
Tractable Inquiry in Information-Rich Environments∗

Barbara Dunin-Kȩplicz, Alina Strachocka
Institute of Informatics, University of Warsaw

Banacha 2, 02-097 Warsaw, Poland
keplicz,astrachocka@mimuw.edu.pl

Abstract
In the contemporary autonomous systems the role
of complex interactions such as (possibly relaxed)
dialogues is increasing significantly. In this pa-
per we provide a paraconsistent and paracomplete
implementation of inquiry dialogue under realis-
tic assumptions regarding availability and quality
of information. Various strategies for dealing with
unsure and inconsistent information are analyzed.
The corresponding dialogue outcomes are further
evaluated against the (paraconsistent and paracom-
plete) distributed beliefs of the group.
A specific 4-valued logic underpins the presented
framework. Thanks to the qualities of the imple-
mentation tool: a rule-based query language 4QL,
our solution is both expressive and tractable.

1 Paraconsistent Nonmonotonic Dialogues
The synergistic effect of collaborating agents is achieved by
their proper communication. However, in dynamic and un-
predictable environments up-to-date, sure and complete in-
formation is hardly obtainable. This leads to conflicts, uncer-
tainty and paracompleteness, particularly when handling in-
formation originating from multiple sources of diverse cred-
ibility, quality or significance. In this paper we introduce
a new approach to logical modeling of conversing agents,
which are prepared to handle inconsistency and ignorance.

To this end, a paracomplete and paraconsistent (i.e., toler-
ating inconsistencies) logic is necessary, supported by two
new truth values: unknown (u) and inconsistent (i). In
line with other paraconsistent approaches to modeling di-
alogues [Takahashi and Sawamura, 2004; Prakken, 2010;
Black and Hunter, 2009], inconsistency does not trivialize
reasoning but is treated as first-class citizen alike true (t) and
false (f). In our system the following choices have been made.

• The four-valued logic of [Vitória et al., 2009] underpins
the solution.

• Unknown or inconsistent conclusions do not enforce ter-
mination of the reasoning process.

∗This research is partially supported by Warsaw Center of Math-
ematics and Computer Science.

• Such conclusions can be handled via lightweight forms
of nonmonotonic reasoning.

Entailment in logic amounts to deriving conclusions from
theories that can be seen as complex knowledge bases. How-
ever, instead of querying arbitrary theories, in order to reduce
complexity we tailor them to their tractable versions like spe-
cific rule-based systems. Thus, instead of reasoning in logical
systems of high complexity, we query paraconsistent knowl-
edge bases. Only recently has a sufficiently expressive tool
existed for creating and querying them in polynomial time:
4QL - a DATALOG¬¬-like four-valued rule-based query lan-
guage. Following this shift in methodology, the contribution
of this paper is an implementation of a tractable, paraconsis-
tent and paracomplete multi-party inquiry dialogue suitable
for agents situated in information-rich environments. The
overall goal of inquiry is to collectively solve a theoretic prob-
lem, resulting in the common knowledge about the solution.

Consider a multi-agent system where each swarm agent
is specialized in gathering different type of information via
a polling system, and a supervisor agent which verifies cer-
tain information for the human user. Suppose the human user
asks if it is safe to travel to place X (safe(X)?) and none
of the agents knows the answer. Engaging in inquiry on the
topic safe(X) allows agents to share only the relevant pieces
of their (possibly vast) knowledge and collectively arrive at
a final recommendation for the human user. Although con-
flicts may naturally appear on many different levels of such
group activity [Dunin-Kȩplicz et al., 2014], it is not the goal
of inquiry but rather persuasion to resolve them.

Unlike the classical case [Walton and Krabbe, 1995], our
approach to inquiry permits 4-valued statements. It turns out
that the initial valuation of the topic separates Inquiry-What
from Inquiry-That. In both cases, several strategies to han-
dle missing and inconsistent information are presented and
formally investigated. The final outcomes of such dialogues
are compared against the (possibly inconsistent and incom-
plete) distributed knowledge of the conversing group [Fagin
et al., 1995]. In this regard the soundness of a strategy means
that whenever a dialogue terminates with a given conclusion,
the same result would be obtained by an individual reasoning
from the union of all the agents’ belief bases. Accordingly,
if a solution is obtainable from the union of agents beliefs,
an inquiry under a complete strategy will reach it. The main
result of this research concerns soundness and completeness

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

53

of the open-minded inquiry strategy (Theorem 4).
Enriching the modeling perspective allows us to contem-

plate several new cognitive situations in communication (see
e.g., [Dunin-Keplicz et al., 2015]), occurring also in inquiry.
Arguably, other normative models of dialogues would benefit
from the 4-valued approach.

The paper is structured as follows. First, in Section 2, the
notions underpinning our solution are recalled. Section 3 con-
cerns the formalization of inquiry, its strategies and proper-
ties. Finally, Section 4 concludes the paper.

2 Language and Implementation Tool
Our formal inquiry dialogue system uses the logical language
of [Małuszyński and Szałas, 2013; Szałas, 2013; Małuszyński
and Szałas, 2011]. Agents’ informational stance is encoded in
the rule-based query language 4QL1 defined in [Małuszyński
and Szałas, 2013], further developed in [Szałas, 2013] and
based on a 4-valued logic of [Vitória et al., 2009]. 4QL al-
lows for negation both in premisses and conclusions of rules.
Importantly, negation in the conclusions may lead to inconsis-
tencies. Even though openness of the world is assumed, rules
can be used to close the world locally or globally. Below, the
formal language underlying 4QL will be briefly introduced.

In what follows all sets are finite except for sets of for-
mulas. We deal with the classical first-order language over
a given vocabulary without function symbols. We assume
that Const is a fixed set of constants, Var is a fixed set of
variables and Rel is a fixed set of relation symbols.

Definition 1 A literal is an expression of the form R(τ̄) or
¬R(τ̄), τ̄ being a sequence of parameters, τ̄ ∈ (Const ∪
V ar)k, where k is the arity of R ∈ Rel. Ground literals over
Const, denoted by G(Const), are literals without variables,
with all constants in Const. If ` = ¬R(τ̄) then ¬` def

= R(τ̄).C

Though we use classical first-order syntax, the semantics sub-
stantially differs from the classical one as truth values t, i, u, f
(true, inconsistent, unknown, false) are explicitly present; the
semantics is based on sets of ground literals rather than on
relational structures. Intuitively:

• a is t if all sources claim a,

• a is f if all sources claim ¬a,

• a is u if no sources claim a nor ¬a,

• a is i if some sources claim a, other claim ¬a.

For semantics of propositional connectives see Table 1.
The definitions of ∧ and ∨ reflect minimum and maximum
with respect to the truth ordering

f < u < i < t. (1)

Whenever truth values are restricted to {f, t}, the semantics is
compatible with the semantics of classical first-order logic.

Let v : Var → Const be a valuation of variables. For a lit-
eral `, by `(v) we mean the ground literal obtained from ` by
substituting each variable x occurring in ` by constant v(x).

1Open-source implementation of 4QL is available at 4ql.org.

Table 1: Truth tables for ∧, ∨,→ and ¬.

∧ f u i t ∨ f u i t → f u i t ¬
f f f f f f f u i t f t t t t f t
u f u u u u u u i t u t t t t u u
i f u i i i i i i t i f f t f i i
t f u i t t t t t t t f f t t t f

Definition 2 The truth value `(L, v) of a literal ` w.r.t. a set
of ground literals L and valuation v, is defined by:

`(L, v)
def
=


t if `(v)∈L and (¬`(v)) 6∈L;
i if `(v)∈L and (¬`(v))∈L;
u if `(v) 6∈L and (¬`(v)) 6∈L;
f if `(v) 6∈L and (¬`(v))∈L.

C

For a formula α(x) with a free variable x and c ∈ Const, by
α(x)xc we understand the formula obtained from α by substi-
tuting all free occurrences of x by c. Definition 2 is extended
to all formulas in Table 2, where α denotes a first-order for-
mula, v is a valuation of variables, L is a set of ground liter-
als, and the semantics of propositional connectives appearing
at righthand sides of equivalences is given in Table 1.

Table 2: Semantics of first-order formulas.

• if α is a literal then α(L, v) is defined in Defini-
tion 2;

• (¬α)(L, v)
def
= ¬(α(L, v));

• (α ◦ β)(L, v)
def
= α(L, v) ◦ β(L, v),

where ◦∈{∨,∧,→};
• (∀xα(x))(L, v) = min

a∈Const
(αx

a)(L, v),

where min is the minimum w.r.t. ordering (1);
• (∃xα(x))(L, v) = max

a∈Const
(αx

a)(L, v),

where max is the maximum w.r.t. ordering (1).

In 4QL beliefs are distributed among modules. Each mod-
ule can be treated as a finite set of literals. For specifying
rules, multisource formulas and querying modules, we apply
the language of [Szałas, 2013].

Definition 3 A multisource formula is an expression of the
form: m.A or m.A∈T , where:
• m is a module name;
• A is a first-order or a multisource formula;
• v is a valuation;
• T ⊆ {t, i, u, f}.

We write m.A = v (respectively, m.A 6= v) to stand for
m.A∈{v} (respectively, m.A 6∈{v}). C

54

The intuitive meaning of a multisource formula m.A is:

“return the answer to query expressed by formula
A, computed within the context of module m”.

The value of ‘m.A ∈ T ’ is:{
t when the truth value of A in m is in the set T ;
f otherwise.

Let A(X1, . . . , Xk) be a multisource formula with
X1, . . . , Xk being its all free variables and D be a finite set
of literals (a belief base). Then A, understood as a query, re-
turns tuples 〈d1, . . . , dk, tv〉, where d1, . . . , dk are database
domain elements and the value of A(d1, . . . , dk) in D is tv.

From now on we assume that the domain and language are
fixed and the programs and rules are ground. If S is a set,
then FIN(S) represents the set of all finite subsets of S. In
what follows let C def

= FIN(G(Const)) be the set of all finite
sets of ground literals over constants in Const.

Definition 4
• Rules are expressions of the form:

` :– b11, . . . , b1i1 | . . . | bm1, . . . , bmim . (2)

where the conclusion ` is a positive or negative literal
and the premisses b11, . . . , b1i1 , . . . , bm1, . . . , bmim are
multisource formulas and ‘,’ and ‘|’ abbreviate conjunc-
tion and disjunction, respectively.

• A fact is a rule with empty premisses (evaluated to t).

• A module is a syntactic entity encapsulating a finite
number of facts and rules.

• A 4QL program is a set of modules, without cyclic refer-
ences to modules involving multisource formulas of the
form m.A∈T . C

If δ is a rule, by head(δ) we mean the rule conclusion. If δ is
a fact, head(δ) = δ.

The key concepts of modules and multisource formulas
allow us to deal with unknown or inconsistent conclusions
without enforcing termination of the reasoning process. Tech-
nically, any literal l corresponds to a multisource formula
M.l, thus l ∈M .

The semantics of 4QL is defined by well-supported mod-
els [Małuszyński and Szałas, 2013; Szałas, 2013], i.e., mod-
els consisting of (positive or negative) ground literals, where
each literal is a conclusion of a derivation starting from facts.
For any set of rules, such a model is uniquely determined and
computable in deterministic polynomial time O(Nk) where
N is the size of domain and k = max(s, t) where s is the
maximal arity of relations and t is the maximum number of
free variables. As we deal with ground programs, t = 0.
When s is a bound constant, which is the case in practical ap-
plications of 4QL (qualitative not quantitative reasoning), we
achieve tractability. Notice that it is the same complexity as
SQL with recursion.

Definition 5 Let P be a 4QL program,A a formula, andMP

the well-supported (unique) model of P . Then: P |= A iff
for any valuation v we haveMP |= v(A).

As an example, consider program P = {top, su} consist-
ing of two modules top and su (for surveillance).

top = { enter(b) :– isAt(s, b),¬has(s, h).,
isAt(s, b) :– isArmed(s), hearShotsAt(b).,
isAt(s, b) :– su.isAt(s, b) ∈ {u, i, t}.,

¬has(s, h),
has(s, h),
isArmed(s)}

su = { isAt(s, b) :– see(s, b),¬conditions(fog).,
see(s, b),
¬conditions(fog)}

(3)
The literals s, b, h represent suspect, building and

hostage, respectively. The program uniquely determines the
following well-supported model for module su:

Msu = {¬conditions(fog), see(s, b), isAt(s, b)} (4)

and the following well-supported model for module top:

Mtop = {enter(b),¬enter(b), isAt(s, b),
isArmed(s), has(s, h),¬has(s, h)}. (5)

Definition 6 Let ` be a literal and P a 4QL program.
A derivation of ` from P is the well-supported modelMP .

A dependence set of a literal ` from a program P consists
of literals reachable via backward chaining on P from `.

Definition 7 Let ` be a literal and P a 4QL program. A de-
pendence set of ` from P , denoted DP,` is a set of literals
such that:
• ¬`, ` ∈ DP,`,
• if there is a rule `′ :– b11, . . . , b1i1 | . . . | bm1, . . . , bmim

in P , such that `′ ∈ DP,` then
∀j∈1..m∀k∈1..ij bjk,¬bjk ∈ DP,`. C

A proof of a literal ` from a program P is a subprogram
S of P generated from the dependence set DP,` by taking all
rules and facts of P whose conclusions are in DP,`.

Definition 8 Let ` be a literal, P a 4QL program. A proof
of l from P is a 4QL program S ⊆ P such that δ ∈ S iff
head(δ) ∈ DP,`, where δ is a fact or a rule. The size of the
proof S is the size of the program S. The size of domain of
the proof S is the size of the dependence set DP,`. C

In order to implement dialogues, the functionality of
adding a rule to a 4QL program is required.

Definition 9 We define an operation of adding a ground rule
Mi.` :– b to a 4QL program P = {M1, ...,Mn} as follows:
P ′ = P ∪ {Mi.` :– b} =
{M1, ...,Mi−1,Mi ∪ ` :– b,Mi+1, ...,Mn}

3 Inquiry
The purpose of inquiry is to collectively solve a theoretical
problem [Walton and Krabbe, 1995]. In multi-agent systems,
inquiry ”starts when some agents are ignorant about the solu-
tion to some question or open problem. The main goal is the
growth of knowledge, leading to agreement about the con-
clusive answer of the question. This goal may be attained

55

in many different ways, including an incremental process of
argument which builds on established facts in drawing con-
clusions beyond a reasonable doubt. Both information re-
trieval and reasoning may be intensively used in this pro-
cess” [Dunin-Kȩplicz and Verbrugge, 2010]. In its classical
form, inquiry seeks to prove a statement as true or false:

I1. is(suspect, guilty) = t: ’prove that suspect is guilty’,

I2. is(suspect, guilty) = f: ’prove that suspect is not guilty’.

Our paraconsistent and paracomplete framework allows for
contemplating other possibilities:

I3. is(suspect, guilty) = i: ’prove that there are inconsistent in-
formation concerning suspect’s guilt’,

I4. is(suspect, guilty) = u: ’is suspect guilty?’.

Specifically (3) exemplifies that inquiry can commence when
the goal’s initial valuation is i. Our approach allows to model
such situations, common in practical applications. In con-
trast, until a valuation for (4) is established, no classical in-
quiry on this subject (finding a proof) can commence. This
scenario resembles discovery dialogue, where ”we want to
discover something not previously known” [McBurney and
Parsons, 2001]. In our setting, the dialogue aiming at dis-
covering the value of a statement is just another variation of
inquiry, so is structured exactly the same. Thus, two types of
inquiry dialogues are distinguished:

1. Inquiry-WHAT, where initial valuation of s is u and
the goal of the dialogue is to establish the valuation
vf of s (see I4).

2. Inquiry-THAT, where initial valuation of s is t, f or i,
and the goal of the dialogue is to confirm or refute this
by providing the proof for s (see I1, I2, I3).

Inquiry-WHAT succeeds if the final valuation vf 6= u and
Inquiry-THAT succeeds if vf is equal to the initial valuation
vi of s. An outcome of a successful inquiry is the valuation
of the goal and the proof of it (see Definiton 13).

3.1 Query and Commitment Stores
A common approach to modeling inquiry is to keep two stores
(see e.g., [Black and Hunter, 2009; Singh, 1998] and refer-
ences therein): a Commitment Store (CS), reflecting agents’
commitments, and a Query Store (QS), reflecting current
open questions. Commitment Store is thus associated with
an individual agent while Query Store - with the dialogue.

We maintain both stores associated with the dialogue
(CSd, QSd) without any assumptions about agents’ individ-
ual Commitment Stores. Technically, our Commitment Store
reflects the current accumulated knowledge base. It is cre-
ated empty when the dialogue begins (as no locutions have
been uttered yet) and updated with every assertion relevant
to the dialogue. To sum up, in our methodology, the in-
quiry Commitment Store is just an evolving 4QL program
(see also [Alferes et al., 2002]).

We assume that in the course of dialogue agents assert only
relevant information, that is, rules whose conclusions match
the current entries in QS. For a literal l ∈ QS, relevant re-
sponses include both l :– b and ¬l :– b (or ` and ¬`). Accord-
ingly, two locutions crucial to inquiry are:

• assert(Si, δ, d): agent Si asserts a rule or a fact δ in the
dialogue d. If assertion is relevant, it’s content is added
to CSd and its premisses are added to QSd.

• requestAll(Si, d): agent Si requests content of QSd.

Backward chaining mechanism employed here is com-
monly used in deductive argumentation for driving the ar-
gumentation process (see e.g., [Besnard and Hunter, 2008;
Black and Hunter, 2009; Prakken, 2010]).

Definition 10 Locution mt is relevant to an inquiry d at
time t iff mt = assert(S,Mi.` :– b, d) and (¬)Mi.` ∈ QSt

d,
where QSt

d is the Query Store of d at time t. We will al-
ternate between the notions of locution, message, move and
utterance. C

To make the communication more flexible, the assumption
about relevance of the locutions can be realized by a filter-
ing mechanism. Then, instead of requiring that agents make
specific moves, we allow them to utter any locutions, filtering
out the irrelevant ones2.

Definition 11 Commitment Store of a dialogue d at time t is
a 4QL program denoted as CSt

d = 〈M t
1, . . . ,M

t
k〉:

• CS0
d = ∅

• CSt
d = CSt−1

d ∪ {Mi.` :– b}, such that
mt = assert(S,Mi.` :– b, d) is relevant to d at time t,

• CSt
d = CSt−1

d otherwise. C

Next, the Query Store, is a repository of active, unresolved
leads in the inquiry. It contains literals which compose the
proof of the inquiry goal s. At the beginning the Query Store
contains s as a single entry. The mechanism of updating
QS is in fact a paraconsistent and paracomplete distributed
version of backward chaining3, as discussed in Section 3.3.
However, in contrast to the classical backward chaining, here
we have a number of additional options to investigate. Con-
sequently, there may be various policies for adding literals
to QS (selecting threads to follow) and removing them from
QS (closing explored threads). Functions open and close
(see Definition 12) correspond to such methods.

Definition 12 Let:

• CSt
d be the Commitment Store of dialogue d at time t,

• mt be the message received at time t,

• close : FIN(C) × FIN(C) → FIN(C) be a method for
removing entries from the Query Store,

• open : FIN(C) × FIN(C) → FIN(C) be a method for
adding entries to Query Store.

Then, Query Store of an inquiry dialogue d on subject s at
time t is a finite set of literals denoted as QSt

d such that:

• QS0
d = {s}

2Such a filter is easy to implement: upon receiving a message,
QS is inspected to verify if the rule head is in the scope of inquiry.

3Hybrid backward-forward chaining techniques may be used if
assert locution contains a set of rules, e.g., a subset of proof con-
structed bottom-up. This is a topic for future research.

56

• QSt
d = (QSt−1

d ∪ B′) \ B′′, if
mt = assert(S,Mi.` :– b, d), where

B′ = open(b, CSt
d),

B′′ = close(QSt−1
d ∪B′, CSt

d),

• QSt
d = QSt−1

d otherwise. C

3.2 Dialogue Outcome vs. Distributed Knowledge
Our setting consists of a finite set of n cooperative agents.
The assumption that agents do not withhold information im-
plicitly constraints the number of requestAll locutions per one
assertion. Agents’ belief bases are encoded as finite, ground
4QL programs P1, . . . , Pn, that share a common ontology
and do not change during the course of dialogue. Agents
communicate one-to-all without coordination. The well-
supported models MP1 , . . . ,MPn of the programs express
agents’ final beliefs. The union of individual agents’ belief
bases (i.e., their distributed knowledge [Fagin et al., 1995]) is
expressed by the sum of their 4QL programs:

⋃
i∈1..n Pi. An

agent can join and leave a dialogue at any time if in between
join and leave locutions it utters at least one assertion.
Agents cannot repeat assertions. These assumptions allow us
to verify quality and completeness of the obtained results.

Since 4QL programs are finite and agents cannot repeat
utterances, there must be a moment t when no agent has
anything more to utter because either it has run out of relevant
moves or because the dialogue goal s has been achieved,
whichever comes first. Thus, dialogue terminates at time t.
The knowledge accumulated in the course of a dialogue d
is expressed by the Commitment Store of that dialogue at
termination time t: CSt

d. The final conclusion depends on
the dialogue strategy (see below) and is expressed as follows.

Definition 13 For an inquiry terminating at time t, with the
goal s of initial valuation vi, the value of the dialogue conclu-
sion is vf = v(s,MCSt

d
), whereMCSt

d
is the well-supported

model of CSt
d. Dialogue is:

• successful iff

– vi = u ∧ vf 6= u [Inquiry-WHAT], or
– vi 6= u ∧ vf = vi [Inquiry-THAT],

• unsuccessful otherwise. C

The value of the goal s obtained from the union of agents’
programs is expressed as v(s,M⋃

i∈1..n Pi
).

Definition 14 Let:

• open : FIN(C)× FIN(C)→ FIN(C),

• close : FIN(C)× FIN(C)→ FIN(C)

be two methods for adding and removing entries to Query
Store of dialogue d. Then: ST = 〈open, close〉 is a strategy.

Definition 15 A strategy ST is sound iff whenever dia-
logue d on subject s conducted under this strategy termi-
nates at t with conclusion k, then if v(s,MCSt

d
) = k then

v(s,M⋃
i∈1..n Pi

) = k.

Definition 16 A strategy ST is complete iff whenever dia-
logue d on subject s conducted under this strategy terminates
at t with conclusion k, then if v(s,M⋃

i∈1..n Pi
) = k then

v(s,MCSt
d
) = k.

3.3 Opening and Closing Inquiry Threads
In classical backward chaining, the inference engine selects
rules whose consequents match the goal to be proved. If the
antecedent of the rule is not known to be true, then it is added
to the list of goals. In our paraconsistent and nonmonotonic
distributed version of backward chaining, the conditions un-
der which antecedent can be added to the list of goals differ
depending on the method used. Consequently, there may be
various policies for adding literals to QS (selecting threads
to follow via function open). From a variety of possibilities,
here we investigate two such methods. A literal can be added
to the Query Store if:
A1. Its valuation in the CS model is u, meaning that only

threads lacking any evidence whatsoever are explored.
A2. Always, meaning that every premise is investigated fur-

ther, even one that is tentatively assumed to be t, f or i.
Definition 17 Let CSt

d be the Commitment Store of
an inquiry dialogue d at time t and MCSt

d
be its well-

supported model. Let mt = assert(S,Mi.` :– b, d)
be the message received at time t, such that:
b = b11, . . . , b1i1 | . . . | bm1, . . . , bmim . Then,

open(b, CSt
d)

def
=

 {bjk |j ∈ 1..m, k ∈ 1..ij
andMCSt

d
(bjk) = u} [A1]

{bjk |j ∈ 1..m, k ∈ 1..ij} [A2]
C

Notice that in the nonmonotonic paraconsistent backward-
chaining, obtaining a truth value for p does not necessarily
close the line of reasoning about p, since the evidence put
forward by other agents may change the value of p in a num-
ber of ways. This is why we conduct inquiry until all relevant
information is shared by the agents.

The conditions under which a goal can be abandoned also
differ depending on the policy employed. We distinguish
two methods for removing literals fromQS (closing explored
threads via function close):
R1. Once its valuation in the CS model is not u, meaning

that a thread is terminated whenever any evidence for it
is found. In some cases it may be closed prematurely,
without exposing other evidence relevant to the thread.

R2. Never, meaning the threads are never abandoned, as the
information regarding them may grow. This will not lead
to infinite dialogues, since agents cannot repeat utter-
ances and their programs do not change during dialogue.

Definition 18 Let CSt
d be the Commitment Store of an in-

quiry dialogue d at time t and MCSt
d

be its well-supported
model. Let QSt−1

d be the Query Store of an inquiry dialogue
d at time t − 1 and MQSt−1

d
be its well-supported model.

Then,

close(QSt−1
d , CSt

d)
def
=

{{x ∈ M
QSt−1

d
|MCSt

d
(x) 6= u} [R1]

∅ [R2]

57

3.4 Inquiry Strategies
The ensuing question is which combination of methods for
updating QS makes sense (see Table 3) and how do resulting
inquiry strategies differ. Unlike other approaches, we do not
assume that the distributed knowledge of the group is com-
plete. If the statement s cannot be proved by agents, the con-
clusion would simply be u.

Table 3: Inquiry strategies defined as pairs of methods for
updating QS.

R1 R2
A1 narrow-minded pragmatic
A2 forgetful open-minded

Theorem 1 Narrow-minded strategy is neither sound nor
complete. Moreover, it is type 1 nondeterministic.4

Proof. Due to the non-monotonicity of our inquiry, applying
the narrow-minded strategy may result in overlooking some
important information. As the counterexample, assume three
agents A1, A2, A3 are engaged in an inquiry dialogue with
the goal enter(b). Their programs are shown in Table 4 and
the dialogue conduct is presented in Table 5.

Table 4: Programs of Agents A1, A2, A3.

A1 A2 A3

1 enter(b) :– isAt(s, b),
¬has(s, h)

¬su.isAt(s, b) hearShotsAt(b)

2 isAt(s, b) :–
su.isAt(s, b) ∈ {u, i, t}

isArmed(s)

3 isAt(s, b) :–
isArmed(s),

hearShotsAt(b)
4 ¬has(s, h)

Table 5: Example of a Narrow-Minded Inquiry.

t QSt
d mt MCSt

d

0 enter(b) ∅ ∅
1 enter(b), isAt(s, b), has(s, h) A1(1) ∅
2 enter(b), has(s, h), su.isAt(s, b) A1(2) isAt(s, b)
3 enter(b), has(s, h) A2 (1) ¬su.isAt(s, b)
4 enter(b) A1(4) ¬su.isAt(s, b),

¬has(s, h)

For brevity, we denote assertions in Table 5 as Aj(k),
standing for the k-th rule of agent Aj . Dialogue termi-
nates in step 4, since only agent A1 has a rule with con-
clusion enter(b) but it has already uttered it. Notice that
at timepoint t = 2 we had to remove isAt(s, b) from
the Query Store, as it became true in MCS2

d
. There-

fore, agent A1 didn’t have a chance to use rule (3) in the
dialogue. Obviously, v(enter(b),MCS4

d
) = u, whereas

4Type 1 nondeterminism in logic programs means freedom to
choose the rule to apply [Schöning, 2008].

the conclusion obtained by merging agents’ programs is
v(enter(b),M⋃

i∈1..3 Pi
) = t. If instead in the timepoint

t = 2 agent A1 would have uttered rule (3), then Query Store
and in consequence, the whole dialogue, would look differ-
ently, leading to a true conclusion even if agent A1 didn’t
have a chance to utter rule (1). C

Two strategies are equal if the dialogues conducted under
these strategies cannot be distinguished on the basis of the
content of the stores at any time.

Definition 19 Dialogue D1 is equal to dialogue D2 iff for
all finite sequences of moves s = m1, . . . ,mts , s.t. mi

is relevant at i to D1 and to D2, we have that ∀i ∈ 1..ts
CSi

D1
= CSi

D2
and QSi

D1
= QSi

D2
.

Strategies S1 and S2 are equal iff dialogues conducted
under these strategies are equal. C

Theorem 2 Forgetful and narrow-minded strategies are
equal.

Proof sketch. In the forgetful strategy, we add all literals from
the rule body to QS only to remove the known ones after-
wards. Therefore, what remains are the unknown literals.
Since agents cannot query QS in between adding and remov-
ing literals (in theory update of QS is atomic operation), these
two strategies are indistinguishable. C

Theorem 3 Pragmatic and open-minded strategies are equal
in terms of dialogue conduct.

Proof. Let’s consider the pragmatic strategy and a goal s. In
the first step, the rule s :– b is considered. All rule premisses
(b) are either empty (when s is a fact) or unknown (sinceCS0

is empty). Therefore, in the first step all premisses (b) are
added to QS0 and the initial rule s :– b (or fact s) is added to
CS0. Obviously for a literal to be t, f or i, it has to be a rule
conclusion or a fact. Since only rules, whose conclusions are
in QS are admitted to CS, there cannot be a t, f or i literal
which is in CS but was not in QS beforehand. C

Theorem 4 Open-minded strategy is sound and complete.

Proof sketch. Assume that v(s,MCSt
d
) = k

and v(s,M⋃
i∈1..n Pi

) 6= k. At the time of dialogue ter-
mination, CS contains all relevant messages. Each of
these was uttered by at most one agent. Therefore, we
can assign each message to a set CSi where i was the
sender. Obviously, CSi ⊆ Pi. Therefore we have:
CS =

⋃
i∈1..n CSi ⊆

⋃
i∈1..n Pi. Since v(s,MCSt

d
) = k

and v(s,M⋃
i∈1..n Pi

) 6= k, that means that there is a part

of the union of programs S def
=
⋃

i∈1..n Pi \ CS, such that,
adding S to CS would change the valuation of s. However,
that would mean that there exists a rule (or a fact) in S whose
conclusion is in premisses of CS. That means, that rule is
a part of the proof for s but was not uttered by the agent,
which contradicts our assumptions.

Proof of completeness is analogous. C

Notice that in open-minded inquiry on subject s, CS is the
evolving proof of s from

⋃
i∈1..n Pi and QS is the evolving

dependence set of s from
⋃

i∈1..n Pi.

58

3.5 Complexity
Complexity measures of proposed inquiry strategies include:
• communication complexity, concerning only the amount

of communication among agents (who have unlimited
computational power) [Kushilevitz and Nisan, 1997],
• computational complexity (data complexity), concern-

ing the amount of computation (when communication
is free) required to:

– achieve dialogue termination,
– obtain a conclusion of a terminated dialogue.

Computational complexity of both problems is expressed in
terms of data complexity [Vardi, 1982; Papadimitriou and
Mihalis, 1997], i.e., complexity of evaluating a fixed query
(here: inquiry goal) on an arbitrary database (CS). Thus data
complexity is given as a function of the size of CS.

In what follows we deal with terminated dialogues and thus
we write CS and QS instead of CSt

d and QSt
d, respectively.

Since open-minded strategy subsumes narrow-minded (The-
orems 1 and 4), the (pessimistic) communication complexity
results of open-minded strategy hold for both (see Table 6).
Theorem 5 If the size of the domain of the proof of s is N ,
then the size |QS| of the Query Store at the end of the open-
minded inquiry is N/2 ≤ |QS| ≤ N .

Proof. Since all literals from rule bodies are added to QS and
they are never removed from QS, in fact they all take part in
proving the goal s. Moreover, negative and positive literals
from the proof are added to QS only once (either l or ¬l). C

Theorem 4 allows us to conclude:
Theorem 6 If the size of the proof of s is M , then the size
|CS| of the Commitment Store at the end of the open-minded
inquiry is |CS| = M .

Proof. The total amount of information shared by all assert
locutions (ai denotes number of assertions by agent i) uttered
in the dialogue is:

n∑
i=1

ai∑
j=1

|1| = |CS| = M

C

Recall that n denotes the total number of agents, each hold-
ing a certain amount of (relevant) information, such that the
proof of the inquiry topic from the union of all agents’ belief
bases is of size M (from Theorem 6). The communication
complexity is polynomial in the total amount of information
relevant to the proof.
Theorem 7 Communication complexity of inquiry
is O(nM).

Proof. In general there can be up to n−1 requests per one
assert. Thus, there can be at mostM asserts (agents cannot
repeat assertions), M × (n− 1) requests and at most 2 join
and leave locutions per one assert. Altogether (n+ 2)×M
locutions exchanged before dialogue termination5. Therefore
the communication complexity is O(nM). C

5Notice that even for hybrid forward-backward chaining, this is
the pessimistic time complexity.

Recall that the size of the domain of the proof is N , which
is the upper limit on the size of Query Store (see Theorem 5).

Theorem 8 Computational complexity of a narrow-minded
inquiry is: M ×O(Nk).

Proof. In the narrow-minded strategy, after each assert the
well-supported model of theCS has to be computed, which is
in O(Nk) (see Section 2). Thus each such step takes O(Nk).
However, at the termination time, the conclusion is known
(obtainable in O(1)). Computational complexity of narrow-
minded inquiry is thus M ×O(Nk). C

Theorem 9 Computational complexity of termination of
open-minded inquiry is: O(1).

Proof. Handling each assert amounts to adding a rule to
CSt, which is in O(1). Handling each request is in O(1) as
it amounts to sending the whole QSt back to the agent. C

Theorem 9 shows that the major factor in the complexity
of the termination problem of the open-minded inquiry is the
communication complexity.

Theorem 10 Obtaining the conclusion of a terminated open-
minded inquiry is O(Nk).

Proof. Recall that computing the well-supported model of
CS is in O(Nk), where N is the size of domain. For open-
minded strategy the computation of the well-supported model
is only needed after the dialogue terminates, i.e., once per
dialogue. C

Characteristics Open-minded Narrow-minded
Open vs. Closed System open (at least one assert per join)
Addressing one-to-all
Coordination asynchronous
Properties sound and not sound and

complete not complete
Communication Complexity O(nM) O(nM)
Computational Complexity

O(1) O(MNk)(Termination)
Computational Complexity

O(Nk) O(1)(Obtaining Conclusion)
Total Store Size M +N

Table 6: Results for open- and narrow-minded inquiries

4 Related Work and Conclusions
Exploring paraconsistency and paracompleteness in argu-
mentation is not new: there is a number of formalisms
that do not trivialize when inconsistent premises (for a sur-
vey see [Walton et al., 2008; Besnard and Hunter, 2008]).
In [Black and Hunter, 2009] a formal bi-party inquiry di-
alog system is proposed where DeLP is used to deal with
ignorance and inconsistency. In [Takahashi and Sawamura,
2004] the logic of multi-valued argumentation (LMA) is used
and agents can argue using multi-valued knowledge base.
In [Prakken, 2010] ASPIC+, a framework for structured ar-
gumentation with possible inconsistent knowledge bases and
defeasible rules is given. However, none of these formalisms

59

handles inconsistency and ignorance the way 4QL does. Usu-
ally the inconsistent premisses yield conclusions (e.g., ’unde-
cided’) which cannot be further dealt with.

As indicated in [Dignum and Vreeswijk, 2003; Traum,
2004], several new issues arise when contemplating the plu-
rality of dialogue participants. Multi-party issues were also
studied in [Yuan et al., 2011], where a distributed argumen-
tation system was given together with a multi-party dialogue
game for computing the defensibility of an argument from
consistent knowledge bases. In [Vreeswijk and Hulstijn,
2004], a simple multi-party inquiry dialogue assumed com-
munication in turns with no termination criterion.

Leaving behind the realm of two-valued logical approaches
to bi-party dialogues, we arrived at a solution for multi-party,
paraconsistent and paracomplete inquiry. We investigated
four inquiry strategies, conditional on different policies for
opening and closing threads. The relevant results were eval-
uated against the paraconsistent and paracomplete distributed
knowledge of the group.

The general outcome of our research calls for reconsider-
ing normative models of dialogues by introducing two addi-
tional logical values: i and u. Specifically, the novelty lies in
understanding the very nature of the dialogue’s goal, leading
to a better discernment between inquiry and discovery and
more applications of inquiry.

In future work, we intend to investigate hybrid forward-
backward chaining techniques for a dialogue system, where
the locutions can contain a set of rules. Next, we plan to re-
search methods for handling inconsistencies and uncertainty
in the Commitment Store via a challenge locution.

5 Acknowledgments
The authors would like to thank Andrzej Szałas for his com-
ments which greatly improved this paper.

References
[Alferes et al., 2002] J. J. Alferes, A. Brogi, J. A. Leite, and L. M.

Pereira. Evolving logic programs. In Proceedings of JELIA 2002,
volume 2424 of LNCS, pages 50–61. Springer, 2002.

[Besnard and Hunter, 2008] P. Besnard and A. Hunter. Elements of
Argumentation. The MIT Press, 2008.

[Black and Hunter, 2009] E. Black and A. Hunter. An inquiry di-
alogue system. Autonomous Agents and Multi-Agent Systems,
19(2):173–209, 2009.

[Dignum and Vreeswijk, 2003] F. Dignum and G. Vreeswijk. To-
wards a testbed for multi-party dialogues. In Workshop on Agent
Communication Languages, volume 2922 of LNCS, pages 212–
230. Springer, 2003.

[Dunin-Kȩplicz and Verbrugge, 2010] B. Dunin-Kȩplicz and
R. Verbrugge. Teamwork in Multi-Agent Systems: A Formal
Approach. Wiley, 2010.

[Dunin-Kȩplicz et al., 2014] B. Dunin-Kȩplicz, A. Szałas, and
R. Verbrugge. Tractable reasoning about group beliefs. In
2nd international Workshop on Engineering Multi-Agent Systems
(EMAS 2014), LNAI. Springer, 2014.

[Dunin-Keplicz et al., 2015] Barbara Dunin-Keplicz, Alina Stra-
chocka, Andrzej Szalas, and Rineke Verbrugge. Paraconsistent
semantics of speech acts. Neurocomputing, 151:943–952, 2015.

[Fagin et al., 1995] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y.
Vardi. Reasoning about Knowledge. The MIT Press, 1995.

[Kushilevitz and Nisan, 1997] Eyal Kushilevitz and Noam Nisan.
Communication Complexity. Cambridge University Press, New
York, NY, USA, 1997.

[Małuszyński and Szałas, 2011] J. Małuszyński and A. Szałas. Liv-
ing with inconsistency and taming nonmonotonicity. In Data-
log Reloaded, volume 6702 of LNCS, pages 384–398. Springer-
Verlag, 2011.

[Małuszyński and Szałas, 2013] J. Małuszyński and A. Szałas. Par-
tiality and inconsistency in agents’ belief bases. In KES-AMSTA,
volume 252 of Frontiers in Artificial Intelligence and Applica-
tions, pages 3–17. IOS Press, 2013.

[McBurney and Parsons, 2001] P. McBurney and S. Parsons.
Chance discovery using dialectical argumentation. In New Fron-
tiers in Artificial Intelligence, volume 2253 of LNCS, pages 414–
424. Springer, 2001.

[Papadimitriou and Mihalis, 1997] Christos H. Papadimitriou and
Yannakakis. Mihalis. On the complexity of database queries.
In Proceedings of the sixteenth ACM SIGACT-SIGMOD-SIGART
symposium on Principles of database systems. ACM, 1997.

[Prakken, 2010] H. Prakken. An abstract framework for argumen-
tation with structured arguments. Argument and Computation,
1(2):93–124, 2010.

[Schöning, 2008] Uwe Schöning. Logic for Computer Scientists.
Modern Birkhäuser Classics. Birkhäuser Boston, 2008.

[Singh, 1998] M. P. Singh. Agent communication languages: Re-
thinking the principles. Computer, 31(12):40–47, December
1998.

[Szałas, 2013] A. Szałas. How an agent might think. Logic Journal
of IGPL, 21(3):515–535, 2013.

[Takahashi and Sawamura, 2004] T. Takahashi and H. Sawamura.
A logic of multiple-valued argumentation. In Proceedings of the
Third International Joint Conference on Autonomous Agents and
Multiagent Systems-Volume 2, pages 800–807. IEEE Computer
Society, 2004.

[Traum, 2004] D. Traum. Issues in multiparty dialogues. Advances
in Agent Communication, pages 201–211, 2004.

[Vardi, 1982] Moshe Y. Vardi. The complexity of relational query
languages (extended abstract). In Proceedings of the Fourteenth
Annual ACM Symposium on Theory of Computing, STOC ’82,
pages 137–146, New York, NY, USA, 1982. ACM.

[Vitória et al., 2009] A. Vitória, J. Małuszyński, and A. Szałas.
Modeling and reasoning with paraconsistent rough sets. Fun-
damenta Informaticae, 97(4):405–438, 2009.

[Vreeswijk and Hulstijn, 2004] G.A.W. Vreeswijk and J. Hulstijn.
A free-format dialogue protocol for multi-party inquiry. In In
Proc. of the Eighth Int. Workshop on the Semantics and Prag-
matics of Dialogue (Catalog ’04), pages 273–279, 2004.

[Walton and Krabbe, 1995] D. N. Walton and E. C. W. Krabbe.
Commitment in Dialogue: Basic Concepts of Interpersonal Rea-
soning. State University of New York Press, Albany (NY), 1995.

[Walton et al., 2008] D. Walton, C. Reed, and F. Macagno. Argu-
mentation Schemes. Cambridge University Press, 2008.

[Yuan et al., 2011] Jinping Yuan, Li Yao, Zhiyong Hao, Fang Liu,
and Tangming Yuan. Multi-party dialogue games for distributed
argumentation system. In IAT, pages 329–332. IEEE Computer
Society, 2011.

60

