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Abstract
We consider three important, non-strategyproof as-
signment mechanisms: Probabilistic Serial and two
variants of the Boston mechanism. Under each of
these mechanisms, we study the agent’s manipula-
tion problem of determining a best response, i.e.,
a report that maximizes the agent’s expected util-
ity. In particular, we consider local manipulation
strategies, which are simple heuristics based on lo-
cal, greedy search. We make three main contri-
butions. First, we present results from a behav-
ioral experiment (conducted on Amazon Mechan-
ical Turk) which demonstrate that human manip-
ulation strategies can largely be explained by lo-
cal manipulation strategies. Second, we prove that
local manipulation strategies may fail to solve the
manipulation problem optimally. Third, we show
via large-scale simulations that despite this non-
optimality, these strategies are very effective on av-
erage. Our results demonstrate that while the ma-
nipulation problem may be hard in general, even
cognitively or computationally bounded (human)
agents can find near-optimal solutions almost all
the time via simple local search strategies.

1 Introduction
We consider the assignment problem, i.e., the problem of allo-
cating indivisible objects to self-interested agents with private
preferences when monetary transfers are not permitted. The
agents first report ordinal preferences, i.e., rank-ordered lists
of objects, and then an assignment mechanism determines
a (probabilistic) allocation of the objects to the agents. In
practice, such problems often arise in situations that are of
great importance to people’s lives. Prominent examples in-
clude the assignment of teachers to schools via the Teach for
America program, the assignment of MBA students to intern-
ships [Featherstone, 2011], and the assignment of children to
public schools [Abdulkadiroğlu and Sönmez, 2003].

The assignment domain is plagued with impossibility re-
sults: Random Serial Dictatorship is strategyproof, anony-
mous, and ex-post efficient, but it is essentially the only
mechanism with these properties [Bade, 2014]. Bogomol-
naia and Moulin [2001] have proposed the Probabilistic Se-

rial (PS) mechanism as an alternative because of its superior
ordinal efficiency properties, but it is not strategyproof. In
practice, other non-strategyproof mechanisms like the Naı̈ve
or the Adaptive Boston Mechanism (NBM & ABM) are em-
ployed, even though researchers have well documented that
these mechanisms are not strategyproof and are being manip-
ulated by participants [Calsamiglia and Güell, 2014].

The agent’s manipulation problem is defined as the prob-
lem of determining a beneficial misreport in a full informa-
tion environment, where the agent has access to a black-box
implementation of the mechanism. In the voting domain,
Bartholdi et al. [1989a] proposed computational complexity
as a barrier to manipulation by cognitively or computation-
ally bounded agents. While Xia [2011] gave worst-case com-
plexity results for many voting rules, Mossel and Rácz [2014]
recently showed that the manipulation problem is easy on av-
erage for essentially all non-strategyproof voting rules. For
assignment mechanisms, the manipulation problem was re-
cently shown to be NP-hard under PS [Aziz et al., 2015b],
but results for other mechanisms remain outstanding.

In this paper, we study the manipulation problem under
PS, NBM, and ABM. Our approach is orthogonal to theo-
retical research on the computational complexity of the ma-
nipulation problem. Instead, we focus on local manipulation
strategies, which are simple, behaviorally motivated heuris-
tics based on local, greedy search algorithms. We conducted
a behavioral experiment on Mechanical Turk to identify the
way in which humans approach the manipulation problem.
We then analyzed how manipulable PS, NBM, and ABM are
in general, and how successful local manipulation strategies
are at solving the manipulation problem under each mecha-
nism. Our research addresses the following two hypotheses:

• Hypothesis #1: Human manipulation strategies can
largely be explained by local manipulation strategies.

• Hypothesis #2: Local manipulation strategies are not
always optimal, but very powerful on average.

Overview of Contributions
1. We present results from an online behavioral experiment

to understand the manipulation strategies that human
subjects employ when facing the manipulation problem.
We find that human manipulation strategies can largely
be explained by local, greedy search strategies, in line
with hypothesis #1.
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2. We prove that local manipulation strategies may fail to
solve the manipulation problem optimally, in line with
research hypothesis #2.

3. We provide large-scale simulation results which show
that the situations where local strategies fail are the ex-
ception. On average, local manipulation strategies cap-
ture a large share of the possible gain from optimal ma-
nipulation, again in line with hypothesis #2.

2 Related Work
In the field of assignment mechanisms, Zhou [1990] showed
that strategyproofness, ex-ante efficiency, and symmetry are
incompatible. Bogomolnaia and Moulin [2001] showed that
PS is ordinally efficient, but not strategyproof and that in
fact no ordinally efficient and symmetric mechanism can be
strategyproof. Boston Mechanisms are widely used in prac-
tice [Abdulkadiroğlu et al., 2005], and multiple studies have
shown that they are often manipulated [Abdulkadiroğlu et al.,
2006]. Naı̈ve and adaptive variants of the Boston mechanism
(NBM & ABM) were found to facilitate a subtle trade-off be-
tween strategyproofness and efficiency [Mennle and Seuken,
2014b]. In this paper, we study PS, NBM, and ABM, which
are the three most important non-strategyproof mechanisms.

Lab experiments have repeatedly shown that models as-
suming bounded rationality are better at predicting behavior
than the perfectly-rational agent model [Gabaix et al., 2006].
For example, [Hugh-Jones et al., 2014] showed that humans
do not manipulate PS optimally. Halpern et al. [2014] pro-
vided a nice survey of work using bounded rationality in de-
cision theory. The observation that (human) agents are com-
putationally and cognitively bounded motivates our definition
of local manipulation strategies, which are heuristics for the
manipulation problem, based on local, greedy search.

Since Bartholdi et al. [1989b] proposed computational
complexity as an obstacle against manipulation, we have ob-
tained a good understanding of the worst-case difficulty of
the manipulation problem under various voting rules [Xia,
2011]. However, the standard worst-case notion of complex-
ity does not prevent manipulation strategies from being effec-
tive on average. A recent stream of work [Xia and Conitzer,
2008; Dobzinski and Procaccia, 2008; Friedgut et al., 2011;
Isaksson et al., 2012; Mossel and Rácz, 2014] established
that the average complexity of determining some strictly
beneficial manipulation is polynomial under almost all non-
strategyproof voting rules. They showed that beneficial mis-
reports are sufficiently frequent, so that in expectation ran-
dom search finds such misreports in polynomial time. For as-
signment mechanisms, our local manipulation strategies pre-
scribe a particular heuristic search strategy.

3 The Model
Let N be a set of n agents and M a set of m objects, and let
there be q ≥ 1 copies of each object available. Agents each
demand one copy of some object and have private preference
orders �i over the objects, where j �i j

′ indicates that agent
i likes object j better than object j′.

An allocation is a (possibly probabilistic) assignment of
the objects to the agents. It is represented by an n×m-matrix

x = (xi,j)i∈N,j∈M with xi,j ∈ [0, 1] that satisfies∑
i∈N xi,j ≤ q, (capacity constraint)∑
j∈M xi,j = 1. (fulfillment constraint)

The entry xi,j is interpreted as the probability that i gets j.
Agents’ preferences over objects are extended to preferences over

probabilistic allocations via vNM utilities: each agent is endowed
with a utility function ui :M → Rm consistent with the preference
order�i, i.e., ui(j) > ui(j

′)⇔ j �i j
′. For an allocation x, agent

i’s expected utility (or just utility) is given by
Ex [ui] =

∑
j∈M ui(j) · xi,j . (1)

P denotes the set of all preference orders, and X denotes the set of
all possible allocations. A mechanism is a function

f : Pn → X (2)

that receives a preference profile �= (�1, . . . ,�n) as input and se-
lects an allocation f(�) ∈ X . We use�−i to denote the preference
reports from all agents except i. A mechanism that makes truthful
reporting a dominant strategy is called strategyproof, otherwise it is
called manipulable.

3.1 Popular Mechanisms
We consider three well-known assignment mechanisms, which we
briefly describe in the following. Formal definitions can be found in
the referenced literature.

Probabilistic Serial Mechanism: The Probabilistic Serial (PS)
mechanism was introduced by Bogomolnaia and Moulin [2001]. It
collects the agents’ preference reports and uses the simultaneous
eating algorithm to determine an allocation: first, all agents begin
collecting probability shares of their reported first choice at equal
speeds. Once all shares of an object are exhausted the agents at this
object move to their reported second choices and continue collect-
ing probability shares there. This continues with third, fourth, etc.
choices until all agents have collected a total of 1.0 probability.

PS is ordinally efficient, which is a true refinement of ex-post
efficiency, but it is not strategyproof.

Naı̈ve Boston Mechanism: The Naı̈ve Boston mechanism (NBM)
collects the agents’ preference reports and determines a single tie-
breaker, i.e., a linear ordering of the agents, uniformly at random.
In the first round, all agents “apply” to their reported first choices.
Objects are assigned to the applicants, where preference is given to
agents with higher rank in the tie-breaker whenever there are more
applicants than available capacity. Then the process repeats, i.e.,
agents who were not assigned an object in the kth round enter the
k + 1st round, where they apply to their k + 1st choice. The result-
ing allocation is probabilistic, because the tie-breaker is random and
unknown when the agents submit their preferences.

NBM is frequently used in school choice and has been heav-
ily criticized for its manipulability [Ergin and Sönmez, 2006;
Kojima and Ünver, 2014]. However, it also has some appealing
welfare properties [Abdulkadiroğlu et al., 2015]. The mechanism
is “naı̈ve” in the sense that agents might “waste” rounds by applying
to exhausted objects.

Adaptive Boston Mechanism: The Adaptive Boston mechanism
(ABM) works similarly to NBM, except that agents apply to their
best available object in each round [Mennle and Seuken, 2014b].
Suppose an agent reports a � b � c, and that a and b are exhausted
in the first round, but the agent did not get a. Then its application in
the second round will be to c, because b is no longer available. This
modification eliminates some obvious opportunities for manipula-
tion that exist under NBM. While ABM is not fully strategyproof, it
satisfies the relaxed requirement of partial strategyproofness which
NBM does not satisfy [Mennle and Seuken, 2014a].
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3.2 The Agent’s Manipulation Problem
Given agents N , objects M , and capacity q, the situation that an
agent i faces is described by the tuple (ui,�−i), i.e., the utility of
agent i and the reports from the other agents. We consider the prob-
lem of deciding on a report, given this information and a black-box
implementation of the mechanism.
Definition 1. (Manipulation Problem) The agent’s manipulation
problem is the problem of finding a report �∗i such that i’s utility
in situation (ui,�−i) is as high as possible.

4 Manipulation Strategies
Manipulation strategies are algorithms to solve the manipulation
problem. We focus on manipulation strategies that rely on sequen-
tial evaluation of reports, i.e., the strategy devises a way to (fully or
partially) search the space of possible reports.
Definition 2. (OPT) An agent follows an optimal manipulation
strategy (OPT) if it considers all possible reports, computes the al-
location for each, and selects a report that yields the highest utility,
i.e., in a given situation (ui,�−i),

OPT(ui,�−i) = argmax�′i∈P
Ef(�′i,�−i)

[ui]. (3)

By definition OPT yields maximal gain from misreporting, but
this optimality comes at a cost: an agent who follows the OPT strat-
egy must evaluate all m! possible reports. For agents with lim-
ited cognitive or computational abilities this is obviously impossible
even for small m. For this reason, we focus on manipulation strate-
gies that only explore part of the search space. Local manipulation
strategies are particularly simple manipulation strategies that rely on
local, greedy search.

4.1 Construction of Local Strategies
First, a notion of locality on the space of reports is needed.
Definition 3. (Neighborhood) For a preference order �, the neigh-
borhood N� of � is the set of preference orders that differ by at
most a swap of two adjacent objects, e.g.,

a � b � c � d � e and a �′ c �′ b �′ d �′ e (4)
differ only in the ordering of b and c, so �′ is in N�.

Suppose an agent can only evaluate reports in the neighborhood
of its truthful report. This yields the following basic strategy.
Definition 4. (LOC) An agent follows a local manipulation strategy
(LOC) if it evaluates all reports that differ from its truthul report by
at most a swap and selects the one that yields the highest utility, i.e.,
in a given situation (ui,�−i),

LOC(ui,�−i) = argmax�′i∈N�i
Ef(�′i,�−i)

[ui]. (5)

Carroll [2012] showed that if a mechanism is not fully strate-
gyproof, then there exists at least one situation (ui,�−i) in which
the LOC strategy finds some beneficial misreport. While LOC may
not be optimal, it is computationally easy in the sense that it only
requires the evaluation of f at m reports, namely the truthful report
and its m− 1 neighbors.

Applying LOC iteratively yields the next strategy.
Definition 5. (ITERLOC) An agent follows an iterated local ma-
nipulation strategy (ITERLOC) if it evaluates all reports that can be
reached from its truthful report by a sequence of weakly beneficial
swaps and selects the one that yields the highest utility, i.e., in a
given situation (ui,�−i),

ITERLOC(ui,�−i) = argmax�′i∈N
+
ui
Ef(�′i,�−i)

[ui], (6)

whereN+
ui

denotes the extended neighborhood of�i with respect to
ui, i.e., the set of reports that can be reached from�i via consecutive
swaps, each of which is weakly beneficial.

ITERLOC is at least as successful as LOC as N�i ⊂ N+
ui

.

4.2 Four Different Situations
A situation may not admit any beneficial misreport for an agent, in
which case we call it non-manipulable.

Definition 6. (NM) A situation (ui,�−i) is non-manipulable (NM)
if truthful reporting is optimal, i.e., �i∈ OPT(ui,�−i).

If a situation is manipulable, then LOC and ITERLOC are appeal-
ing because they are simple. But an important question is how well
they solve the manipulation problem. To study this question for-
mally, we define 3 kinds of situations that exhibit varying degrees of
hardness for the strategies.

Definition 7. (LOM) A situation (ui,�−i) is locally optimally
manipulable (LOM) if a local misreport is optimal, i.e., �i /∈
OPT(ui,�−i) and

OPT(ui,�−i) ∩ LOC(ui,�−i) 6= ∅. (7)

Definition 8. (LNOM) A situation (ui,�−i) is locally non-
optimally manipulable (LNOM) if (i) there exists a local misreport
that yields weakly higher utility than truthful reporting, and (ii) there
exists a non-local misreport with even higher utility, i.e., for some
�′i∈ N�i\{�i}, �∗i∈ P\N�i we have

Ef(�∗i ,�−i)[ui] > Ef(�′i,�−i)
[ui] ≥ Ef(�i,�−i)[ui]. (8)

Definition 9. (EGM) A situation (ui,�−i) is exclusively glob-
ally manipulable (EGM) if (i) all local misreports yield strictly
lower utility than truthful reporting, and (ii) there exists a non-local,
strictly beneficial misreport, i.e., for all �′i∈ N�i\{�i} and some
�∗i /∈ N�i we have

Ef(�∗i ,�−i)[ui] > Ef(�i,�−i)[ui] > Ef(�′i,�−i)
[ui]. (9)

In LOM situations, local manipulation strategies will always be
optimal. In LNOM situations, they always find some weakly bene-
ficial misreports and may even find optimal misreports through iter-
ated search. In EGM situations, LOC and ITERLOC will select �i,
i.e., the truthful report, while OPT will select some �∗i /∈ N�i . Intu-
itively, in EGM situations, local manipulation strategies get stuck in
the truthful report, despite the existence of some strictly beneficial
misreport.

Remark 1. The existence of EGM situations under PS, NBM, and
ABM was an open research question. In Section 6, we will prove
that these situations actually exist.

5 Human Manipulation Strategies
In the previous section, we have defined local manipulation strate-
gies. We now turn our attention to human manipulation strategies
and ask how well local manipulation strategies explain how humans
approach the manipulation problem. To this end, we conducted a
behavioral experiment.

5.1 Experiment Design
For our experiment we recruited 489 human subjects from Amazon
Mechanical Turk [Mason and Suri, 2012].

Set-up: Subjects were instructed about a single mechanism (either
PS, NBM, or ABM) in a tutorial video. Next, their understanding of
the respective mechanism and the manipulation problem was tested
via control questions. Subjects who passed the questions first played
4 practice instances of the manipulation problem. Then they had 10
minutes to complete 8 instances.1

1On average subjects spent 46 seconds on each instance, and
80% had over 1 minute left after the last instance. Thus, the time
constraint was not binding.
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Figure 1: Screen shot of the UI of the experiment.

Compensation: All subjects received a base payment of $0.50 if
they passed the control questions. They could earn an additional
bonus equal to the utility gain they obtained by manipulating in each
of the 8 instances. These instances were randomly generated and
contained NM, LOM, LNOM, and EGM situations (two of each, in
random order). In each manipulable instance, the maximal achiev-
able bonus varied uniformly between 10 and 100 cents, while of
course no positive bonus could be attained in NM instances. Values
were normalized such that reporting A B C D E truthfully
resulted in a bonus of 0. The average total bonus attainable from
playing optimally in all 8 instances was $3.30.

User Interface: Figure 1 shows a screen-shot of the user interface
(UI) of the experiment. The UI showed the subject’s utility function
(“values”) and the reports from the other agents. Subjects could alter
the report

(
A B C D E

)
by “dragging-and-dropping” the

objects into new positions. At any point in time, the subjects could
click on the “Preview” button to calculate the bonus from submitting
the currently visible report. Each preview-action corresponded to
evaluating the mechanism for a particular report. Once subjects were
satisfied with an ordering, they could click on the “Submit & next
round” button to advance to the next instance.2

Data Cleaning and Analysis: 489 subjects watched the tutorial
video and attempted the control questions, and 387 of them passed
the control questions. 36 were removed from the sample because
they aborted early or encountered an error, and 12 were removed
because their achieved share of maximal gain (or gain for short) de-
viated by more than 2sd from the mean. This left 339 subjects in the
final sample (PS: 117, NBM: 114, ABM: 108).

Our initial analysis revealed that effort (in terms of time spent
and number of previews) and success (in term of gain) varied signif-
icantly across subjects. Both effort indicators had significant posi-
tive effects on success, but explained less than 20% of the variabil-
ity. To account for the fact that some subjects simply “tried harder”
in our analysis, we use mixed-effects models, controlling for sub-
ject random effects. Thus, our conclusions are valid independent of
the subjects’ individual propensities to exert effort. Depending on
whether the response variable is continuous or binary, we use linear
or logistic regressions.

5.2 Reliance on Swaps
The basic interaction of subjects with the UI was to move an object
to a new positions.

Definition 10. (Elementary Operations) An elementary operation is
a change in the position of one object. This is a

2The UI had no “memory” feature as we wanted to keep the UI
simple for the subjects from Mechanical Turk. Since subjects re-
turned to the best report they found in 97.5% of the instances, it
appears that the lack of such a device did not impair their perfor-
mance.

Odds ratio of swap as PS NBM ABM
Elementary operation 2.46*** 2.30*** 1.87***
Report change 1.46*** 1.34*** 1.14◦

Table 1: Odds ratios of choosing swaps over slide/complex
from logistic regression; significance levels indicated for dif-
ference from 1.00: ***0.1%, **1%, *5%, ◦10%.

• swap, if one object moves by one position, e.g.,

A B C D E to A C B D E .

• slide, if an object moves by more than one position, e.g.,

A B C D E to A D B C E .

In line with intuition, the vast majority of elementary operations
were swaps. The odds ratios of choosing swap over slide are given
in the first line of Table 1.

Between preview-actions subjects performed one or several ele-
mentary operations.

Definition 11. (Report Change) The sequence of elementary oper-
ations between two preview-actions is called a report change. The
report change is a swap if it is equivalent to a single swap operation,
otherwise it is complex.

Result 1. Subjects primarily relied on swaps for their report
changes.

The second row in Table 1 shows the odds ratios for choosing
swap over complex in report changes. The majority of these report
changes were swaps, despite the fact that subjects could perform any
number of elementary operations between preview-actions. Thus,
swaps were the main step in their search, which is consistent with
the notion of locality in the definition of local manipulation strate-
gies.

Remark 2. Note that we do not claim that swaps yield the only
conceivable notion of locality. Furthermore, we did not analyze the
effect that different UI designs may have on the behavior of human
subjects. Nonetheless, the prevalence of swaps as report changes in
our data shows that a notion of locality based on swaps is sufficiently
interesting to warrant further analysis.

Note also that our next results on greedy search and subjects’
success are largely independent of the particular UI design, because
the decision to follow a greedy approach and the relative success of
subjects do not depend on the way in which the subjects enter their
report or the cost of performing preview actions.

5.3 Reliance on Greedy Search
We distinguish two different events that can occur after a preview-
action, and we consider the subjects’ possible reactions to these
events.

Definition 12. (Hit & Flop) A hit event occurs if the previewed
bonus strictly increases from one preview-action to the next. A flop
event occurs if the value strictly decreases.

Definition 13. (Continue & Backtrack) Consider the sequence of
actions after a hit or flop event until the next preview-action. Sub-
jects continue if this sequence only passes new reports. Otherwise,
if some known report is passed, they backtrack.

Result 2. Subjects primarily employed greedy search.

Table 2 shows the odds ratios of choosing to continue (instead of
backtrack) when a top or flop event occurred. We first observe that
subjects frequently chose to continue, even after flop events, which
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is consistent with the natural desire of humans to “explore.” How-
ever, we also see that encountering a hit event radically increased
the odds of choosing to continue by a factor of almost 3, and this in-
crease is statistically significant. This is consistent with the greedy
search assumption in the construction of the ITERLOC strategy.

Kind of event PS NBM ABM
Flop (constant) 1.26** 1.80*** 2.02***
Hit 2.74*** 2.90*** 2.90***

Table 2: Odds ratios of choosing continue over backtrack
from logistic regression with event as factor; significance lev-
els indicated for difference from 1.00: ***0.1%, **1%.

5.4 Effect of Difficulty on Performance
Results 1 and 2 show that the micro-structure of our subjects’ be-
havior is largely consistent with local manipulation strategies. In
addition, we now verify that the success predicted by local manipu-
lation strategies is also consistent with the success of the subjects in
our experiment. We exposed subjects to all four kinds of situations
from Section 3.2, i.e., non-manipulable (NM), locally optimally ma-
nipulable (LOM), locally non-optimally manipulable (LNOM), and
exclusively globally manipulable (EGM). Obviously, in NM situa-
tions, subjects cannot achieve any gain by misreporting. For all other
(manipulable) situations, let gLOM , gLNOM , gEGM denote the gain
in the respective situations, i.e., the bonus attained in a particular in-
stance divided by the bonus attainable by manipulating optimally in
that instance.
Result 3. Subjects achieved more gain in situations that were pre-
dicted to be easier for local manipulation strategies:

gLOM > gLNOM > gEGM . (10)

Table 3 shows the effect of kind of situation on gain, relative to
LNOM (the constant in the regression). EGM and LOM situations
had negative and positive effects on gain, respectively, and these ef-
fects were significant.3 This is consistent with the performance pre-
dicted for agents using local manipulation strategies.

To conclude, Results 1, 2, and 3 support hypothesis #1 that human
manipulation strategies can largely be explained by local manipula-
tion strategies: our subjects relied on swaps for their report changes,
they performed greedy search, and they gained more in situations
that were predicted to be more easily manipulable by local manipu-
lation strategies.

6 Non-optimality of Local Strategies
We now study the ability of local manipulation strategies to solve
the manipulation problem. Since the discussion of local manipula-
tion strategies by Carroll [2012], the existence of EGM situations

3Note that the negative values for EGM situations in Table 3 do
not imply that subjects received a negative gain in those situations.
Instead, these values must be added to the values for LNOM situa-
tions (the constant in the regression).

Kind of situation PS NBM ABM
LNOM (const.) 46.5%*** 45.2%*** 66.7%***
EGM -20.4%*** -34.7%*** -46.6%***
LOM +6.7%◦ +21.7%*** +8.9%*

Table 3: Achieved share of maximal gain from linear regres-
sion with kind of situation as factor; significance levels indi-
cated for difference from 0.00: ***0.1%, **1%, *5%, ◦10%.

has been an open question for PS, NBM, and ABM. Even though
we have already used EGM situations in the experiment, we now es-
tablish their existence formally. This in turn implies non-optimality
of local manipulation strategies for the manipulation problem.

Proposition 1. There exist EGM situations for PS.

Proof. Let N = {1, 2, 3, 4}, M = {a, b, c, d}, and q = 1. Con-
sider the preference profile

�1,�2: a � b � c � d; �3: c � d � b � a;
�4: b � c � d � a,

and utility function u1 = (1.21, 1.1, 1.0, 0.0). We can calculate
agent 1’s allocations for truthfully reporting �1 and for any misre-
port from the neighborhood N�1 , as well as the utilities. Truthful
reporting yields 0.87 and the local misreports yield 0.85, 0.86, and
0.79, which are all strictly lower. However, the optimal misreport is
�∗1: b � c � a � d, which yields 0.92. Thus, (ui,�−i) is an EGM
situation under PS.

Proposition 2. There exist EGM situations for NBM.

Proof. The proof proceeds analogously to Proposition 1. Let N =
{1, . . . , 5}, M = {a, . . . , e}, q = 1 and consider

�1: a � b � c � d � e, �2,�3: a � b � c � e � d,
�4: a � b � d � e � c, �5: a � c � d � b � e,

and utility function u1 = (43.0, 3.3, 2.1, 1.0, 0.0). The optimal
misreport is �∗1: a � c � d � e � b.

Proposition 3. There exist EGM situations for ABM.

Proof. Analogous to Propositions 1 and 2, consider the same setting
as in Proposition 2 with

�1: a � b � c � d � e, �2: a � b � d � e � c,
�3: a � b � d � c � e, �4: a � e � d � c � b,
�5: a � c � d � b � e,

and utility function u1 = (20.0, 1.15, 1.05, 1.0, 0.0). The optimal
misreport is �∗1: a � d � c � e � b.

Remark 3. Finding these EGM situations was challenging, be-
cause they are extremely rare. We designed a search algorithm that
constructs “border-line” utility functions because random sampling
proved unfruitful.

7 Average Performance of Local Strategies
The non-optimality of local manipulation strategies in the worst case
(EGM situations) tells us little about their average performance. In
this section, we first study the manipulability of PS, NBM, and ABM
in general, and then we analyze how LOC and ITERLOC perform on
average under these mechanisms. We ask the following questions:

1. How manipulable (by OPT) are PS, NBM, and ABM, and how
high is the gain from manipulation?

2. How effective are LOC and ITERLOC for the manipulation
problem?
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Figure 2: Heat maps: (A) estimated likelihood (in %) of OPT-manipulability, (B) expected gain (in %) from OPT in OPT-
manipulable situations, (C) & (D) expected captured share of maximum gain (in %) from LOC and ITERLOC, respectively,
conditional on OPT-manipulability.

7.1 Simulation Set-up
We answer these questions via large-scale simulations. In choos-
ing a stochastic model for the agents’ preference orders and util-
ity functions we follow prior work in the matching community that
employed simulations [Kominers et al., 2010; Budish and Cantil-
lon, 2012; Abdulkadiroğlu et al., 2015; Erdil and Ergin, 2008]. Our
model comprises all models used in these papers.

Treatment Variations: To create a general model, we include the
following variations: a treatment consists of

• a mechanism f ∈ {PS, NBM, ABM},
• a number of objects m ∈ {3, 4, 5}
• a capacity q ∈ {1, 2, 3} (and fixing the number of agents n =
q ·m, such that supply exactly satisfies demand),

• a correlation α ∈
{
0, 1

3
, 2
3

}
.

Sample preference profiles were obtained by drawing utility profiles
with normally distributed utility values and then correlating them
by α. We sampled 10,000 preference profiles for each treatment and
then used Gibbs sampling to sample 1,000 utility functions for agent
1.

Remark 4. The treatment parameters were chosen to keep the com-
putational effort manageable. Using the best known algorithms for
ABM and NBM, determining OPT for a single preference profile re-
quires n!m! non-trivial computations. However, the evaluations for
our largest treatments (n = 15,m = 5) already took a full day on
a powerful compute cluster. Evaluations for one additional object
would have taken 30, 000 times as long. Thus, exact simulations for
more than n = 15 agents or more than m = 5 objects are computa-
tionally infeasible.

Manipulability and Effectiveness: Without loss of generality, we
evaluated each situation from the perspective of agent 1. A situation
is called OPT-manipulable if OPT yields a strictly beneficial mis-
report. To measure OPT-manipulability in a particular treatment,
we consider the likelihood that a randomly sampled situation is
OPT-manipulable. LOC- and ITERLOC-manipulability are defined
analogously. These measures follow prior work on manipulability,
e.g., [Laslier, 2010; Aziz et al., 2015a].

To measure OPT-effectiveness, we normalize agent 1’s utility
function such that min{u1(j)|j ∈ M} = 0 and consider the per-
centage gain from using OPT instead of reporting truthfully. To mea-
sure LOC- and ITERLOC-effectiveness, we consider what share of
the maximum possible gain each strategy captures if the situation is
OPT-manipulable.

7.2 Simulation Results
Result 4. NBM is most vulnerable to manipulation, ABM has in-
termediate manipulability, and PS is the least manipulable mecha-
nism. The effectiveness of optimal manipulation is low under PS and
higher under NBM and ABM.

Result 4 is apparent from rows (A) and (B) in Figure 2. The val-
ues in (A) tell us how likely it is that a situation sampled from that
particular treatment is susceptible to manipulation by agent 1, and
the values in (B) tell us by how much agent 1 expects to profit by
using OPT. These findings are consistent with the insights about
the manipulability of the three mechanisms from prior work: PS
is generally considered to have the best incentive properties of the
three non-strategyproof mechanisms we studied. It is weakly strate-
gyproof [Bogomolnaia and Moulin, 2001] and incentives improve in
larger markets [Kojima and Manea, 2010]. The finding that NBM is
more manipulable than ABM is consistent with the theoretical result
that ABM is partially strategyproof while NBM is not [Mennle and
Seuken, 2014b].

Result 5. The LOC strategy often provides a very good solution to
the manipulation problem.

We have evaluated LOC-effectiveness, conditional on OPT-
manipulability. The results are shown in row (C) of Figure 2.
For most treatments, LOC captures more than 95% of the maxi-
mum possible gain, with the lowest value of 88% under NBM with
m = 5, n = 15, and correlation α = 0. We also evaluated LOC-
manipulability, conditional on OPT-manipulability (not shown) and
found that LOC can be expected to find some beneficial misreport
with probabilities of at least 88%, but usually essentially 100%
across all treatments. The success of LOC is particularly interest-
ing because of its extreme simplicity: instead of m! it only requires
the evaluation ofm reports. Thus, computational effort is drastically
reduced relative to OPT. Result 5 implies that this reduction in effort
leads to only a minor loss in utility for the manipulating agent.

Result 6. The ITERLOC strategy almost always provides a near-
optimal solution to the manipulation problem.

Analogous to the LOC strategy, we have evaluated ITERLOC-
effectiveness, conditional on OPT-manipulability. Row (D) of Fig-
ure 2 shows the results: ITERLOC captures more than 98% of the
maximal gain across all treatments. ITERLOC-manipulability, con-
ditional on OPT-manipulability (not shown) was at least 99%, but
usually essentially 100% across all treatments. Thus, if a situation is
manipulable then ITERLOC can be expected to almost always find a
near-optimal manipulation. This makes ITERLOC an extremely ef-
fective strategy for solving the manipulation problem approximately.
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Remark 5. We also ran the same simulations with uniformly (in-
stead of normally) distributed utility profiles, and for utility profiles
with tiers, where a set of objects is universally preferred by all agents
(reflecting the “ghetto effect” [Urquiola, 2005]). All results were
qualitatively the same and are omitted due to space constraints.

8 Conclusion
In this paper, we have analyzed local manipulation strategies for
the three important assignment mechanisms PS, NBM, and ABM.
These simple strategies arise when agents follow local, greedy
search to solve the manipulation problem. Under the LOC strat-
egy agents search for a misreport only in the neighborhood of their
truthful report, and under ITERLOC they follow paths with weakly
increasing utility. We have studied (1) how well the search behav-
ior of humans can be explained by local manipulation strategies and
(2) how well local manipulation strategies solve the manipulation
problem.

Towards the first question, we have found that the human sub-
jects in our experiment relied on swaps for their report changes,
they searched in a greedy manner, and their performance was bet-
ter in situations that are predicted to be easier for agents with local
manipulation strategies. This evidence suggests that local manipu-
lation strategies largely explain the way in which humans approach
the manipulation problem.

Towards the second question, we have proven that both LOC and
ITERLOC can fail to solve the manipulation problem optimally for
PS, NBM, and ABM. However, using large-scale simulations we
have shown that, on average, local manipulation strategies are very
powerful heuristics for the manipulation problem which usually find
a beneficial manipulation (in almost 100% of the cases) and capture
a large share of the possible gain (more than 95% for most treatments
using LOC, and more than 98% using ITERLOC).

In general, determining optimal manipulations in assignment
problems may be computationally hard. But our findings demon-
strate that even cognitively or computationally bounded (human)
agents can capture a large part of the utility gain with very low effort
by using simple, local strategies. In addition, our results motivate
two new research agendas: first, simple, e.g., local best response
strategies could be used to define new approximate equilibrium con-
cepts. Second, a more sophisticated behavioral model (beyond local,
greedy search) could be derived via experimental studies to capture
human manipulation strategies in a more complete way.
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Quantitative Gibbard-Satterthwaite Theorem Without Neutrality.
Combinatorica, pages 1–71, 2014.

[Urquiola, 2005] Miguel Urquiola. Does School Choice Lead to
Sorting? Evidence from Tiebout Variation. American Economic
Review, 95(4):1310–1326, 2005.

[Xia and Conitzer, 2008] Lirong Xia and Vincent Conitzer. A Suf-
ficient Condition for Voting Rules to Be Frequently Manipulable.
In Proceedings of the 9th ACM Conference on Electronic Com-
merce, 2008.

[Xia, 2011] Lirong Xia. Computational Voting Theory: Game-
Theoretic and Combinatorial Aspects. PhD thesis, Computer Sci-
ence Department, Duke University, Durham, NC, 2011.

[Zhou, 1990] Lin Zhou. On a Conjecture by Gale about One-sided
Matching Problems. Journal of Economic Theory, 52(1):123–
135, 1990.

89




