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Abstract
Motivated by recent progress on pricing in the AI
literature, we study marketplaces that contain mul-
tiple vendors offering identical or similar products
and unit-demand buyers with different valuations
on these vendors. The objective of each vendor is
to set the price of its product to a fixed value so that
its profit is maximized. The profit depends on the
vendor’s price itself and the total volume of buyers
that find the particular price more attractive than the
price of the vendor’s competitors. We model the be-
haviour of buyers and vendors as a two-stage full-
information game and study a series of questions
related to the existence, efficiency (price of anar-
chy) and computational complexity of equilibria in
this game. To overcome situations where equilib-
ria do not exist or exist but are highly inefficient,
we consider the scenario where some of the ven-
dors are subsidized in order to keep prices low and
buyers highly satisfied.

1 Introduction
We focus on marketplaces that contain multiple vendors of-
fering a single product and unit-demand buyers. For example,
we may think of software development companies, each of-
fering an operating system. Each potential user is interested
in buying one operating system from some software company
and has preferences over the different options available in the
market. Her final choice depends not only on her preferences
but also on the prices of the available products; eventually,
each user will choose the product with the best value for
money, or will simply abstain from purchasing a product if
the available options are not satisfactory for her. In turn, ven-
dors are aware of this buyer behaviour and aim to set the price
of their product to a value that will maximize their profit. In
particular, the dilemma a vendor faces is to select between a
very small price that will guarantee a large market share or
a huge price that will be attractive only to a few buyers. Of
course, there are usually many options in between, and com-
ing up with a pricing that will maximize profits in such an
environment is rather challenging.

We model the above scenario as a two-stage full-
information game (with both the vendors and the buyers as

players) which we call a price competition game. In the first
stage, each vendor selects the price of its product among a set
of viable price values (i.e., the price values that are above a
fixed production cost per unit of product). Buyers have unit
demands and (possibly different) valuations for vendors. To-
gether with the valuations of buyers, a vector of prices (with
one price per vendor) determines in a second stage the most
attractive vendor for each buyer. Each vendor has full infor-
mation about the valuations of buyers and can predict their
behaviour. The objective of each vendor is to set its price so
that its profit (i.e., volume of buyers it attracts times the dif-
ference of price and production cost) is maximized given the
prices of the other vendors.

We present a list of results for these price competition
games. Our starting point is the observation that equilib-
ria (i.e., buyers-to-vendors assignments and corresponding
prices so that all vendors and all buyers are satisfied) are guar-
anteed to exist only when all buyers have the same valuations;
price competition games with buyers belonging to at least two
different types (with respect to their valuations) may not have
equilibria. Even when equilibria exist, they may be highly
suboptimal. We use the notion of the price of anarchy (in-
troduced by Koutsoupias and Papadimitriou [2009]; see also
Papadimitriou [2001]) to quantify how low the social welfare
of equilibria can be compared to the optimal one. The social
welfare is essentially the sum of buyer utilities and vendor
profits. We also formulate several variations of equilibrium
computation problems and present complexity results about
them. These range from polynomial-time algorithms (e.g., for
the problem of determining prices that form an equilibrium
together with a given buyers-to-vendors assignment) to hard-
ness results (e.g., for the general problem of deciding whether
a given price competition game admits an equilibrium). Mo-
tivated by the negative results on the existence and quality of
equilibria, we investigate whether efficient buyers-to-vendors
assignments can be enforced as equilibria by subsidizing the
vendors. Our main contribution here is conceptual: subsi-
dies can indeed overcome the drawbacks of price competi-
tion. Our technical contributions include tight bounds on the
amount of subsidies sufficient to enforce a social welfare-
maximizing buyers-to-vendors assignment as an equilibrium,
as well as inapproximability results for the problem of mini-
mizing the amount of subsidies sufficient to do so.

Our model is very similar to (and actually inspired from)
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the one considered by Meir et al. [2014] who focus on the im-
pact of discounts (i.e., prices that are decreasing functions of
demand) on vendors’ profit compared to fixed prices. After
observing that price discounts have no impact at all in the full-
information setting, they mostly focus on a Bayesian setting
with uncertainty on buyers’ valuations. In contrast, we re-
strict our attention to the full-information model and consider
only fixed prices. As we will see, this simple setting is very
rich from the computational point of view. With the work
of Meir et al. [2014] as an exception, our assumptions dif-
fer significantly from most of the literature on price competi-
tion. For example, unlike early models such as the ones pro-
posed by Cournot and Bertrand (see the book of Mas-Colell et
al. [1995]) as well as very recent refinements (e.g., the work
of Babaioff et al. [2013]), we assume that all vendors have
unlimited supply. Also, contrary to other recent models that
consider buyers with combinatorial valuations for bundles of
different products as in the papers of Guruswami et al. [2005],
Chawla and Roughgarden [2008], Babaioff et al. [2014], Lev
et al. [2015] and more, we specifically assume that each buyer
is interested in obtaining just a single product. In this way, the
decision each buyer faces is rather trivial and this allows us
to concentrate on the competition between the vendors. On
a more technical level, we implicitly assume an infinite num-
ber of buyers and use the notion of buyer types to distinguish
between sets of buyers; this is a less important difference of
our model to previous work on pricing.

The use of subsidies in price competition games suggests
yet another way of introducing external monetary incentives
in games; such incentives (or disincentives) have been consid-
ered in many different contexts. Much of the work in mech-
anism design uses such incentives to motivate players to act
truthfully (see Nisan [2007] for an introduction to the field).
The (apparently non-exhaustive) list also includes their use
in cooperative game theory in order to encourage coalitions
of players to reach stability [Bachrach et al., 2009] and as a
means to stabilize normal form games [Monderer and Ten-
nenholtz, 2004]. As in [Augustine et al., 2012] and [Buch-
binder et al., 2010], the use of monetary incentives in the cur-
rent paper aims to improve efficiency. Monetary disincentives
like taxes have been used to improve the efficiency of network
routing (see Cole et al. [2006] and the references therein for
a relatively recent approach that extends early developments
in the literature of the economics of transportation) and, in
the recent AI literature, in boolean games [Wooldridge et al.,
2013].

The rest of the paper is structured as follows. We begin
with preliminary definitions in Section 2. Then, we consider
questions about the existence of equilibria in price competi-
tion games and their price of anarchy in Section 3. We formu-
late computational problems for equilibria and study related
complexity questions in Section 4. We investigate the po-
tential of subsidizing specific vendor prices in Section 5 and,
finally, we conclude with open questions in Section 6.

2 Preliminaries
Our setting includes a set M containing m vendors targeting
a large population of buyers. The buyers are classified into

n buyer types from a set N . We denote by µi the volume of
buyer type i. Each of these buyers has a non-negative valua-
tion vij for vendor j (representing the satisfaction each buyer
of type i has when buying the product of vendor j). Each ven-
dor j has a non-negative cost cj per unit of product; we refer
to cj as the production cost of vendor j. The objective of each
vendor j is to determine a price pj for its product; naturally,
pj ≥ cj so that the vendor always has non-negative profit.
A price vector p = (p1, ..., pm) (containing a price per ven-
dor) defines a demand set Di(p) which, for each buyer type
i, denotes the set of vendors that maximize the utility of the
buyers of type i, i.e., Di(p) = argmaxj∈M{vij − pj}. In-
tuitively, the demand set for buyers of type i consists of the
most attractive vendors for these buyers. We assume that the
operator argmaxj∈M returns (a set containing) an artificial
vendor which represents an “abstain” option that a buyer has
when its maximum utility (over all vendors) is non-positive.
With a small abuse of notation, we introduce an extra vendor
into M in order to represent this abstain option for buyers;
this vendor has production cost of 0, it always has a price
of 0, and the valuations of buyers for it are 0. A buyers-
to-vendors assignment (or, simply, an assignment) is repre-
sented by an n × (m + 1) matrix x which denotes how the
volume of the buyers of each type is split among different
vendors. In particular, the entry xij denotes the volume of
buyers of type i that are assigned to vendor j and it must be∑
j∈M xij = µi for every buyer type i. An assignment x is

consistent to a price vector p if xij > 0 implies j ∈ Di(p).
We can interpret such an assignment as maximizing the util-
ity of buyers given the price vector p. We will denote by
ti(x,p) =

∑
j∈M xij(vij − pj) the total utility of buyers of

type i given a price vector p and a consistent assignment x.
We study the game induced among vendors and buyers and

use the term price competition game to refer to it. This can be
thought of as a two stage game. At a first stage, the strategy of
each vendor is its price. At a second stage, the buyers respond
to these prices as described above. The utility of vendor j,
when the vendors use a price vector p and the buyers are as-
signed to vendors according to an assignment x that is consis-
tent to p, is defined as uj(x,p) = (pj − cj)

∑
i∈N xij . Ven-

dors are utility-maximizers. A price vector p and a consistent
assignment x form a (pure Nash) equilibrium when for every
vendor j, the price pj maximizes the utility uj(y, (p′j ,p−j))
among all prices p′j ≥ cj and all assignments y that are con-
sistent to (p′j ,p−j). Here, the notation (p′j ,p−j) is used to
represent the price vector where all vendors besides j use the
prices in p and vendor j has deviated to price p′j .

The social welfare of an assignment x is defined as

SW(x) =
∑
i∈N

∑
j∈M

xij(vij − cj).

This definition does not require the assignment x to be con-
sistent to a price vector and can be used to define the optimal
social welfare as

SW∗ =
∑
i∈N

µimax
j∈M
{vij − cj}.

When the assignment x is consistent to a price vector p, the
social welfare can be equivalently seen as the total utility of
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vendors and buyers since

SW(x) =
∑
i∈N

∑
j∈M

xij(vij − cj)

=
∑
i∈N

∑
j∈M

xij(vij − pj) +
∑
j∈M

(pj − cj)
∑
i∈N

xij

=
∑
i∈N

ti(x,p) +
∑
j∈M

uj(x,p).

The price of anarchy of a price competition game is the
ratio of the optimal social welfare over the minimum social
welfare among all equilibria. Of course, this is well-defined
only for price competition games that do have equilibria.

In the following, we sometimes use the abbreviation x+ in-
stead of max{0, x} and write [`] instead of the set {1, 2, ..., `}
for an integer ` ≥ 1.

3 Existence and quality of equilibria
As a warm up, we present a negative result that reveals a
strong relation of the price of anarchy of price competition
games to the number of buyer types.
Lemma 1. There are one-vendor price competition games
with price of anarchy that is arbitrarily close to n.

Proof. Consider a price competition game with n buyer types
and one vendor with a production cost of 0. Let α ∈ (0, 1).
The volume of a buyer type i ∈ N is µi = αi−1. The

valuation of buyers of type i is vi =
(∑n

j=i µj

)−1
for

i ∈ [n − 1] and vn = (1 + α)/µn. By setting its price
up to vi for i ∈ [n − 1], the vendor can only get a util-
ity of at most vi

∑n
j=i µj by attracting the buyers of type

i, i + 1, ..., n. By the definition of vi, this utility is at most
1. This is smaller than the utility the vendor would have by
selecting a price of vn and attracting only the buyers of type
n (the remaining buyers simply abstain). This is an equilib-
rium in which the utility of the vendor (as well as the social
welfare) is 1 + α. In contrast, the social welfare of the as-
signment in which all buyers are assigned to the vendor is∑n
i=1 µivi ≥ (1 − α)n; the inequality holds by the defini-

tion of vi and since
∑n
j=i µj ≤ µi

∑∞
j=0 α

j = µi(1− α)−1.
The price of anarchy is then at least (1− α)n/(1 + α) which
can become arbitrarily close to n by selecting α appropri-
ately.

Interestingly, the price of anarchy does not depend on any
other quantity and the lower bound of Lemma 1 is tight.
Theorem 2. The price of anarchy of any price competition
game with n buyer types is at most n.

Proof. Consider an equilibrium (x,p) of a price competition
game. We first claim that if buyers of some type i are split
between two vendors j and j′, then it must be pj = cj and
pj′ = cj′ (hence, the two vendors have zero utility) and the
assignment in which all these buyers are assigned to vendor j
without changing the prices is still an equilibrium and has the
same social welfare. This is due to the fact that, at equilib-
rium, the utilities of buyers assigned to j and j′ should be the

same. Hence, if one of the two vendors had a price strictly
higher than its production cost, it could increase its utility by
negligibly decreasing its price; this would result in attracting
all buyers of type i previously assigned to j and j′. So, by
moving all buyers of type i from vendor j′ to vendor j, we
still have an assignment that is consistent to p in which the
utilities of buyers and vendors do not change. Clearly, this
new assignment is an equilibrium with a social welfare equal
to the initial one.

So, without loss of generality, we consider an equilibrium
(x,p) such that, for every i, all buyers of type i are as-
signed to the same vendor j, i.e., xij = µi. We denote by
η(i) the vendor where the buyers of type i are assigned in
x. Also, we denote by o(i) the vendor to which the buy-
ers of type i are assigned in an optimal assignment. We
can further assume that when η(i) 6= o(i), this implies that
vi,o(i) − co(i) > vi,η(i) − cη(i). If this is not the case and it is
vi,o(i) − co(i) = vi,η(i) − cη(i), we can consider the optimal
assignment that assigns the buyers of type i to vendor η(i).

We will show that

ti(x,p) + uo(i)(x,p) ≥ µi(vi,o(i) − co(i)) (1)

for every i ∈ N . Then, the following derivation can prove the
theorem:

n · SW(x) ≥
∑
i

ti(x,p) + n ·
∑
j

uj(x,p)

≥
∑
i

(
ti(x,p) + uo(i)(x,p)

)
≥
∑
i

µi
(
vi,o(i) − co(i)

)
= SW∗.

The first inequality follows by the definition of the social wel-
fare, the second one follows from the fact that the function
o(·) can assign at most all n buyer types to the same vendor,
and the third one follows from (1).

It remains to prove inequality (1). If η(i) = o(i), we use
the fact that vendor o(i) attracts (at least) the buyers of type i
at equilibrium. Hence,

ti(x,p) + uo(i)(x,p) ≥ µi(vi,o(i) − po(i))
+ µi(po(i) − co(i))

= µi(vi,o(i) − co(i)).

If η(i) 6= o(i), let qo(i) = vi,o(i) − vi,η(i) + pη(i). By our
assumption vi,o(i) − co(i) > vi,η(i) − cη(i) above and since
pη(i) ≥ cη(i), we have

qo(i) = vi,o(i) − vi,η(i) + pη(i)

> co(i) − cη(i) + pη(i)

≥ co(i).

This means that vendor o(i) can consider deviating to any
price value δ from the non-empty interval [co(i), qo(i)). Since
vi,o(i) − δ > vi,η(i) − pη(i), with this deviation, vendor o(i)
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attracts the buyers of type i from vendor η(i). Using the equi-
librium condition (and denoting by x′ the resulting assign-
ment when vendor o(i) deviates to price δ), we have that

uo(i)(x,p) ≥ uo(i)(x′, (δ,p−o(i)))
≥ µi(δ − co(i)).

Since the above inequality holds for any δ < qo(i), it must
also be

uo(i)(x,p) ≥ µi(qo(i) − co(i))
= µi(vi,o(i) − co(i))− µi(vi,η(i) − pη(i))
= µi(vi,o(i) − co(i))− ti(x,p).

This completes the proof of the theorem.

Recall that the upper bound on the price of anarchy is
meaningful only for games that admit equilibria. In the fol-
lowing, we show that games with one buyer type always have
equilibria (and, by Theorem 2, they also have optimal social
welfare) while the existence of a second buyer type may re-
sult to instability.

Lemma 3. Price competition games with one buyer type al-
ways have at least one equilibrium.

Proof. Consider a price competition game with one buyer
type. We use the simplified notation vj to denote the valuation
of the buyers for vendor j. Let j∗ ∈ argmaxj∈M{vj − cj}
and j′ ∈ argmaxj∈M\j∗{vj − cj} be two vendors with
the highest values for the difference vj − cj . Set pj∗ =
vj∗ − vj′ + cj′ and pj = cj for any vendor j 6= j∗. We claim
that this price vector together with the consistent assignment
x that assigns the buyers to vendor j∗ is an equilibrium. In-
deed, no vendor j 6= j∗ has any incentive to change its price;
a decrease would result in negative utility while an increase
would not change the assignment. Moreover, vendor j∗ has
no incentive to change its price; a decrease can only lower its
utility while an increase would result in a new assignment in
which all buyers are attracted by vendor j′.

Lemma 4. There exists a price competition game with two
buyer types that admits no equilibrium.

Sketch of proof. The proof of the lemma uses a price compe-
tition game with two buyer types of unit volume each and two
vendors with a production cost of 0. We use the terms left and
right to refer to the vendors and buyer types. The valuation of
the left buyers is v`` = 5 for the left vendor and v`r = 3 for
the right vendor; the valuation of the right buyers is vr` = 3
for the left vendor and vrr = 5 for the right vendor. Through
a case analysis, we can show that no pair of a price vector and
consistent assignment can be an equilibrium.

We remark that Meir et al. [2014] also present a two-vendor
four-buyer-type price competition game that does not admit
any equilibrium; the game in the proof of Lemma 4 is the
simplest one with this property.

4 Complexity of equilibria
We begin the discussion of this section by formulating some
concrete computational problems related to equilibria of price
competition games.

VERIFYEQUILIBRIUM: Given a price vector p and
a buyers-to-vendors assignment x in a price com-
petition game G, decide whether (x,p) is an equi-
librium of G.

COMPUTEPRICE: Given a buyers-to-vendors as-
signment x in a price competition game G, decide
whether there exists a price vector p to which x is
consistent so that (x,p) is an equilibrium of G.

PRICECOMPETITION: Decide whether a given
price competition game has any equilibrium or not.

VERIFYEQUILIBRIUM can be easily seen to be solvable in
time O(nm). First, one needs to check whether x is consis-
tent to p, i.e., whether the utility of each buyer type is max-
imized at the vendor(s) used in x; this can be done by com-
puting at mostO(nm) buyer utilities. Then, for every vendor
j and every buyer type i, it suffices to compute the maximum
price level which is sufficient so that vendor j attracts buyers
of type i and the vendor’s utility when deviating to this price
level (equal to the volume of buyers it attracts times the dif-
ference of the price level from the production cost). The final
decision is YES if x is consistent to p and the utility of all
vendors in (x,p) is equal to the maximum utility over all the
deviations considered; otherwise, it is NO. In the following,
we call this algorithm Verify.

The problem COMPUTEPRICE looks significantly more
difficult at first glance since there are too many price vectors
(to which x is consistent) that have to be considered. Inter-
estingly, we will present a polynomial-time algorithm (hence-
forth called CandidatePrice) which, given a price com-
petition game and a buyers-to-vendors assignment x, comes
up with a single candidate price vector p that can in turn eas-
ily be checked whether it forms an equilibrium together with
x using Verify.
CandidatePrice works as follows. It first computes a

set Z of seed vendors which will have a price equal to their
production cost. In order to define Z, it is convenient to con-
sider the directed graphH that has a node for each vendor and
a directed edge from node j to node j′ labelled by i if buy-
ers of type i are assigned to vendor j in x and, furthermore,
vij − cj ≤ vij′ − cj′ . Now, the set Z is defined recursively as
follows:

1. Any vendor that is not assigned any buyer in x belongs
to Z; such a vendor is called empty.

2. Any vendor j such that mini:xij>0 vij = cj belongs to
Z.

3. Any vendor that is part of a directed cycle in H belongs
to Z.

4. Any vendor that has a directed edge to a vendor of Z
also belongs to Z.
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CandidatePrice returns the price vector p with pj = cj
for each seed vendor j and

pj =


min
i:xij>0

vij , if Z = ∅

min
i:xij>0

{
vij −max

j′∈Z
{vij′ − cj′}+

}
, otherwise

for each non-seed vendor.
The correctness of the algorithm is given by the following

lemma; the proof is omitted.

Lemma 5. Let p be the price vector returned by
CandidatePrice on input a price competition game G
and a buyers-to-vendors assignment x. If G admits an equi-
librium (x,q), then qj = pj for every non-empty vendor j.

We now turn our attention to PRICECOMPETITION and
first consider the cases where either the number of buyer types
or the number of vendors is constant. If the number of buyer
types is constant, then there are at most (m + 1)n different
buyers-to-vendors assignments and corresponding instances
of COMPUTEPRICE that we need to consider.1 The case of
a constant number of vendors (this can be thought of as an
oligopoly) is considerably more involved but still computable
in polynomial time as we show in the following.

For a fixed price vector p, we define the induced pref-
erence, denoted by �i, of buyers of type i as j �i j′ if
vij − pj > vij′ − pj′ and j 'i j′ if vij − pj = vij′ − pj′ .
We use the term preference profile to refer to a combination
of buyer preferences. The main idea is to enumerate the dif-
ferent preference profiles that are defined for all price vectors
p ∈ Rm. Observe that the sign (from {−, 0,+}) of the ex-
pression vij − vij′ − pj + pj′ indicates whether buyers of
type i prefer vendor j to vendor j′ (i.e., j �i j′), are indif-
ferent between the two (i.e., j ' j′), or prefer vendor j′ to j
(i.e., j′ �i j). The number of different preferences of buyers
between the two specific vendors is given by the number of
different sign patterns for the expressions vij−vij′−pj+pj′
for i = 1, ..., n as the difference pj − pj′ runs from −∞ to
∞. Since there are at most n different values of the difference
vij − vij′ , this number is at most 2n+1. In total, the number
of distinct sign patterns we need to enumerate in order to con-
sider all distinct preference profiles is at most (2n+1)(

m+1
2 );

this is polynomial in n when m is constant.
When considering a preference profile �, we compute

the following assignment x which should be given to
CandidatePrice in order to return a price vector p; the
pair (x,p) will in turn be given to Verify to detect whether
it corresponds to an equilibrium or not. For each buyer type
i with a unique top preference (i.e., strictly preferring a par-
ticular vendor to all others), x assigns the buyers of type i to
their most preferred vendor. For each buyer type i that has
a set T of at least two vendors tied as its top preference, x

1At first glance, we have to consider all possible ways to split
the volume of the buyers among different vendors. A naive imple-
mentation could require exponential time but, fortunately, using the
same argument as in the first paragraph of the proof of Theorem 2,
we can safely conclude that we only need to consider non-fractional
assignments.

assigns i to a(ny) vendor j of T maximizing vij − cj . We call
this algorithm Enumerate.

Clearly, on input a price competition game that does not ad-
mit an equilibrium, Enumerate will not find any. The next
lemma completes the proof of correctness of Enumerate.
Lemma 6. On input a price competition game, Enumerate
returns an equilibrium if one exists.

Proof. Assume that Enumerate is applied on input a price
competition game G that admits an equilibrium (x,q). If x
is the unique assignment that is consistent to q, Enumerate
will consider the preference profile� corresponding to vector
q and will pass the uniquely defined assignment x as input to
CandidatePrice to compute a price vector p; by Lemma
5, (x,p) will form an equilibrium of G.

Now, assume that x is not the unique assignment that is
consistent to q. Denote by x′ the assignment computed
by Enumerate (notice that x′ is consistent to q as well)
when considering the preference profile that corresponds to
the price vector q. We will show that (x′,q) is an equilibrium
as well; then, Lemma 5 guarantees that an equilibrium will be
found when Enumerate will run CandidatePrice with
input assignment x′.

Consider a buyer type i with xij > 0 and x′ij′ > 0 for
two different vendors j and j′. By our assumptions, we have
vij − qj = vij′ − qj′ (since buyers of type i are indifferent
between vendors j and j′ in q) and vij−cj ≤ vij′−cj′ (since
Enumerate set x′ij′ > 0). We will show that qj = cj and
qj′ = cj′ . Indeed, assume that qj′ > cj′ . Then, by negligibly
decreasing its price in (x,q), vendor j′ could increase its util-
ity by attracting (in addition to the buyers it gets in x) all the
buyers of type i. Hence, qj′ = cj′ and vij − qj = vij′ − cj′ .
By the inequality vij−cj ≤ vij′−cj′ , we obtain that qj = cj .
The lemma follows since the different assignment of buyers
in x and x′ does not affect the utility of the corresponding
vendors (which is zero).

The restrictions on the numbers of vendors or buyer types
are necessary in order to come up with efficient algorithms
for PRICECOMPETITION (unless P = NP).
Theorem 7. PRICECOMPETITION is NP-hard.

5 Enforcing equilibria using subsidies
We now consider the option to use subsidies. A subsidy given
to a vendor aims to compensate it for setting its price at a
particular value. In this way, subsidies can be used to en-
force a particular pair of price vector and consistent buyers-
to-vendors assignment. Formally, given a price vector p and
a consistent assignment x, denote by θj(x,p) the maximum
utility of vendor j over all deviations p′j and all assignments
y that are consistent to (p′j ,p−j). Vendor j has no incentive
to follow any such deviation when it is given an amount of
subsidies sj ≥ θj(x,p) − uj(x,p). If this inequality holds
for every vendor j, we say that the pair (x,p) is enforced as
an equilibrium. We denote by s(x,p) the entry-wise mini-
mum subsidy vector that enforces (x,p) as an equilibrium,
i.e., sj(x,p) = θj(x,p) − uj(x,p). We use the terms “to-
tal amount” and “cost” to refer to the sum of all entries of a
subsidy vector.
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Our first observation is that a large amount of subsidies
may inherently be necessary to enforce any equilibrium.

Theorem 8. For every δ > 0, there exists a price compe-
tition game, in which no subsidy assignment of cost smaller
than (1/4 − δ)SW∗ can enforce any pair of price vector and
consistent buyers-to-vendors assignment as an equilibrium.

Sketch of proof. As in the proof of Lemma 4, we use a price
competition game with two buyer types of unit volume each
and two vendors. Let ε > 0; then the valuations are v`` =
vrr = 4 − ε and vr` = v`r = 3. Through a case analysis,
we can show that no price vector and consistent buyers-to-
vendors assignment can be enforced as an equilibrium using
an amount of subsidies less than 2 − 2ε. The optimal social
welfare is 8− 2ε and the theorem will follow by setting ε to a
sufficiently small positive value.

We now restrict ourselves to optimal assignments and show
tight bounds on the cost of subsidies that are necessary and
sufficient to enforce these assignments as equilibria.

Theorem 9. In every price competition game, the optimal as-
signment can be enforced as an equilibrium using an amount
of subsidies that is at most SW∗. This bound is tight. In partic-
ular, for every ε > 0, there exists a price competition game in
which the optimal assignment cannot be enforced as an equi-
librium with a total amount of subsidies less than (1−ε)SW∗.

Proof. We first prove the upper bound. Consider an optimal
assignment x with xij ∈ {0, µi} for every buyer type/vendor
pair and the price vector p with pj = cj ; clearly, x is con-
sistent to p. By deviating to any other price, vendor j can-
not get any buyers that are not assigned to it in the opti-
mal assignment. Hence, it suffices to assign a subsidy of
sj(x,p) =

∑
i xij(vij − cj) to each vendor j; this obviously

yields a total amount of subsidies equal to SW∗.
For the lower bound, let χ > 2 and consider the price

competition game with two buyer types of unit volume and
valuations χ and 1 for a single vendor of production cost of
0. The optimal social welfare is SW∗ = χ + 1. Observe
that the utility of the vendor is maximized to χ by setting its
price to χ while any price that is consistent to assigning both
buyer types to the vendor is at most 1 for a vendor utility of
at most 2. Hence, the amount of subsidies required to enforce
the optimal assignment as an equilibrium is at least χ − 2
which becomes at least (1 − ε)SW∗ by setting χ sufficiently
large.

Even though the minimum amount of subsidies that is suf-
ficient to enforce the optimal assignment as an equilibrium
can be large in terms of the optimal social welfare, one might
hope that it could be efficiently computable. Unfortunately,
this is far from true as we show below in Theorem 10. Before
presenting the theorem, let us formally define the correspond-
ing optimization problem:

MINSUBSIDIES: Given a price competition game
G with an optimal assignment x, compute a price
vector p that minimizes the cost s(x,p) over all
price vectors to which x is consistent.

Recall that MINSUBSIDIES should return an equilibrium
(x,p) when one exists. This can be efficiently decided using
algorithm CandidatePrice. The hardness of the problem
manifests itself in instances that do not admit equilibria; we
exploit such instances in the proof of Theorem 10.

Theorem 10. Approximating MINSUBSIDIES within any
constant is NP-hard.

Sketch of proof. We will use an approximation-preserving re-
duction from the NODE COVER problem in k-uniform hy-
pergraphs (i.e., hypergraphs in which every edge consists of
k ≥ 2 nodes), which is formally described as follows.

NODE COVER: Given a k-uniform hypergraph G,
find a node subset C of minimum size so that every
(hyper)edge e has at least one of its nodes in C.

The quantity k in the definition of NODE COVER is a con-
stant. It is known that, for every constant ε > 0, approximat-
ing NODE COVER within k − 1− ε is NP-hard [Dinur et al.,
2005]. Given a k-uniform hypergraph G, we construct the
following price competition game:

• for every edge e of G, there is an edge vendor e and a
buyer type be with volume 1 and valuation (k + 1)2 for
vendor e;

• for every node j of G, there are: one node vendor j, one
auxiliary vendor j∗, one buyer type bj with volume 1
and valuations k + 3 for vendor j and k + 2 for every
vendor e such that j ∈ e, and a buyer type b∗j with vol-
ume 1/(k + 2) and valuations k + 2 for vendor j and
k + 3 for vendor j∗.

• all valuations not mentioned above as well as all produc-
tion costs are zero.

In the optimal assignment x̂, for every node j of G, buyers of
type bj are assigned to vendor j, and buyers of type b∗j are as-
signed to vendor j∗ and, for every edge e ofG, buyers of type
be are assigned to vendor e. We can show that the minimum
amount of subsidies required to enforce this optimal assign-
ment as an equilibrium is equal to the size of a minimum node
cover of G. More details are omitted.

6 Open problems
In this work, we have posed and answered a long list of ques-
tions about price competition games. Of course, our work
reveals a lot more open problems. We mention a few here.
First, observe that we have made no particular attempt to op-
timize the running time of our algorithms. We believe that
there is much room for improvement on the running time
of CandidatePrice and Enumerate. In particular, it
would be interesting to come up with FPT algorithms (see
Downey and Fellows [1999]) for PRICECOMPETITION with
respect to different parameters. Second, in spite of our inap-
proximability result (Theorem 10), we believe that it is im-
portant to design polynomial-time approximation algorithms
for MINSUBSIDIES. For example, is there a logarithmic ap-
proximation algorithm? What about additive approximations
using an amount of subsidies that exceeds the minimum by at
most ρ · SW∗ for some small ρ > 0?
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Another set of open problems comes from introducing con-
straints to price competition games such as supply limitations.
For example, consider additional input parameters that indi-
cate the maximum volume of buyers each vendor can sup-
port. We believe that this subtle difference in the definition
makes the setting even richer from the computational point of
view. Another question concerns mixed equilibria. Do such
equilibria always exist? Observe that the strategy spaces of
vendors have infinite size in this case. Can they be computed
efficiently? What is their price of anarchy? What about gen-
eralizations of our model that include uncertainty for buyer
valuations? It is our firm belief that these questions deserve
investigation.
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