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Abstract

We investigate the problem of revenue optimal
mechanism design [Myerson, 1981] under the con-
text of the partial rationality model, where buyers
randomize between two modes: rational and irra-
tional. When a buyer is irrational (can be thought
of as lazy), he acts according to certain fixed strate-
gies, such as bidding his true valuation. The seller
cannot observe the buyer’s valuation, or his ratio-
nality mode, but treat them as random variables
from known distributions. The seller’s goal is to
design a single-shot auction that maximizes her ex-
pected revenue.

A minor generalization as it may seem, our find-
ings are in sharp contrast to Myerson’s theory on
the standard rational bidder case. In particular,
we show that, even for the simplest setting with
one buyer, direct value revelation loses generality.
However, we do show that, in terms of revenue, the
optimal value-revelation and type-revelation mech-
anisms are equivalent. In addition, the posted-price
mechanism is no longer optimal. In fact, the more
complicated the mechanism, the higher the rev-
enue. For the case where there are multiple bidders
with IID uniform valuations, we show that when
the irrational buyers are truthful, first price auction
yields more revenue than second price auction.

1

Rationality assumption, which assumes that agents are util-
ity maximizers, is perhaps the most important assumption in
game theory [Von Neumann and Morgenstern, 1947]. How-
ever, this assumption has been questioned repeatedly in many
practical scenarios. Violation of this assumption invalidates
fundamental theories and raises research challenges.
Consider, for example, the literature of bounded rational-
ity [Rubinstein, 1986; Osborne and Rubinstein, 1994], where
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agents’ strategies are computationally constrained. Rubin-
stein [1986] shows that, in repeated games, new Nash equi-
Ibria can emerge by restricting agents’ strategies to finite
automata. A more realistic example is the drainage tract
auctions [Milgrom, 2004, Chapter 5.3] where buyers com-
pete for tracts to extract oil. Evidences show that, in such
auctions, bidders generally do not know their utility func-
tions, and sometimes have to learn the functions via certain
costly research [Larson and Sandholm, 2000; 2004]. The
same phenomenon has been studied under the context of rev-
enue optimal auction design [Celis et al., 2012; Tang and
Sandholm, 2012]. Wright and Leyton-Brown [2010; 2012;
2014] also provide evidences that, rather than being rational,
agents’ behaviors follow certain fixed partterns.

Along this line, in this paper, we investigate how the ra-
tionality assumption affects the theory of optimal auction de-
sign [Myerson, 19811, one of the most prevailing theories in
economic theory. In our setting, we have a seller who has
a single item for sale. Each buyer is partially rational in the
sense that he is rational with some probability p and irrational
with probability 1 — p. When he is irrational, he adopts some
fixed strategy (e.g., he truthfully reports his valuation, regard-
less of the mechanisms). Our goal is to design a revenue op-
timal mechanism for this type of buyers.

The rationality model above is motivated from a number of
real-world observations. Consider an advertiser that partici-
pates in an online advertisement auction, at any given time,
only part of the agents are active and change their bids ac-
cording to current profile, while the remainder simply repeat
their previous bids. Such repetition can be regarded as a type
of partially irrational behavior in our model. Another exam-
ple is agents tend to be truthful when the underlying mecha-
nism is not. Examples are when an agent purchases a product
(say, mobile phone, jewelry) under the recommendation of a
shop assistant, who strategically displays a list of items after
knowing the agent’s type (budget, etc.). The items recom-
mended may not be the most suitable for the agent, but the
ones with the largest profit for the shop. Revealing your real
type (as most people will do) may be sub-optimal in this case
and can be regarded as an irrational behavior in our model.

In online ad-auctions [Pai and Vohra, 20141, advertisers are
known to sometimes bid their entire budgets (valuation) to en-
sure an ad slot (It will be difficult for the bidder in charge to
explain to their superior why he fails to obtain any slot while



still has some budget left). Lee and Malmendier[2011] con-
duct experiments on sets of bidders that are simultaneously
available to two auctions: a posted price as well as an as-
cending auction. They show that, 42 percent of the time, the
ascending auction ends up with a price higher than the posted
price (which is also available to them)!

In this paper, we investigate the optimal mechanism design
theory under this rationality model. Our conclusion is that,
Myerson’s theory [1981] does not apply to this partial ratio-
nality model, even for the simplest case with one buyer. In
particular, our findings are as follows.

e It loses generality to consider only direct value revela-
tion. In the I-buyer setting, when restricted to value
revelation, the optimal mechanism is no longer a posted

price mechanism, or even truthful.

In fact, the more choices (menu items [Hart and Nisan,
2013; Wang and Tang, 20141, to be rigorously defined
later) the seller provides to the buyer, the higher her rev-
enue. We show, however, that the optimal revenue can
be approximated via simple mechanisms (k-piecewise-
linear mechanisms).

The optimal mechanism that can solicit both rationality
modes and bids yields the same revenue as the optimal
mechanism that can only solicit bids.

For the general case where there are several buyers with
IID uniform valuations and irrational behavior under
consideration is to truthfully report valuation, we com-
pute the Bayes Nash equilibrium for first price auction
and show that it yields more revenue than the second
price auction.

Our techniques for obtaining these results make use of
novel geometrical arguments in optimal mechanism de-
sign [Hartline, 2013; Manelli and Vincent, 2007].

2 Preliminaries

In our basic setting, there is a single bidder that is randomized
between rationality and irrationality. We then extend to the
case where there are a set of such bidders.

2.1 Partially rational bidders

In the basic setting, a seller has one indivisible good for sale.
Her valuation towards the item is normalized to 0. There is a
single bidder that is interested in the good. His valuation (aka.
type) x of the item is drawn from a distribution F’ with density
function f(z) positive everywhere on [0, 1]. With probability
p, the bidder is rational, in the sense that he is an expected
utility maximizer, in the game designed by the seller; with
probability 1 — p, the bidder is irrational, in the sense that he
will adopt a fixed strategy ¢(z). We assume that ¢() is differ-
entiable and an onto on [0, 1]. We sometimes call the bidder
in his rational mode the rational. Same for the irrational case.

The seller’s objective is to maximize her expected revenue,
over the randomness of the bidder’s valuations and rationality
mode. She does so by designing a mechanism. We will be
formal with the definition of a mechanism shortly.
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2.2 Type revelation versus value revelation

In principle, we consider here a mechanism design prob-
lem with two-dimensional types, where the first dimension
is one’s valuation and the second is one’s rationality mode.
If it were feasible for the bidders to reveal their complete
types, by revelation principle, we can first solicit both val-
uation and rationality mode from the bidders and then price
and allocate the item conditioning on agents’ modes, subject
to a two-dimensional incentive compatibility constraint (e.g.,
an agent in its rational mode can misreport either her valua-
tion or her rationality mode).

However, in reality, it is impractical to implement full type
revelation. As stated in the introduction, rationality mode
may emerge implicitly in agents’ behaviors (such as laziness)
and it is sometimes hard or uncomfortable to evaluate even
by the agent itself. To our best knowledge, ask the bidders
for their rationality modes has never been seen in any real-
world auction design scenario. In this paper, we follow the
tradition of auction design and focus on the mechanisms that
can only solicit bids from bidders.

In our model, it loses generality to restrict attention to di-
rect value-revelation mechanisms where it is incentive com-
patible for rational agents to reveal their valuations. The stan-
dard revelation principle claims that, for any objective the
seller wants to implement, it is without loss of generality
to restrict the seller’s design space to one-shot truthful type-
revelation mechanisms. If restricted to value revelation set-
tings, the principle no longer holds. Recall its proof [Shoham
and Leyton-Brown, 2009, Page 266] shown in Fig 1.

For any indirect mechanism M, assume player’s strategy is
s. The proof constructs a direct mechanism M (s(-)) that first
applies the strategy s and then calls the indirect mechanism
as a black box. The new mechanism M (s(-)) satisfies the
key property that a manipulation in the direct mechanism will
cause a manipulation in the indirect mechanism.

The same proof does not go through in the value-revelation
setting, shown in Fig 2. When we construct new mechanism
in order to make the rational bidder truthful, i.e. creating
M (p(+)). the payment from the irrational mode changes. The
key property does not hold anymore: the indirect mechanism
cannot replicate a manipulation of the direct mechanism be-
cause he is not in control of his strategy when he is irrational!

i M’=M(s(")) i
v—>sv)— M — v-i—>s(v)—> M —i—>
Figure 1: Standard proof

Rational: s(v) Rational: p* - s(v)
v—> = M [— v— — M(p()|—
Irrational: c(v)

Irrational: c(v)

Figure 2: The standard proof fails



Observation 1 Restricting attention to truthful value-
revelation mechanisms (i.e., truthful auctions in the standard
sense) loses generality.

The observation above is further confirmed by Theorem 3,
where we demonstrate that the rational bidder misreports his
valuation in the optimal mechanism.

Finally, it is important to note that the optimal mechanism
that can solicit both rationality modes and bids yields the
same revenue as the optimal mechanism that can only solicit
bids: the difference only lies in the representation.

2.3 Mechanisms

The aforementioned sub-optimality of truthful value-
revelation complicates revenue optimal mechanism design.
As mentioned, Theorem 3 guarantees that the revenue in the
optimal mechanism that allows type revelation, is the same as
that in the optimal mechanism which only allows value rev-
elation. Thus, we can focus on the one-shot value revelation
mechanism: the seller solicits a bid in [0, 1] from the bidder,
and then allocates the item with some probability ¢ at price
t. The bidder’s (quasi-linear) utility is given by gz — ¢. From
now on, we use “optimal mechanism” as a shorthand for “op-
timal one-shot mechanism” defined above.

It is useful to think of such a mechanism as a set of menu
items[Hart and Nisan, 20131 {(b, ¢,t),...}, where a menu
item (b, ¢,t) means the item will be sold with probability ¢
at price t, if the bidder bids b. Therefore, with probability
p, the bidder chooses a menu item that maximizes his utility;
with probability 1 — p, he chooses a menu item according to
a fixed strategy.

We impose an individual rationality assumption on mech-
anisms, so that the bidder is not worse off by participation.

Definition 1 A mechanism is ex-post individually rational if
a bidder gets non-negative utility at any realization of his type
and rationality mode.

The following lemma states the equivalence between an ir-
rational strategy c¢(x) given distribution F and a truthful strat-
egy given some different distribution G. It serves as a techni-
cal tool for us to characterize the optimal mechanism.

Lemma 1 For any irrational strategy c(x), there is an equiv-
alent (in turns of bidder’s utility) irrational strategy that
truthfully reports one’s valuation from a different distribution.

Proof: In mechanism M, let s(z) denote the rational bid-
der’s strategy in Bayes Nash equilibria when irrational be-
havior is ¢(z). Let G denote the distribution of irrational bids
c(x),xz ~ F.

Consider a scenario where there are two bidders, with
probability p the rational one participates, in other time the ir-
rational one participates, the rational’s valuation is distributed
according F'; the irrational’s valuation is distributed accord-
ing G and the irrational behavior is to truthfully report val-
uation. In this scenario we use same mechanism M, let the
rational bidder’s strategy be s(z), it is easy to check that this
still forms a Bayes Nash equilibrium for the rational, since
bids distribution does not change, the winning probability for
same bid does not change. The Rational bidder’s utility is still
maximized by strategy s. ]
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From the seller’s view, she cares about the irrational bids
distribution rather than the strategies used by the bidder.
When the distribution is fixed, the payment from buyer in
the irrational mode is fixed. According to Lemma 1, we can
assume from now on the irrational behavior is to truthfully
report the value: the value distribution in the rational case is
F', and the value distribution in the irrational case is G.

3 Representing a mechanism by the bidder’s
utility function

In this part, we show that constructing an optimal mechanism
is equivalent to designing a convex monotone utility function.
For any optimal mechanism, it can be constructed by the ra-
tional bidder’s utility function. The idea is we first fix the
utility function of the rational, then construct the mechanism
which brings seller the largest profit.

At the beginning, we prove the rational bidder’s utility
function is convex and monotone. Given buyer’s value x, the
utility by choosing menu items (b, g, t) is zq —t. So the ratio-
nal buyer’s utility is u(z) = supy, , ,){rq — t}, which is the
supremum of a set of linear functions of z. Thus, u is convex.

Let ¢(x) denote the allocation probability when the rational
bidder achieves u(x).

w(x') —u(z) — q(x) (2’ — )
2'q(z") — t(z') — xq(z) + t(x) — q(x)
2'q(2") —t(2') — (2'q(x) —t(x)) > 0

The last inequality is because (g(z'),t(z")) is the best choice
for the rational bidder with value x’. Substitute =’ twice by
x~ = x —eand T = x + € respectively, for any arbitrarily
small positive ¢, we have v/(z7) < ¢(z) < v/(z™). This im-
ply w is differentiable almost everywhere and v’ (x) = q(x).
So the rational buyer chooses the menu with allocation prob-
ability «'(z) and payment u'(x)z — u(z). Since allocation
probability is nonnegative, so u is weakly monotone.

Let R, ; denote the revenue from the irrational bidder
based on the mechanism based on u. Let IR, , denote the rev-
enue from the rational bidder based on the mechanism based
on u. The revenue getting from the rational buyer is

(2" — )

Ry, = /0 (W (x)x — u(x)) f(z)dz

When we fix the utility function for the rational agent, this
fixes the price of every menu item chosen by some type of
the rational agent. We are flexible to set prices for menu
items that are not chosen as long as (a) we only offer items
we can deliver(feasibility constraint) (b) don’t charge more
than an agent’s value(IR constraint) (c) don’t make some ra-
tional agent want to choose this item (IC constraint). When
bidder is irrational with private value b, the price given by the
following lemma is the largest subject to these 3 constraints.

Lemma 2 Ifb < 1 — u(1)/u' (1), the largest payment is the
intercept between utility axis and the line that goes through
point (b, 0) and touches the utility line. Ifb > 1—u(1)/u'(1),
the largest payement is the b.

Proof: Suppose in mechanism M, we assign the irrational
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b

private value

u(x)=qx-p

Figure 3: menu chosen by the irrational bidder

bidder the menu (g, p), where p is the price and ¢ is the al-
location probability of the item. Look at Fig 3, straight line
u(x) = gz — p denotes the buyer’s utility function of choos-
ing the menu (g,p). If this line is above the utility curve
on some interval, say (z1,x2), then the utility of the ratio-
nal buyer with private value between [x1, 2] increases by
choosing menu (g, p). So the straight line is below the util-
ity curve. Furthermore, to guarantee the irrational buyer not
losing money, this straight line is above the point (b, 0), i.e.,
the utility of the irrational buyer is nonnegative. Remember
that the allocation probability ¢ € [0,1]. With these three
constraints, what’s the possible largest payment charging the
irrational buyer with value b?

Look at Fig 4. There are 2 cases. Case 1: b = b; <

bib2

1
/§<=1-u(1)/u'(1)

Figure 4: 2 cases

ﬂ

1 —wu(1)/u/(1), the largest payment is the intercept between
u axis and the line that goes through point (b1, 0) and touches
the utility line. Case 2: b = by > 1 — u(1)/u/(1), the largest
payement is the b, i.e. when line y = (x — 1)u/(1) + u(1)
doesn’t intersect with utility line. ]

Given any convex and monotone function » with u(0) = 0
and v’ < 1, we create a mechanism. For every bid b € [0, 1],

the payment and allocation function is defined below:
u(1)

b<1-— (D) allogation pfobability = ¢, payment =
p (q is gradient of the touching line,
p is the absolute y-value of the cross
of y-axis and touching line)

bell-— ;‘,((11)), allocation probability = ‘f(fg, pay-

1 —u(1)] ment = %

be (1—u(l)] allocation probability=1, payment=b

In this mechanism, the rational bidder with private value
v achieve the maximal utility by bidding v — “*L. By

u/(v)*
Lemma 2, we get the maximal irrational payment. Since the
revenue from the rational bidder is fixed, this is the optimal

mechanism given the rational bidder’s utility function.
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4 Characterization of the optimal utility
function

This section studies the structure of the optimal utility func-
tion. We find an important property that when the utility func-
tion has a breaking point, we can increase revenue on irra-
tional bidder compared to the loss from the rational bidder by
slightly modifying the utility function. The technique is to
first focus on a small range around the breaking point where
g(z) and f(z) does not change much. Then we compare the
gain and loss carefully.

Theorem 1 When 0<p<l, the optimal utility function be-
longs to CY(whose derivative is continuous). Thus posted-
price auctions are not optimal(the derivative is not continu-
ous).

The result also implies that there are infinite many menu
pieces in the optimal mechanism.

Proof: Since v’ € [0, 1] and v’ is weakly increasing, if u’
is continuous then u belongs to C!. To complete the proof,
we will prove that v’ is continuous. If « is not continuous, it
must have a breaking point.

¢}
L2

F(x4,y4) H(3.v3)

E(x1,y1) L1

X

K(x2,y2)

Figure 5: The utility function is curve FKG, where
K (x42,yo) is a breaking point. L, and L3 are the two touch-
ing lines on both sides of point K. L; and L3 has gradient
k1 o2, and k3 -2 respectively. We pick point
E(x1y = 29— 2,41 = y2 — k12) on Ly and H(z3 = 22 +
2,3 = Y2 + ksz) on L3. Let the straight line goes through
these two points be Lo, it has gradient ko = L;’% and

. : _ ks—ky 2k k1—ks
crosses X axis at point (b = 722 22 + Faths @ + 25722, 0).
F(x4,y4) and G(z5,ys) are two intersections between Lo

and utility curve. Ly is parallel to L.

Look at Fig.5, we define function uy as follows. We will
prove u generates more revenue than .

u(x) 0<z<xy
uN(:U):{y1+k2*(x—m1) 1y <x < T5
u(x) x5 <x<1

First we consider the gain from the irrational bidder. We get
at least the same profit on every irrational bidder. We only
need to consider the gain on interval [d, c|.

RuN,i - Ruﬁi
— / Y2tz 1 1 lg(x)dx
g T2+z—xT x2—C T2—T
yadz 1 1
> — d
— 2(ze—d) /d [xg —c T2 — m]g(m) v



Where the inequality is true when z < x3 — d.

Since f(x) is continuous, for any € > 0, we can pick small
enough z such that | f(z) — f(z2)| < ¢ forz € (xo— 2z, 20+
z). The loss on the rational bidder changes a little:

_ / Vo — u(z)) — (uy @)z — uy (2))]f ()dz
< / )& — u(x) — (@) + un (@)](f(22) + )do
+ / )z — u(z) — u (2)a + un ()] (f(22) — €)dw
< Sl -2 u(e)de — un (x)al:
+2 / un (2)da] + (x5 — w2)
< 2f(22)Srra + €(ws — x2) < 2f(w2)2°/2 + €z
We want to prove Ry, — Ruyr < Ruw - Rm, ie.,

zdz

Z2f(.’172)(k'3 - kl) + 26372(]{?3 kl 2(zo—d) f(i Ta—c
1

;- /9(x)dx. Notice that all terms are constant except € and
z. Obviously, we can pick small enough ¢ and 2 to make sure
Ryy,i — Rui > Ryy — Ryy,r. That means uy outperform
u. So v/ has no breaking point, thus u € C*. [ |

In the following we study some other properties of the op-
timal utility function. Main technique is the variation of func-
tion. From these three properties, one can see that the optimal
utility function is complex.

Theorem 2 If u is the optimal utility function, then

1. u(0) =0.

2. w strictly increases.

3. v/ (x) =1,z > infargmax,[1 — F(z)]z

Proof: (1)Suppose otherwise, we draw a line through zero
point and touches utility function at (I, u(1))(Fig 6). Define
{ @x 0<x<l

u(r) l<ax<l
uy generates strictly more revenue when bidder is rational
and same revenue when bidder is irrational.

upn(x)

utility

|  private value

Figure 6: u(0) is 0.

(2) Because u is convex, we only need to prove that
u(z) = 0 has unique solution in [0, 1]. Suppose otherwise,
a = argmaz{u(z) = 0} > 0. For any z < a, define

0 0<z<a-=z

ula+z) 2 a—z<z<a+z
u(z) at+tz<z<l1

un(x)
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We claim u generates more revenue than u when z is small
enough. We first consider the gain from the irrational bidder.

Ruyi—Ru: > / u(a + Z)Cwsii_x(g(a) —€)dx

u(a+2)(g(a) - )((a + 2)in2 - 2)

Before consider the loss from the rational bidder, we need the
following inequality for simplicity.

a+z
/ [ (z)z — u(z)]dz < (a + 2)u(a + 2) — u’(a + 2)

The proof uses u is convex and u(a) = 0, the proof is omit-
ted. The loss from the rational bidder is:

R,,—R

UN,T

a+tz
/ b ()2 — u(@)]f (2)de

a+z
—/ait 5% f(x)dx

f(a)[2zu(a + 2) — u?(a + 2)]
+e[2au(a + 2) — u?(a + 2)]

u(a—i—z)a

IN

We prove the gain is larger than the loss when z is small.

Ruy,i—Rui> Ruyr— Ruyr
< ula+2)(f(a) —e)((a+2)n2 —2) >
f@)2zua+ 2) — u*(a+ 2)]
+e[2au(a + 2) — u?(a + 2)]
When € and z approaches zero, the left side is g(a)aln2 > 0,
the right side is 0. Hence the equality is correct, which means

upy outperform wu, contradicts to v is optimal.

(3) Suppose argument is not ture, let [ = inf arg max,[1 —
F(z)]z and we have u’(I) < 1. Define

0<x
<

IN A

l
1

We prove uy generates more revenue than u on both irra-
tional bidder and rational bidder.

Ry, = /O(u’(m)x—u(x))f(x)dx

I
/0 (v'(z)x — u(x)) f(z)ds
1 1
P

Since u(x) and uy () differs when z > [, so R, and R,
differs only at the third term. Because uy(x) > u(x), z €
(1,1], we have Ry, , < Ry -

For the irrational bidder, no matter what the bid is, we can
always get more revenue in uy than in w. In both irrational
and rational cases, u gives strictly more revenue than v. B



5 Representing revenue from the irrational
bidder via utility function
Given function u, the optimal allocation and payment rule for

the irrational bidder is also determined. Let h(z) = z— ;‘,((”;)),
by Lemma 2. When & < 1 —u(1), we set the irrational buyer
with value h(z) the same menu item as the rational buyer
with value  chooses. When z > 1 — u(1), we set new menu
item: the probability 1 and payment = (Fig 7). Because w is

convex, so h(x) is continuous and monotone, so h~!(z) is

well defined.

olx
Pay—xu’(x)—u(x)/‘ Pu)/u()

x-u(x)/u’(x)

Figure 7: The irrational bidder’s payment

So, we have the revenue getting from the irrational buyer:

1me@® 1o -1 1
Ru: = /O (A~ (@)u (b (2)) —u(h™ (z))]g(z)dx

1
o
1—u(l)

The representation of total revenue (1 — p)R,,; + pRy.» is
long and hard to compute the optimal utility function. Take
the simplest example: F' and G are both uniform distributions
and have equal probability of being rational and irrational,
ie. g = f = 1land p = 0.5. We also assume u is twice
differentiable. Then the total revenue is:

zg(x)dz

(1 - p)Ru,z +pRu,r (l)
= u+ 2 [Cwr g [ )

Even in this simple setting, we still do not know how to
compute the optimal u with the constraints that v > 0 and
u’ > 0 is weakly increasing. We relax the problem and
solve the optimization problem with no constraint. After a
long computation, we find the optimal solution is in the form
u(t) = c1t2+V3 4 ¢ot>~V3. The optimal solution has infinite
revenue, and does not satisfy our constraints obviously.

For general distribution and probability p, the difficulty is
how to optimize with convex and monotone constraints. This
is a research agenda in general mechanism design.

We now put forward an important result that states the
one-shot value-revelation revenue we have computed so far is
equal to the optimal unconstrained revenue where bidders can
report the entire type. This result justifies our initial choice of
focusing on one-shot value revelation mechanisms.

Theorem 3 The revenue in the optimal mechanism M,
which allows type revelation, is the same as that in the op-
timal mechanism My which only allows value revelation.

Proof: We start from any type revelation mechanism M
that satisfies IR and IC constraints. Apply the following op-
eration to M: we set the payment from the irrational bidder to
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be the largest payment, among all mechanisms that have the
same utility function of the rational bidder as M and satisfy
IR and IC constraints. Denote the new mechanism by M.

In fact, Lemma 2 continues to hold for the irrational bidder,
even under the type revelation setting. The only difference in
the argument is when we show it is impossible for the line
u(x) = gqx — p to be above the utility curve, in the value-
revelation setting, we created a manipulation (thus a viola-
tion of IC) where the rational bidder must choose a different
menu, while in the type-revelation setting, we can replicate
the same manipulation by letting the rational bidder choos-
ing a different menu (i.e., misreport value) and misreport his
rationality mode at the same time.

As a result, in the new mechanism M’, the payment from
the irrational bidder is the largest payment stated in Lemma 2.
Also guaranteed by Lemma 2, Mechanism M’ satisfies the
IR and IC constraints and its total revenue increases since the
revenue from the rational bidder is the same while the revenue
from the irrational bidder increases. Hence, the optimal type
revelation mechanism M; must be among the mechanisms
where the payment from the irrational is set to be the largest,
fixing the utility function of the rational bidder.

In the optimal type-revelation mechanism M, let u denote
the utility function of the rational bidder. The total revenue of
My is (1 — p)Ry, i + pR., . exactly the same as Equation (1),
the revenue of M5. Both mechanisms choose u to be the one
which maximizes (1 — p)R,; + pRy,. In other words, the
utility function for the rational bidder as well as the optimal
revenue are exactly the same in M7 and Ms. [ |

However, M7 and M, differs in their representations. My
is defined by the table in Section 3, the rational misreports his
valuation in Ms. M; conditioning on the irrational mode is
the same as M>, and M; conditioning on the rational mode
is to allocate the item with probability «’(b) at price w'(b)b —
u(b). The rational is truthful in M.

6 Approximation via % piecewise linear
function

We give an approximation by k piecewise linear function. We
show the approximation error can guarantee to be inversely
proportional to the number of piece. While the main idea is
to pick points on utility curve and this method can maintain
the revenue from the irrational bidder. In this case, it is crucial
to pick the positions of these breaking points.

Theorem 4 The difference between revenue of optimal mech-
anism and optimal k piecewise linear function is at most 1/ k.

Proof: We want to find k — 1 points on the optimal utility
curve u, say they are (a;,u(a;)),s = 1.k — 1. Let ag = 0
and ay 1. We construct the new utility function uy by
connecting (a;, u(a;)) and (a;41,u(a;11)) fori =0,1, ..k —
1. The idea is we guarantee the revenue from the irrational
bidder increases, and control the loss from the rational bidder
to be smaller than 1/k.

In the following, we only consider the rational case. The
payment in the new mechanism wy when bidder’s private
value is in [a;, a;11], is at least the same as the payment in the
old mechanism v when bidder’s private value is in [a;_1, a;].
For simplicity, we use pay(z) to denote the payment in the



old mechanism, i.e. pay(x) = zu'(z) — u(z). In the old

mechanism the revenue ils

/ pay(z) f(z)da

0
In the new mecl}galllism the revenue is at least

Zpay(ai)[F(aiH) — F(ai)]
The diffekrence i: at most
> (pay(a:) — pay(ai—1))[F(a;) — F(a; —1)]

Pick a; Such that pay(a;) = i/k for any i. Then the differ-
ence is at most 1/k. |
Proposition 1 For uniform distribution, the difference be-
tween the optimal mechanism and optimal k piecewise linear
function is at most 1/k>.

7 Multiple bidders

In this section, we extend the previous discussion to n bid-
ders. We only consider the uniform distribution of valuations,
and ¢(x) = x. In first price auction, we can extract maximum
revenue from the irrational bidder.

Theorem S When n bidders have identical uniform valua-
tion distributions and when the irrational bidders are truth-
ful, first price auction generates more revenue than second
price auction.

Proof: First we need to find BNE in the first price auction.
Suppose the rational bidder strategy is s(z). The utility of the
rational bidder with private value = by reporting s(t) is

ue,t) = (@ s@)lpt+ (1 - ps()*
o W (- s

+@ = s(t)(n = pt + (1 —p)s(t)]"~*-

(pt+ (1 —p)s'(t))
Because bidding s(x) is a best strategy, we have

Slime=0 = =5 @)pz+(1-p)s()]
+(z = s(x))(n = 1)(p+ (1 —p)s'(z)) =0
By simplification, we find the unique BNE is s(z) = 2Lz,

exactly the same as the standard setting. For any bidder, the
payment from both irrational and rational aspects, is

p/olnn
s-nlf

n—1

zlpz + (1 —p) -

z[p+ (1 —p)z]" 'dx

n—1

" n n—1
1-— d
+/0 elp—e+ 1 -p)]" da]
n—p 1 »p l-pn n—p
= 1— _
n+1 n+11—p[( n ) p}>n+1

When we consider “truthful” mechanism, in which the ra-
tional bidder’s optimal bid is her private valuation. 2nd price
auction with reserve 0.5 is the optimal truthful mechanism
with revenue

n—1+£(l_n—1)+i(o_n—l)_n—l 1
n+l 202 2n 2n 2n+2’ n+1 (n+1)2n
1-p

So 1st price auction yields approximate more revenue. B

n+1
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