermore, it has many degrees
of freedom that still have not been explored: other combina-
tions of durations and makespans, more intermediate cities,
with more possible routes between them. Another possi-
bility would have been to use the benchmarks designed by
Sroka and Long [2012a; 2012b], but unfortunately the current
implementation of MO-DAEYAHSP relies on YAHSP, which

does not handle numerical state variables except for the spe-
cial case of action costs. However, we believe that multi-
objective instances with time and cost objectives are already
challenging enough, and could enable the use or extension of
many more existing planners which mainly optimize cost or
time. The multi-objectivization of IPC-2011 domains is an-
other possible route we have sketched, though more work is
still required to transform the single-objective domains into
“interesting” multiobjective ones, even in the favorable case
where both a cost and a temporal version of the same do-
main already exist. When both objectives are not antagonistic
enough, setting one as the inverse of the other does the trick,
but the Pareto fronts remain close to linear fronts, while more
interesting fronts (e.g. non-convex, “discontinuous”, . . . ) are
necessary to test different characteristics of the planners. Fur-
thermore, such multiobjective instances can hardly be tackled
by state-of-the-art metric sensitive planners, which are among
the only potential competitors as of today: beside the general
difficulty of finding the proper weights depending on the ob-
jective scales, linear combinations of the objectives can only
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give in that case one single non-dominated plan, and other ag-
gregations are not guaranteed to lead to points on the Pareto
front. Final word on the modified IPC-2011 instances, the
failure of LPG on even rather small instances suggests that
we should probably have started with easiest instances (e.g.,
IPC-2008), since at IPC-2011 the easiest instances are signif-
icantly harder than those of IPC-2008.
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V. Vidal, J. Dréo, and P. Savéant. Multi-Objective AI Plan-
ning: Evaluating DAE-YAHSP on a Tunable Benchmark.
In R. C. Purshouse et al., editor, 7th International Confer-
ence on Evolutionary Multi-Criterion Optimization (EMO
2013), LNCS. Springer Verlag, 2013. To appear.

[Liefooghe et al., 2007] A. Liefooghe, M. Basseur, L. Jour-
dan, and E.G. Talbi. ParadisEO-MOEO : A Framework for
Evolutionary Multi-Objective Optimization. In Evolution-
ary multi-criterion optimization, pages 386–400. Springer,
2007.

[Refanidis and Vlahavas, 2003] I. Refanidis and I. P. Vla-
havas. Multiobjective Heuristic State-Space Planning. Ar-
tificial Intelligence, 145(1-2):1–32, 2003.

[Schoenauer et al., 2006] Marc Schoenauer, Pierre Savéant,
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