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Abstract

Two incentive mechanisms for Boolean games
were proposed recently — taxation schemes and side
payments. Both mechanisms have been shown to
be able to secure a pure Nash equilibrium (PNE)
for Boolean games. A complete characterization
of outcomes that can be transformed to PNEs is
given for each of the two incentive mechanisms.
Side payments are proved to be a weaker mecha-
nism in the sense that the outcomes that they can
transform to PNEs are a subset of those trans-
formable by taxation. A family of social-network-
based Boolean games, which demonstrates the dif-
ferences between the two mechanisms for securing
a PNE, is presented. A distributed search algorithm
for finding the side payments needed for securing a
PNE is proposed. An empirical evaluation demon-
strates the properties of the two mechanisms on the
family of social-network-based Boolean games.

1 Introduction

Boolean games are a family of games based on proposi-
tional logic [Harrenstein et al., 2001; Bonzon et al., 2006;
Dunne et al., 2008], where each participant (agent) holds a
distinct set of Boolean variables and has some personal goal
it attempts to satisfy. An agent’s personal goal is represented
as a propositional logic formula over some set of Boolean
variables, where some of these variables are not necessarily
held by the agent. The actions that an agent can take consist
of assigning values to the variables it holds. Therefore, in
order to decide on which action to perform, a rational agent
must take into consideration two factors — its personal goal
and the costs of its actions.

Over the last few years several incentive mechanisms
were proposed for Boolean games [Wooldridge er al., 2013;
Turrini, 2013; Grant et al., 2014]. These mechanisms attempt
to influence the agents’ preferences so that a certain desir-
able outcome will result. To be more specific, the goal of the
proposed mechanisms was stabilization, i.e., securing the ex-
istence of a pure Nash equilibrium (PNE) [Osborne and Ru-
binstein, 1994]. There are two conceptually different ways of
affecting the preferences of agents — changing the structure of
their personal goals, or changing the costs of actions.
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The mechanisms that are at the focus of the present pa-
per influence agents by changing the costs of their actions.
The taxation mechanism assumes the existence of an ex-
ternal agent — the principal. This principal has the ability
to impose fax on agents’ actions [Wooldridge et al., 2013].
When an agent reasons on what action to perform, it must
take into consideration both the marginal costs and the tax
levied on its actions. Another mechanism for manipulating
the costs of agents’ actions in Boolean games is that of side
payments [Turrini, 2013]. The side payments mechanism en-
ables agents in Boolean games to sacrifice part of their payoff
for some given outcome in order to convince other players to
play a certain strategy.

The two mechanisms differ in their applicability to vari-
ous scenarios. While side payments are more appropriate in
situations where no central authority exists, such as social-
network games [Clercq et al., 2014b], there also exist real-
world Boolean games applications that do rely on the pres-
ence of such authority. Examples include a robot performing
tasks in an automated warehouse [Harrenstein et al., 2014]
and scheduling charging times of electric vehicles [Levit et
al., 2013a]. Nevertheless, there are applications where both
incentive mechanisms are naturally applicable. For example,
in a scenario where employees are being allocated to projects
[Clercq et al., 2014al, taxation may be naturally imposed by
the management, while employees can “pay* their colleagues
by assisting them with their tasks.

In case a Boolean game allows to apply both mechanisms,
the deep knowledge regarding the abilities/restrictions of the
above two mechanisms is needed in order to make a decision
regarding the mechanism to choose. Addressing the question,
Harrenstein et al. [2014] showed that an equilibrium can be
eliminated (with additional restrictions) using side payments
or taxation. On the other hand, Turrini [2013] theoretically
showed that for every Boolean game and every transfer func-
tion (of side payments) one can find a taxation scheme that
secures all equilibria that the transfer function does. Turrini’s
work does not provide any results in the other direction. In
other words, what can one say about equilibria that can be
secured by a taxation scheme — can they also be secured by
side payments?

The present study focuses on this remaining question about
the differences between the two mechanisms. First, a theoret-
ical characterization of Boolean games for which a pure Nash



equilibrium can be secured using side payments is presented.
Next, the analogous characterization of Levit er al. [2013b]
for a taxation scheme is considered. The theoretical compar-
ison of the two mechanisms shows that side payments are a
weaker mechanism for securing a PNE in Boolean games.

Two separate important questions arise in view of the the-
oretical differences between taxation schemes and side pay-
ments. First, what are the differences between the PNEs that
are secured by each of these two mechanisms? Second, what
are the differences in the overall change of cost needed to
secure a stable state? An extensive empirical evaluation ad-
dresses these two questions and uses social-network-based
Boolean games which initially do not have a PNE, but for
which there is at least one taxation scheme that can secure
its existence. An effective distributed search algorithm for
Asymmetric Distributed Constraint Optimization Problems
(ADCOP) [Grinshpoun et al., 2013] is used for finding the
appropriate side payments.

The plan of the paper is as follows. First, Boolean games
are presented in Section 2. Taxation and side payments,
which are the incentive mechanisms at focus, are described in
detail in Section 3. Section 4 studies the theoretical properties
of the outcomes that can be transformed to a PNE by each of
the mechanisms. Boolean games in social networks are in-
troduced in Section 5, followed by a description of the search
procedure for side payments. An extensive empirical evalu-
ation of social-network-based Boolean games that compares
between the two incentive mechanisms is given in Section 6.
Section 7 outlines our conclusions.

2 Boolean games

A Boolean game consists of a set of agents A = {1,...,n},
the players of the game. Each agent i € A controls a set
of Boolean variables ((p; is the set of variables controlled by
agent i € A) [Harrenstein et al., 2001; Bonzon et al., 2006;
Dunne et al., 2008]. This means that only agent ¢ can set the
values for each variable p € ¢;. ¢4, ..., ¢, form a partition
of the game variables ®.

Each agent has a personal goal, represented by a Boolean
formula ;. Every goal ~; may contain the variables of agent
1 and possibly variables controlled by other agents. It is as-
sumed that actions of agents have costs defined by a cost
function ¢ : ® x B — R, where R denotes the set of
non-negative real numbers [Dunne et al., 2008].

A choice of agent i € A, defined by a function v; : ¢; —
B, is an allocation of truth (T) or falsity (L) to all of the
agent’s variables, ;. Let V; denote the set of all available
choices for agent ¢ € A. The intuitive interpretation of V; is
that it defines all actions or strategies available to agent i.

An outcome v = (v1,...,0,) € V1 X ... x V, is acollec-
tion of choices, one for each agent. Every outcome uniquely
defines a valuation for all variables in the game.

Similarly to [Dunne et al., 2008; Wooldridge et al., 2013],
a Boolean Game G is a 2n + 3 tuple:

G:=<A,P,¢,7,-..

s Yy Pl e vy P >

where A = {1,...,n} is the set of agents, ® = {p,q,7,...}
is a finite set of Boolean variables, ¢ : ® x B — R is a cost
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function of assignments, 71, . . . , ¥, are the goals of agents A,
and 1, ..., p, is a partition of variables ® over agents A.

The primary aim of each agent i € A is to choose an as-
signment to the variables ¢, under its control, so as to satisfy
its personal goal ~;. If an agent can achieve its personal goal
in more than one way, then it will prefer to minimize costs. If
the agent cannot get its goal achieved it will prefer to choose
an assignment that minimizes its costs.

We will adopt the agents’ utility proposed by Wooldridge
et al. [2013], that models the preference dichotomy using a
boost factor u; for states satisfying agent s goal.

Let ¢;(v;) denote the cost to agent ¢ of its choice v;:

ci(vi) =Y e(p,vi(p))

Let pu; denote the cost of agent ¢’s worst outcome:

pa 1= max (ci(v;))

The utility of i from outcome v = (v1,..., v;, ..., vn) is:
u;(v) == L+ pi — ei(vi), ifw ':%
—G (vl) ) otherwise

where v = - means that the valuation defined by the outcome
v satisfies formula .

The utility for agent ¢ ranges from 1+ p; (the best outcome
for ¢, where it gets its goal achieved by performing actions
that have zero cost) down to —pu,; (where ¢ does not get its
goal achieved but makes its most expensive choice). Since
costs are never negative, agent’s utility is positive at goal-
achieving states.

Given the above formal definition of utility, one can de-
fine solution concepts in the standard game-theoretic way
[Osborne and Rubinstein, 1994]. The present paper focuses
on PNEs. An outcome v = (v1,...,0;,...,0,) is a PNE,
if for every agent ¢ € A, there is no v, € V; such that
Ui(V1y ooy gy ooy Un) < U (U1, .o, UL o5 Up).

TR

3 Incentive mechanisms

Several incentive mechanisms for Boolean games, which at-
tempt to influence the preferences of rational agents, were
proposed recently. One such mechanism that uses faxation
schemes was proposed by Wooldridge et al. [2013]. This
method introduces an external principal that imposes addi-
tional costs (taxes) on the actions of agents. Another mech-
anism, proposed by Turrini [2013], extends Boolean games
with the machinery of side payments. The basic idea of side
payments is that agents may sacrifice part of their payoff (for
some given outcome) in order to convince other players to
play a certain strategy. These potential sacrifices, termed
transfer functions, are simultaneously decided upon by the
different agents in a pre-play phase [Jackson and Wilkie,
2005]. Posterior to this pre-play phase follows the actual
game, in which the utilities are updated according to the trans-
fer functions. After the game is played, only the side pay-
ments relevant to its final outcome are actually being trans-
ferred between the players.



These two mechanisms are similar in nature, as they both
influence the decision of rational agents by changing the costs
of their actions. However, as shown next, there exist Boolean
games for which one mechanism can secure a PNE while the
other can not.

3.1 Taxation schemes

A taxation scheme [Wooldridge et al., 2013; Levit et al.,
2013b] defines additional costs on actions, over those given
by the cost function c. One can model taxes by a function
T :® x B — R, so that 7(p,b) is the tax that should be
levied on the agent controlling variable p € ® in case the
value b € B is assigned. An external principal, which prefers
certain outcomes over others, is at liberty to impose a taxation
scheme to fit its requirements. Agents always seek to mini-
mize their costs, so by assigning different taxation schemes
the principal can incentivize agents to perform some actions
over others.

We adopt the assumption of Wooldridge er al. [2013], un-
der which taxation schemes cannot change the personal goal
of an agent. Therefore, if an agent has a chance to achieve its
goal, it will take it, no matter what the taxation incentives are.

Since the agents must be aware of the taxation while mak-
ing a decision, an agent’s utility must be extended so as to
take the taxes into consideration [Wooldridge et al., 2013].
The taxation functions are:

i(vi) == Y 7(p,vi(p))

where 7;(v;) represents the total tax that would be levied on
player ¢ if it chooses v;. Let p; denote the cost to ¢ of its most
expensive course of action:

wi = max (¢;(v;) + 7i(v;))

vi€V;
The utility to agent i of an outcome v = (v1, ..., Vs, ..., Up),
is:
4 i — (ci(vi) +75(vi)), ifv =y
u;(v) :== .
—(ci(vi) + 7i(v3)), otherwise

The utility of agent 7 ranges from 1+ p; (the best outcome for
i, where it achieves its personal goal by performing actions
that have no tax or any other cost) down to —u; (where
does not get its goal achieved but makes its most expensive
choice).

3.2 Side payments

Contrary to a taxation scheme, side payments do not assume
the existence of a principal. They enable Boolean games
to be transformed from the inside, by endowing agents with
the possibility of sacrificing part of their payoff in order to
convince other agents to play a certain strategy. We adopt
the Boolean transfer functions 3; : V' x A — R> of Tur-
rini [2013], where V' = [],_ 4 Vi. Each such function spec-
ifies the payoff that agent ¢ secures to other agents in case
some outcome occurs. We assume that a Boolean transfer
function can be defined only for a PNE outcome and that the
transfer will be performed only when a PNE is played. We
term this family of functions active transfer functions.
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Similarly to taxation schemes, an agent’s utility is extended
to take side payments into consideration while deciding on
the action to take:

Bi(v) == > Bi(v,5) = > Bj(v,i)

JEA JEA
where (3;(v) represents the net loss that agent ¢ incurs at out-
come v when using the Boolean transfer function 3. We re-
strict our attention to transfer functions that assure that for all
agents i € A and all outcomes v,

ci(vi) > —Bi(v)
put in words, the cost is always higher than the net gain. An-
other restriction relates to the maximal amount of payoff that
an agent can sacrifice. Such a restriction mimics the tradi-
tional view of games with side payments [Jackson and Wilkie,
2005], where the actions have utilities rather than costs. In
such situations it is natural to assume that an agent cannot
offer a side payment that is larger than its utilitarian benefit.
One can define the following boost factor:

,uiB = Iglea&( (ci(vi) + 52(11)) @))

The utility that ¢ obtains from outcome v =
(U1, Uiy oo, Up) St
gy 14— (ci(vi) + Bi(v), ifviEy
w; (v) = .
—(ci(vi) + Bi(v)), otherwise

This means that the maximal amount of payoff that the agent
can sacrifice is 2 - u; + 2, since the maximal utility the agent
can receive is 1+ y; (it achieves its personal goal by perform-
ing actions that have no cost) while the worst utility is —u;
(in case the agent takes its most expensive action and does not
achieve its personal goal). Hereinafter, we use p as defined in
Equation 1. Nonetheless, other values of i can be used to rep-
resent different limitations of the maximal sacrificable payoff
restriction. In the extreme, ;1 = oo reflects the dichotomous
nature of Boolean games, while assuming the availability of
infinite funds for each agent.

4 Existence of a PNE in Boolean games

Not every Boolean game has a PNE, but one can try to se-
cure the existence of a PNE by using an incentive mechanism.
The set of Boolean games (and outcomes in these games) for
which a stable state can be secured using taxation schemes
was characterized by Levit et al. [2013b].

Definition 1. A Special Outcome (SO) is an outcome v =
(v1,...,0i,...,0y) in which there exists an agent (i € A)
for whom the following conditions hold:
o (v;,v_;) [~ v — the agent does not achieve its personal
goal
o v € Vi, (vi,v_;) = i — it can achieve it by a unilat-
eral deviation
Using the above definition, Levit et al. [2013b] proved that:
Proposition 1. An outcome can be transformed to a PNE
(with the appropriate taxation scheme) if and only if this out-
come is not a special outcome.
This result is needed for the comparison between taxation
schemes and side payments.



4.1 Securing stable states with side payments
Let GG be a Boolean game and v = (vl,...,v;,...,v,) an
outcome. The agents in the game forms two distinct groups:
o S = {i € AWV, € V,ui(vi,v—;) > wu(vi,v_;)}
agents that rationally chooses to stay in outcome v
e D = {i € AlFv] € Vi,ui(vi,v—i) < wi(vj,v—4)}
agents that rationally choose to deviate from outcome
v

The affecting cost change for agent ¢ in outcome v:

(v) = u;(v) — maxv;evi\{vi}(ui(vg,v_i)), ifie S
g:lb) = max,’ e\ {v;} (i (vj, v—i)) —wi(v), ifi€D

Intuitively, g;(v) defines the maximal net loss (from a transfer
function) that an agent 7 can suffer but still rationally choose
to stay at outcome v (in case ¢ € S), or the minimal net
gain that agent ¢+ must obtain in order to rationally prefer an
outcome v over other outcomes (in case ¢ € D). The total
gain/loss of an outcome v are:

Gain(v) := Zgi(v), Loss(v) := Zgi(v)

i€s i€D
Proposition 2. Given a Boolean game G and an outcome
V= (V1y...,04...00), Iif

e v is not a special outcome

o Gain(v) > Loss(v)
then there exists an active Boolean transfer function that
transforms v to a PNE.

Proof. To show the correctness of Proposition 2, we construct
an active Boolean transfer function. For each agent i € .S we
define the rate of participation:

9i(v)
pi(v) = Gain(v)
Note that Gain(v) = 0 implies either Loss(v) = 0 (i.e., no
side payments needed) or there is no active Boolean transfer
function that transforms v to a PNE. Hence, zero division will
not occur when p; (v) is computed. Now, we define the active
Boolean transfer function as follows:

oy Jpi(v) - g;(v),
/BZ (’U7 j) - {07

Note that the definition of active transfer functions implies
that 8;(v’, j) = 0 for each outcome v’ # v.

By Equation 2, every agent j € D has a net gain of:

—Bi(1) = Tiespi(0) (V) = Ties il - g;(v) =
gj(v). In other words, agent j obtains enough net gain to
prevent it from deviating from outcome v.

In addition, every agent ¢ € .S suffers a maximal net loss
of: Bi(v) = X ;e p Pi(v) - g;(v) = Ysepp gty - g5 (v) =
égj;((';)) - gi(v) < gi(v) (the last inequality follows from

Gain(v) > Loss(v), hence CL;Z:Z((Z)) < 1). Every agenti € S
suffers at most g;(v) net loss, therefore i still does not prefer
to deviate from outcome v. Consequently, v is a PNE, since
there is no agent (from both groups S and D) who wants to

unilaterally deviate from it. O

ifieS,jeD
otherwise

2
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Proposition 3. Given a Boolean game G and an outcome
v = (v1,...,0i,...0,), If there exists an active Boolean
transfer function, that transforms v to a PNE then the fol-
lowing conditions must hold:

e v is not a special outcome

e Gain(v) > Loss(v)

Proof. First, v is not a special outcome, otherwise some agent
(¢) would prefer to change its choice to satisfy its personal
goal. Next, one needs to show that Gain(v) > Loss(v).
Denote by T'(v) the net sum of transfers between agents in .S
and agents in D:

T(v) = Z Bi(v,3) — Bj(v,1)

i€S,jeD

Assume by contradiction that T'(v) > Gain(v), then the
sum of updated utilities (according to the given transfer func-
tions) of agents in S is decreased by more than Gain(v).
Hence, at least one agent will rationally choose to deviate
from v in contradiction of v being a PNE.

Assume by contradiction that Loss(v) > T'(v), then the
sum of the updated utilities (according to the given transfer
functions) of agents in D is increased by less than Loss(v).
This means that at least one agent in D still rationally chooses
to deviate from v, in contradiction of v being a PNE. Con-
sequently, Gain(v) > T(v) and T'(v) > Loss(v), which
means Gain(v) > Loss(v). O

Corollary 4. An outcome v can be transformed to a PNE by
the use of active side payments if and only if the two condi-
tions defined in Propositions 2 and 3 hold.

4.2 Taxation vs. side payments

The difference between taxation schemes and side payments
follows immediately from Proposition 1 and Corollary 4:

Corollary 5. Every PNE that can be secured with active side
payments can be also secured with a taxation scheme, but the
opposite is not true.

The differences in the functionality of the two incentive
mechanisms are exemplified next.

Example 1. Consider two agents A = {1,2}. Each agent
owns a single variable (i.e., p1 = {a} and o = {b}). The
personal goal of agent 1 is v1 = —a A —b and the personal
goal of agent 2 is v = —a A b. The costs associated with
the actions are: ¢(a, L) = 10,¢(a, T) = 0,¢(b, L) = 0 and
c(b, T) =4

One can easily verify that there is no PNE in this Boolean
game. Suppose the outcome v = {a = T,b = T} is adesired
one (to become a PNE). Let us see how this can be secured
by using taxation and active side payments:

e Taxation scheme — simply apply a tax of at least 4 for
the assignment b = L (i.e., 7(b, L) > 4)

e Active side payments — agent 1 must transfer to agent 2
apayoffof4d (ie., 51({a=T,b=T},2) =4)



For this specific outcome (v), we were able to find both
a taxation scheme and active side payments that secure the
existence of a PNE. However, this is not true in general. Re-
consider Example 1 and the outcome v/ = {a = 1, b= T}.
It is possible to find a taxation scheme that secures a PNE
at outcome v’ (e.g., 7(a, T) = 10). However, with the u of
Equation 1, there is no active side payment that can transform
outcome v’ to a PNE.

Note that taxation is an indirect operation, in the sense that
when the principal chooses to levy a tax in order to perturb
the agents’ preferences, the tax is chosen in a manner that no
agent directly pays it. Contrary to that, in active side pay-
ments the operation is direct, in the sense that the side pay-
ments are directly transferred among the agents.

5 Boolean games in social networks

Having investigated the theoretical differences between taxa-
tion schemes and side payments, it is natural to compare them
empirically. In order to be able to perform such a comparison,
we will first define a family of Boolean games that initially do
not have a PNE. By applying one of the two incentive mecha-
nisms, a stable state can be secured for this family of Boolean
games.

5.1 Coordination in Boolean games

To make things simple, let us start from Boolean games
of two agents A = {1,2}, each owning a single variable
(p1 = {a} and po = {b}). If the personal goals of agents
require pure coordination' (or anti-coordination), then every
such Boolean game will initially have a PNE.

Definition 2. A 2-players Boolean game has a conflicting
interaction if the personal goals take the form of v1 = (a A
b) V (ma A —b) and o = (—a A b) V (a A —b). The agents
have a disagreement among their personal goals (one agent
wants pure coordination and the other anti-coordination).

The Boolean game of Definition 2 does not have a PNE and
there is no taxation scheme that can secure its existence. To
create a Boolean game that can serve for comparing the PNE
securing schemes we will relax one of the agents’ personal
goals as follows:

Definition 3. A 2-players Boolean game has a manipulable
conflicting interaction if the personal goals are v1 = a V' b
and 5 = (a A b) V (—a A —b).

There is only one outcome that is not a special outcome
in this Boolean game. In addition, if c(a, L) < c¢(a, T) this
game will have no stable state. This means, that the Boolean
game at hand meets our requirements.

An interesting way to generate more complex inter-agent
interactions is by introducing an underlying social network,
where the nodes represent agents and the links represent the
interactions between them. This is a natural representation for
a Boolean game, where graphical connections stand for vari-
ables of agents that appear in other agents’ personal goals. In
the family of social-network-based Boolean games that will
be used in the empirical evaluation, each dependency among

!Coordination games [Cooper, 1999].
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neighboring agents (i.e., connected by a link in the network)
takes the form of the simple game described in Definition 3.
Consequently, the personal goals of agents are constructed by
a disjunction of all inter-neighbor interactions in the underly-
ing social network.

Proposition 6. One can secure the existence of a stable state
in a social-network-based Boolean game, generated accord-
ing to the rules above by levying a taxation scheme.

Proof. Suppose every agent chooses T as the assignment for
its variable. This results in an outcome where every agent
achieves its personal goal. Therefore, this outcome is not a
special outcome and consequently there is a taxation scheme
that can secure a PNE in this Boolean game. O

5.2 ADCOP

An asymmetric distributed constraints optimization problem
(ADCOP) [Grinshpoun et al., 2013] is a tuple

<A X,D,R>

where A = {A1, Ag, ..., A, } is a finite set of agents. X =
{X1,Xo, ..., X,,,} is a finite set of variables. Each variable is
held by a single agent (an agent may hold more than one vari-
able). D = {Dy, Do, ..., D, } is a set of domains. Each do-
main D; consists of a finite set of values that can be assigned
to variable X;. R is the set of relations (constraints). Each
constraint C' € Ris afunction C : D;, x D;, x...x D;, —
Hle R that defines a non-negative cost for every partici-
pant in every value combination of a set of variables. The
asymmetry of constraints in the ADCOP model stems from
the potentially different costs of constraints for every partici-
pant.

A complete assignment consists of assignments to all vari-
ables in X. A solution to an ADCOP is a complete assign-
ment of minimal cost.

5.3 Searching for side payments with ADCOPs

The main idea is to construct an ADCOP and apply a search
on it. The objective of the search is to find the active transfer
function that secures the existence of a PNE and imposes the
minimal payoff transfer. Given a Boolean game GG we define
the ADCOP as follows:

e The set of agents in the ADCOP is the same as in G.

e The variables of the ADCOP are those of GG with the
same variable allocation.

e Every domain D; consists of two values (0 for L and 1
for T).

e For every agent A; construct a constraint. This con-
straint includes valuations of variables that appear in ~;
(in what follows the variables that appear in ; will be
denoted by (v, ...,v;,)). The constraints of the AD-
COP are not in the form of a table, but are rather on-the-
fly computed during search from a formula that takes
constant computation time. The details of the constraints
are described next.



One wants to select only those outcomes v that are not a SO
and for which Gain(v) > Loss(v). For every special out-
come or outcome with Gain(v) < Loss(v) the relation cost
should be larger than the maximal possible net sum of trans-
fers. Active transfer function values may vary, but since the
agents will rationally choose them, the values of these func-
tions should be minimal. Thus, the maximal possible net sum
of transfers M can be computed using the following equation:

M = Z le(p, T) — c(p, L)

ped
This leads to the following constraint in the ADCOP:

C’i(vil,...,vik) Z:M+E (3)

The constraint defined by Equation 3 is applied to every out-
come v that is a SO or for which Gain(v) < Loss(v). Out
of all remaining outcomes we want to find the one that mini-
mizes the net sum of transfers. Therefore, the cost of a con-
straint should be the needed (minimal) payoff transfer:

ifieD
ifies

Cilviy, o 01,) 1= { gi(v)

Equation 4 describes the minimal payoff transfer to a single
agent 7. This transfer ensures that agent ¢ will not have any
incentive to change its choice.

The ADCOP’s solution is a full assignment (vy, va, ..., vy,)
that represents a PNE state when the appropriate active trans-
fer function is used. The active side payment is calculated
during the search process and can be stored along with its
matching assignment.

“

6 Experimental evaluation

The differences between side payments and taxation schemes
are evaluated on social-network-based Boolean games. Prob-
lems were randomly generated and the reported results are
averages over 100 instances for each setting.

6.1 Problem generation

For each experiment a random problem was generated. First,
an ErdGs-Rényi [1959] random network was generated. Next,
the Boolean game was constructed according to the rules de-
scribed in Section 5.1, where the cost of assigning T was
chosen from the range [100,200) and the cost of assigning
L from the range [0,100). Then, an ADCOP was gener-
ated from the Boolean game using the procedure described
in Section 5.3. Finally, the problem was solved using the k-
ary SyncABB-1ph algorithm [Levit et al., 2013b].

6.2 Experimental results

The first part of the experimental evaluation compares the so-
lution quality of the two incentive mechanisms. For this pur-
pose two measures are considered.

Figure 1 presents the percentage of games that have a PNE
state after applying each of the incentive mechanisms. Every
game in this experimental set did not have a PNE initially.
The games were designed so that it will be possible to ensure
the existence of a PNE using taxation (see Proposition 6). We
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Figure 1: Percentage of games that have a PNE after applying
the incentive mechanisms

can see that side payments are able to secure a PNE in about
80% of the instances, on average. In addition, it is evident that
the probability for ensuring a PNE with active side payments
drops when the problems become larger.

The second measure is the size of the overall cost change
with respect to the original costs of the game. The respective
percentages of the cost change for taxation schemes and side
payments are calculated as follows:
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Figure 2: Percentage of cost change

For this results we selected only those problems for which
a PNE can be ensured with active side payments. Figure 2
shows that the overall cost change is very small (less than 6%
in all of the problem settings in the evaluation). This means,
that for the set of games which were used in our experiments,
there are only a few agents who need to be manipulated in
order to ensure existence of a stable state.

In order to evaluate the algorithms, we consider the mean
number of Non-Concurrent Constraint Checks (NCCCs),
which is a commonly used measure for the runtime perfor-
mance of distributed constraints search algorithms [Zivan and
Meisels, 2006]. The exponential growth of the computational
load with respect to the problem size is clearly seen in Figure
3 and is of no surprise as ADCOPs are NP-Hard problems.
However, the type of incentive mechanism (i.e., taxation or
side payments) does not significantly affect the performance.
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Figure 3: Mean number of NCCCs

7 Conclusion

Two incentivising mechanisms for Boolean games where
studied in the last three years — taxation schemes [Wooldridge
et al., 2013; Levit ef al., 2013b] and side payments [Tur-
rini, 2013]. Both mechanisms were shown to be able to
eliminate (with additional restrictions) pure Nash equilibria
(PNEs) [Harrenstein et al., 2014]. The present study focuses
on the differences between the two mechanisms and shows
that side payments are a weaker mechanism for securing a
PNE. The set of outcomes of Boolean games that can be trans-
formed to a PNEs by the use of side payments is fully char-
acterized and is found to be a subset of outcomes that can
become PNEs by the use of a taxation scheme [Levit et al.,
2013b].

An extensive empirical evaluation was performed on
social-network-based Boolean games, which initially do not
have a PNE. A distributed search algorithm looked for solu-
tions of minimal cost change for securing a PNE by each of
the two mechanisms. The evaluation provides two interest-
ing insights about the two mechanisms. First, side payments
secure a PNE in only ~ 80% of the problems. Second, the
overall change of cost of the games is very small (less than
6%). This points to the fact that the incentive mechanisms
need to only influence a small number of agents, in order to
secure a PNE.
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