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Abstract
Exploiting parallelism is a key strategy for speed-
ing up computation. However, on hard combina-
torial problems, such a strategy has been surpris-
ingly challenging due to the intricate variable in-
teractions. We introduce a novel way in which
parallelism can be used to exploit hidden struc-
ture of hard combinatorial problems. Our approach
complements divide-and-conquer and portfolio ap-
proaches. We evaluate our approach on the mini-
mum set basis problem: a core combinatorial prob-
lem with a range of applications in optimization,
machine learning, and system security. We also
highlight a novel sustainability related application,
concerning the discovery of new materials for re-
newable energy sources such as improved fuel
cell catalysts. In our approach, a large number of
smaller sub-problems are identified and solved con-
currently. We then aggregate the information from
those solutions, and use this information to initial-
ize the search of a global, complete solver. We show
that this strategy leads to a substantial speed-up
over a sequential approach, since the aggregated
sub-problem solution information often provides
key structural insights to the complete solver. Our
approach also greatly outperforms state-of-the-art
incomplete solvers in terms of solution quality. Our
work opens up a novel angle for using parallelism
to solve hard combinatorial problems.

1 Introduction
Exploiting parallelism and multi-core architectures is a natu-
ral way to speed up computations in many domains. Recently,
there has been great success in parallel computation in fields
such as scientific computing and information retrieval [Dean
and Ghemawat, 2008; Chu et al., 2007].

Parallelism has also been taken into account as a promis-
ing way to solve hard combinatorial problems. However, it
remains challenging to exploit parallelism to speed up com-
binatorial search because of the intricate non-local nature of
the interactions between variables in hard problems [Hamadi
and Wintersteiger, 2013]. One class of approaches in this
domain is divide-and-conquer, which dynamically splits the

search space into sub-spaces, and allocates each sub-space to
a parallel node [Chrabakh and Wolski, 2003; Chu et al., 2008;
Rao and Kumar, 1993; Regin et al., 2013; Moisan et al., 2013;
Fischetti et al., 2014]. A key challenge in this approach is
that the solution time for subproblems can vary by several or-
ders of magnitude and is highly unpredictable. Frequent load
re-balancing is required to keep all processors busy, but the
load re-balancing process can result in a substantial overhead
cost. Another class of approaches harnesses portfolio strate-
gies, which runs a portfolio of solvers (of different type or
with different randomization) in parallel, and terminates as
soon as one of the algorithms completes. [Xu et al., 2008;
Leyton-Brown et al., 2003; Malitsky et al., 2011; Kadioglu
et al., 2011; Hamadi and Sais, 2009; Biere, 2010; Kottler
and Kaufmann, 2011; Schubert et al., 2010; O’Mahony et al.,
2008]. Parallel portfolio approaches can be highly effective.
They do require however the use of a collection of effective
solvers that each excel at different types of problem instances.
In certain areas, such as SAT/SMT solving, we have such col-
lections of solvers but for other combinatorial tasks, we do
not have many different solvers available.

In this paper, we exploit parallelism to boost combinatorial
search in a novel way. Our framework complements the two
parallel approaches discussed before. In our approach paral-
lelism is used as a preprossessing step to identify a promising
portion of the search space to be explored by a complete se-
quential solver. In our scheme, a set of parallel processes are
first deployed to solve a series of related subproblems. Next,
the solutions to these subproblems are aggregated to obtain
an initial guess for a candidate solution to the original prob-
lem. The aggregation is based on a key empirical observation
that solutions to the subproblems, when properly aggregated,
provide information about solutions for the original problem.
Lastly, a global sequential solver searches for a solution in
an iterative deepening manner, starting from the promising
portion of the search space identified by the previous ag-
gregation step. At a high level, the initial guess obtained by
aggregating solutions to subproblems provides the so-called
backdoor information to the sequential solver, by forcing it
to start from the most promising portion of the search space.
A backdoor set is a set of variables, such that once their val-
ues are set correctly, the remaining problem can be solved in
polynomial time [Williams et al., 2003; Dilkina et al., 2009;
Hamadi et al., 2011].
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We empirically show that a global solver, when initial-
ized with proper information obtained by solving the sub-
problems, can solve a set of instances in seconds, while it
takes for the same solver hours to days to find the solution
without initialization. The strategy also outperforms state-of-
the-art incomplete solvers in terms of solution quality.

We apply the parallel scheme to an NP-complete problem
called the Set Basis Problem, in which we are given a collec-
tion of subsets C of a finite set U . The task is to find another,
hopefully smaller, collection of subsets of U , called a “set
basis”, such that each subset in C can be represented exactly
by a union of sets from the set basis. Intuitively, the set basis
provides a compact representation of the original collection
of sets. The set basis problem occurs in a range of applica-
tions, most prominently in machine learning, e.g., used as a
special type of matrix factorization technique [Miettinen et
al., 2008]. It also has applications in system security and pro-
tection, where it is referred to as the role mining problem in
access control [Vaidya et al., 2007]. It also has applications
in secure broadcasting [Shu et al., 2006] and computational
biology [Nau et al., 1978].

While having many natural applications, our work is mo-
tivated by a novel application in the field of computational
sustainability [Gomes, Winter 2009], concerning the discov-
ery of new materials for renewable energy sources such as
improved fuel cell catalysts [Le Bras et al., 2011]. In this
domain, the set basis problem is used to find a succinct ex-
planation of a large set of measurements (X-ray diffraction
patterns) that are represented in a discrete way as sets. Math-
ematically, this corresponds to a generalized version of the set
basis problem with extra constraints. Our parallel solver can
be applied to this generalized version as well, and we demon-
strate significant speedups on a set of challenging bench-
marks. Our work opens up a novel angle for using parallelism
to solve a set of hard combinatorial problems.

2 Set Basis Problem
Throughout the paper, sets will be denoted by uppercase let-
ters, while members of a set will be denoted by lowercase
letters. A collection of sets will be denoted using calligraphic
letters.

The classic Set Basis Problem is defined as follows:

• Given: a collection C of subsets of a finite universe U ,
C = {C1, C2, . . . , Cm} and a positive integer K;

• Find: a collection B = {B1, . . . , BK} where each Bi is
a subset of U , and for each Ci ∈ C, there exists a subcol-
lection Bi ⊆ B, such that Ci = ∪B∈Bi

B. In this case,
we sayBi coversCi, and we say C is collectively covered
by B. Following common notations, B is referred to as a
basis, and we call each Bj ∈ B a basis set. If Bj ∈ Bi
and Bi covers Ci, we call Bj a contributor of Ci, and
call Ci a sponsor of Bj . C1, C2, . . . , Cm are referred to
as original sets.

Intuitively, similar to the basis vectors in linear algebra, which
provides a succinct representation of a linear space, a set ba-
sis with smallest cardinality K plays the role of a compact
representation of a collection of sets. The Set Basis Problem

C0 {x0, x1, x2, x3} B0 ∪B2

C1 {x0, x2, x3} B0

C2 {x0, x1, x4} B2 ∪B4

C3 {x2, x3, x4} B1 ∪B4

C4 {x0, x1, x3} B2 ∪B3

C5 {x3, x4} B3 ∪B4

C6 {x2, x3} B1

B0 {x0, x2, x3} C0 ∩ C1

B1 {x2, x3} C3 ∩ C6

B2 {x0, x1} C0 ∩ C2 ∩ C4

B3 {x3} C4 ∩ C5

B4 {x4} C2 ∩ C3 ∩ C5

Table 1: (An example of set basis problem) C0, . . . , C6 are
the original sets. A basis of size 5 that cover these sets is given
by B0, . . . , B4. The rightmost column at the top shows how
each original set can be obtained from the union of one or
more basis sets. The given cover is minimum (i.e., containing
a minimum number of basis sets). The rightmost column at
the bottom shows the duality property: each basis set can be
written as an intersection of several original sets.

is shown to be NP-hard in [Stockmeyer, 1975]. We use I(C)
to denote an instance of the set basis problem which finds the
basis for C. A simple instance and its solution is reported in
Table 1.

Most algorithms used in solving set basis problems are in-
complete algorithms. These algorithms are based on heuris-
tics that work well in certain domains, but often fail at cover-
ing sets exactly. For a survey, see Molloy et al [Molloy et al.,
2009]. The authors of [Ene et al., 2008] implement the only
complete solver we are aware of. The idea is to translate the
set basis problem as a graph coloring problem, and then use
existing graph coloring solvers. They also develop a useful
prepossessing technique, which can significantly reduce the
problem complexity.

The Set Basis Problem has a useful dual property, which
has been implicitly used by previous researchers [Vaidya et
al., 2006; Ene et al., 2008]. We formalize the idea by intro-
ducing Theorem 2.1.

Definition (Closure) For a collection of sets C, define the clo-
sure of C, denoted as C, which includes the collection of all
possible intersections of sets in C:

• ∀Ci ∈ C, Ci ∈ C.

• For A ∈ C and B ∈ C, A ∩B ∈ C.

Theorem 2.1. For original sets C = {C1, C2, . . . , Cn}, sup-
pose {B1, . . . , BK} is a basis that collectively covers C. De-
fine Ci = {Cj ∈ C|Bi ⊆ Cj}. Then B′i = ∩C∈CiC
(i = 1 . . .K) collectively covers C as well. Note for every
B′i (i = 1 . . .K), B′i ∈ C.

One can check Theorem 2.1 by examining the example in
Table 1. The full proof is available in the supplementary ma-
terials [Xue et al., 2015]. From the theorem, any set basis
problem has a solution of minimum cardinality, where each
basis set is in C. Therefore, it is sufficient to only search for
basis within the closure C. Hence throughout this paper, we
assume all basis sets are within its closure for any solutions to
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set basis problems. Theorem 2.1 also implies that each basis
set Bi ∈ C is an intersection of all its sponsor sets. One can
observe this fact in Table 1. It motivates our dual approach to
solve the set basis problem, in which we search for possible
sponsors for each basis set.

3 Parallel Scheme
The main intuition of our parallel scheme comes from an em-
pirical observation on the structure of the solutions of the
benchmark problems we considered. For each benchmark, we
solve a series of related simplified subproblems, where we
restrict ourselves to finding basis for a subset of the origi-
nal collection of sets C. Interestingly, the solutions found by
solving these subproblems are connected to the basis in the
global solution. Although strictly speaking, the basis found
for one sub-problem can only be expected to be a solution for
that particular sub-problem, we observe empirically that al-
most all basis sets from sub-problems are supersets of one or
more basis sets for the original, global problem. One intuitive
explanation is as follows: Recall that from Theorem 2.1 each
basis set can be obtained as the intersection of its sponsors.
This fact applies both to the original global problem and its
relaxed versions (subproblems). Since there are fewer sets to
be covered in the subproblems, basis sets for the subproblems
are likely to have fewer sponsors, compared to the ones for
the global problem. When we take the intersection of fewer
sets, we get a larger intersection. Hence we observe that it is
often the case that a basis set for a subproblem is a superset
of a basis set for the global problem.

Now suppose two subproblem basis sets A and B are both
supersets of one basis set C in the global solution. If we in-
tersect A with B, then the elements of C will remain in the
intersection, but other elements from A or B will likely be
removed. In practice, we can often obtain a basis set in the
global solution by intersecting only a few basis sets from the
solutions to subproblems.

Let us walk through the example in Table 1. First consider
the subproblem consisting of the first 5 original sets, C0...C4.
It can be shown that a minimum set basis is B1,1 = {x0, x1},
B1,2 = {x0, x3}, B1,3 = {x2, x3}, B1,4 = {x4}. As an-
other subproblem we consider the collection of all origi-
nal sets except for C0 and C2. We obtain a minimum basis
B2,1 = {x0, x3}, B2,2 = {x2, x3}, B2,3 = {x3, x4}, B2,4 =
{x0, x1, x3}. We see that each basis set of these two subprob-
lems contains at least one of the basis sets of the original, full
set basis problem. For example, B2 = {x0, x1} ⊆ B1,1 and
B2 ⊆ B2,4. Moreover, one can obtain all basis sets exceptB0

for the original problem by intersecting these basis sets. For
example, B3 = {x3} = B1,2 ∩B2,2.

Given this observation, we design a parallel scheme that
works in two phases – an exploration phase, followed by an
aggregation phase. The whole process is shown in Figure 1,
and the two phases are detailed in subsequent subsections.
Exploration Phase: we use a set of parallel processes. Each
one solves a sub-problem obtained by restricting the global
problem to finding the minimum basis for a subset of the orig-
inal collection of sets C.
Aggregation Phase: we first identify an initial solution can-
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Figure 1: A diagram showing the parallel scheme.

didate by looking at all the possible intersections among ba-
sis sets found by solving sub-problems in the exploration
phase. We then use this candidate to initialize a complete
solver, which expands the search in an iterative deepening
way to achieve completeness, iteratively adding portions of
the search space that are “close” to the initial candidate.

3.1 Exploration Phase
The exploration phase utilizes parallel processes to solve a
series of sub-problems. Recall the global problem is to find a
basis of size K for the collection C. Let {C1, C2, . . . , Cs} be a
decomposition of C, which satisfies C = C1 ∪ C2 ∪ . . . ∪ Cs.
The sub-problem I(Ci) restricted on Ci is defined as:

• Given: Ci ⊆ C;

• Find: a basis Bi = {Bi,1, Bi,2, . . . , Bi,ki
}with smallest

cardinality, such that every set C ′ ∈ Ci is covered by the
union of a sub-collection of Bi.

The sub-problem is similar to the global problem, however,
with one key difference: we are solving an optimization prob-
lem where we look for a minimum basis, as opposed to the
global problem, which is the decision version of the Set Ba-
sis Problem. In practice, the optimization is done by repeat-
edly solving the decision problem, with increasing values of
K. We observe empirically that the optimization is crucial
for us to get meaningful basis sets to be used in later aggre-
gation steps. If we do not enforce the minimum cardinality
constraint, the problem becomes under-constrained and there
could be redundant basis sets found in this phase, which have
no connections with the ones in the global solution.

Sets C1, C2, . . . , Cs need not be mutually exclusive in the
decomposition. We group similar sets into one subproblem in
our algorithm, so the resulting subproblem will have a small
basis. To obtain collection Ci for the i-th subproblem, we start
from an initial collection of a singleton Ci = {Ci1}, where
Ci1 is a randomly picked element from C. We then add T − 1
sets most similar to Ci1 , using the Jaccard similarity coeffi-
cient |A∩B||A∪B| . This results in a collection of T sets which look
similar. Notice that this is our method to find a collection of
similar sets. We expect other approach can work equally well.



3.2 Aggregation Phase
In the aggregation phase, a centralized process searches for
the exact solution, starting from basis sets that are “close” to
a candidate solution selected from the closure of basis sets
found by solving sub-problems, and then expands its search
space iteratively to achieve completeness.

To obtain a good initial candidate solution, we begin with a
pre-solving step, in which we restrict ourselves to find a good
global solution only within the closure of basis sets found by
solving sub-problems. This is of course an incomplete proce-
dure, because the solution might lie outside the closure. How-
ever, due to the empirical connections between the basis sets
found by parallel subproblem solving and the ones in the final
solution, we often find the global solution at this step.

If we cannot find a solution in the pre-solving step, the al-
gorithm continues with a re-solving step, in which an iterative
deepening process is applied. It starts with the best K basis
sets found in the pre-solving step1, and iteratively expands the
search space until it finds a global solution. The two steps are
detailed as follows.

Pre-solving Step
SupposeBi is the basis found for sub-problem I(Ci), letB0 =
∪si=1Bi and B0 be the closure of B0. The algorithm solves the
following problem in the pre-solving step:

• Given: B0;

• Find: Basis B∗ = {B∗1 , . . . , B∗K} from B0, such that
B∗1 , . . . , B

∗
K minimizes the total number of uncovered

elements and falsely covered elements in C2.

In practice B0 is still a huge space, so this optimization
problem is hard to solve. We thus apply an incomplete algo-
rithm, which only samples a small subset U ⊆ B0 and then
select the best K basis sets from U . It does not affect the later
re-solving step, since it can start the iterative deepening pro-
cess from any B∗, whether optimal in B0 or not.

The incomplete algorithm first forms U by conducting mul-
tiple random walks in the space of B0. Each random walk
starts with a random basis set B ∈ B0, and randomly inter-
sects it with other basis sets in B0 to obtain a new member
in B0. All these sets are collected to form U . With probabil-
ity p, the algorithm chooses to intersect with the basis which
maximizes the cardinality of the intersection. With probabil-
ity (1 − p), the algorithm intersects with a random set. In
our experiment, p is set to 0.95, and we repeat this random
walk several times with different initial sets to make U large
enough. Next the algorithm selects the optimal basis of size
K from U which maximizes the coverage of the initial set
collection, using a Mixed Integer Programming (MIP) for-
mulation. The pseudocode of the incomplete algorithm and
the MIP formulation are both in the supplementary materials
[Xue et al., 2015].

1Best in terms of coverage of the initial set collection.
2An uncovered element of set Cj is one element contained in

Cj , but is not covered by any basis set that are contributors to Cj . A
falsely covered element of set Cj is one element that is in one basis
set that is a contributor to set Cj , but is not contained in Cj .

Re-solving Step
The final step is the re-solving step. It takes as input the ba-
sis B∗ = {B∗1 , B∗2 , . . . , B∗K} from the pre-solving step, and
searches for a complete solution to I(C) in an iterative deep-
ening manner. The algorithm starts from a highly restricted
spaceD1, which is a small space close to B∗. If the algorithm
can find a global solution in D1, then it terminates and re-
turns the solution. Otherwise, it expands its search space to
D2, and searches again in this expanded space, and so on. At
the last step, searching in Dn is equivalent to searching in the
original unconstrained space C, which is equivalent to solv-
ing the global set-basis problem without initialization at all.
However, this situation is rarely seen in our experiments.

In practice, D1, . . . ,Dn are specified by adding extra con-
straints to the original MIP formulation for the global prob-
lem, then iteratively removing them. Dn corresponds to the
case where all extra constraints are removed.

The actual design of D1, . . . ,Dn relies on the MIP formu-
lation. In our MIP formulation (which is detailed in the sup-
plementary materials [Xue et al., 2015]), there are indicator
variables yi,k (1 ≤ i ≤ n and 1 ≤ k ≤ K), where yi,k = 1 if
and only if the i-th element is contained in the k-th basis set
Bk. We also have indicator variables zk,j , where zk,j is one
if and only if the basis set Bk is a contributor of the original
set Cj (or equivalently, Cj is a sponsor set for Bk).

Because we empirically observe that B∗1 , B
∗
2 , . . . , B

∗
K are

often super-sets of the basis sets in the exact solution, we
construct the constrained space D1, . . . ,Dn by enforcing the
sponsor sets of certain basis sets. Notice that this is a straight-
forward step in the MIP formulation, since we only need
to fix the corresponding indicator variables zk,j to 1 to en-
force Cj as a sponsor set for Bk. The hope is that these
clamped variables will include a subset of backdoor vari-
ables for the original search problem [Williams et al., 2003;
Dilkina et al., 2009; Hamadi et al., 2011]. The runtime of the
sequential solver is dramatically reduced when the aggrega-
tion phase is successful in identifying a promising portion of
the search space.

As pointed out by Theorem 2.1, we can represent
B∗1 , B

∗
2 , . . . , B

∗
K in terms of their sponsors:

B∗1 = C11 ∩ C12 ∩ . . . ∩ C1s1

B∗2 = C21 ∩ C22 ∩ . . . ∩ C2s2

. . .

B∗K = CK1 ∩ CK2 ∩ . . . ∩ CKsK

in which C11, C12, . . . , C21, . . . , CKsK are all original sets
in collection C. For the first restricted search space D1, we
enforce the constraint that the sponsors for the i-th basis set
Bi must contain all the sponsors ofB∗i for all i ∈ {1, . . . ,K}.
Notice this implies Bi ⊆ B∗i .

In later steps, we gradually relax these extra constraints,
by freeing some of the indicator variables zk,j’s which were
clamped to 1 in previous steps. Dn denotes the search space
when all these constraints are removed, which is equivalent
to searching the entire space. The last thing is to decide the
order used to remove these sponsor constraints. Intuitively, if
one particular set is discovered many times as a sponsor set
in the solutions to subproblems, then it should have a high
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chance to be the sponsor set in the global solution, because it
fits in the solutions to many subproblems. Given this intuition,
we associate each sponsor set with a confidence score, and
define n thresholds: 0 = p1 < . . . < pn = +∞. In the k-th
round (search in Dk), we remove all the sponsor sets whose
confidence score is lower than pk. We define the confidence
score of a particular set as the number of times it appears as a
sponsor of a basis set in subproblem solutions, which can be
aggregated from the solutions to subproblems.

4 Experiments
We test the performance of our parallel scheme on both the
classic set basis problem, and on a novel application in mate-
rials science.

4.1 Classic Set Basis Problem
Setup We test the parallel scheme on synthetic instances. We
use a random ensemble similar to Molloy et al [Molloy et al.,
2009], where every synthetic instance is characterized by n,
m, k, e, p. To generate one synthetic instance, we first gener-
ate k basis sets. Every set contains [n p

100 ] objects, uniformly
sampled from a finite universe of n elements. We then gen-
erate m sets. Each set is a union of e randomly chosen basis
sets from those initially generated.

We develop a Mixed Integer Programming (MIP) model
to solve the set basis problem (detailed in the supplementary
materials [Xue et al., 2015]). The MIP model takes the orig-
inal sets C and an integer K, and either returns a basis of
size K that covers C exactly, or reports failure. We compare
the performance of the MIP formulation with and without the
initialization obtained using the parallel scheme described in
the previous section.

We empirically observe high variability in the running
times of the sub-problems solved in the exploration phase,
as commonly observed for NP-hard problems. Luckily, our
parallel scheme can still be used without waiting for every
sub-problem to complete. Specifically, we set up a cut-off
threshold of 90%, such that the central process waits until
90% of sub-problems are solved before carrying out the ag-
gregation phase. We also run 5 instances of the aggregation
phase in parallel, each with a different random initialization,
and terminate as soon as the fastest one finds a solution. In our
experiment, n = m = 100. All MIPs are solved using IBM
CPLEX 12.6, on a cluster of Intel x5690 3.46GHz core pro-
cessors with 4 gigabytes of memory. We let each subproblem
contain T = 15 sets for all instances.
Results Results obtained with and without initialization from
parallel sub-problem solving are reported in Table 2. First,
we see it takes much less wall-clock time (typically, by sev-
eral orders of magnitude) for the complete solver to find the
exact solution if it is initialized with the information col-
lected from the sub-problems. The improvements are signifi-
cant even when taking into account the time required for solv-
ing sub-problems in the exploration phase. In this case, we

3For this instance, 73 out of 100 subproblem instances complete
within 2 hours. Thus the aggregation phase is conducted based on
these instances. This exploration time here is calculated based on
the slowest of the 73 instances.

obtain several orders of magnitude saving in terms of solving
time. For example, it takes about 50 seconds (wall-clock time)
to solve A6, but about 5 hours without parallel initialization.
Because we run s = 100 sub-problems in the exploration
phase, another comparison would be based on CPU time,
which is given by (100·Exploration+5·Aggregation). Un-
der this measurement, our parallel scheme still outperforms
the sequential approach on problem instances A2, A3, A5,
A6, A8. Even though our CPU time is longer for some in-
stances, our parallel scheme can be easily applied to thou-
sands of cores. As parallel resources are becoming more and
more accessible, it is obvious to see the benefit of this scheme.
Note that we can also exploit at the same time the built-in
parallelism of CPLEX to solve these instances. However, be-
cause CPLEX cannot explore the problem structure explicitly,
it cannot achieve significant speed-ups on many instances.
For example, it takes 12813.15, 259100.25 and 113475.12
seconds to solve the largest A6, A7 and A8 instances using
CPLEX on 12-cores.

Although our focus is on improving the run-time of exact
solvers, Table 2 also shows the performance of several state-
of-the-art incomplete solvers on these synthetic instances. We
implemented FastMiner from [Vaidya et al., 2006], ASSO
from [Miettinen et al., 2008], and HPe from [Ene et al.,
2008], which are among the most widely used incomplete al-
gorithms. FastMiner and ASSO take the size of the basis K
as input, and output K basis sets. They are incomplete in the
sense that their solution may contain false positives and false
negatives, which are defined as follows. c is a false positive
element if c 6∈ Ci, but c is in one basis set that is a contributor
to Ci. c is a false negative element, if c ∈ Ci, but c is not
covered by any basis sets contributing for Ci. FastMiner does
not provide the information about which basis set contributes
to an original set. We therefore give the most conservative as-
signment:B is a contributor to Ci if and only ifB ⊆ Ci. This
assignment introduces no false positives. Both FastMiner and
ASSO have parameters to tune. Our report are based on the
best parameters we found. We report the maximum error rate
in Table 2, which is defined as maxCi∈C{(fti + ffi)/|Ci|},
where fti and ffi are the number of false positive and false
negative elements at Ci, respectively. As seen from the table,
neither of these two algorithms can recover the exact solu-
tion. ASSO performs better, but it still has 51.06% error rate
on the hardest benchmark. We think the reason why Fast-
Miner performs poorly is because it is usually used in situa-
tions where certain number of false positives can be tolerated.
HPe is a graph based incomplete algorithm. It is guaranteed
to find a complete cover, however it might require a num-
ber of basis sets K ′ larger than the optimal number K. We
implemented both the greedy algorithm and the lattice-based
post-improvement for HPe, and we used the best heuristic re-
ported by the authors. As we can see from Table 2, HPe often
needs five times more basis sets to cover the entire collection.

The authors in [Ene et al., 2008] implemented the only
complete solver we are aware of. Unfortunately, we can not
obtain their code, so a direct comparison is not possible. How-
ever, the parallel scheme we developed does not make any
assumption on the specific complete solver used. We expect
other complete solvers (in addition to the MIP one we experi-
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Instance Solution Quality Run-time for Complete Method (seconds)
HPe Fast-Miner ASSO Complete Total Time Total Time

No. K K ′ E% K ′ E% K ′ E% K ′ E% Exploration Aggregation Parallel Sequential
A1 8 65 0 8 100 8 26.56 8 0 30.61 7.21 37.82 2199.07
A2 8 86 0 8 100 8 18.18 8 0 42.32 149.18 191.5 11374.34
A3 10 41 0 10 96.67 10 25 10 0 12.09 0.42 12.51 1561.46
A4 10 47 0 10 100 10 18.92 10 0 136.82 10.94 147.76 332.93
A5 10 58 0 10 100 10 52 10 0 55.52 2.60 58.12 57004.13
A6 12 51 0 12 96.3 12 25 12 0 46.85 0.75 47.6 17774.04
A7 12 63 0 12 100 12 38.46 12 0 6963.423 13.47 6967.89 > 72 hours
A8 12 93 0 12 100 12 51.06 12 0 176.4 5.77 182.17 > 72 hours

Table 2: Comparison of different methods on classic set basis problems. K is the number basis sets used by the synthetic
generator. In the solution quality block, we show the basis sizeK ′ and the error rateE% for incomplete method HPe, FastMiner
and ASSO and the complete method. K ′ > K means more basis sets are used than optimal. E% > 0 means the coverage is not
perfect. The running time for incomplete solvers are little, so they are not listed. In the run-time block, Exploration, Aggregation,
Total Time Parallel and Sequential show the wall times of the corresponding phases in the parallel scheme and the time to solve
the instance sequentially (Total Time Parallel = Exploration + Aggregation).

0	  

0.5	  

1	  

1.5	  

A1	   A2	   A3	   A4	   A5	   A6	   A7	   A8	  
Benchmarks	  

Hit	  Rate	   Inv	  Hit	  Rate	  

Figure 2: The overlap between the s-basis sets and the g-basis
sets in each benchmark. The bars show the median value for
(inverse) hitting rate, and error bars show the 10-th and 90-th
percentile.

mented with) will improve from the initialization information
provided by solving subproblems.
Discussion We now provide empirical evidence that justi-
fies and explains the surprising empirical effectiveness of our
method. For clarity, we call a basis set found by solving sub-
problems an s-basis set, and a basis set in the global solution
a g-basis set. For any set S, we define the hitting rate as:
p(S) = maxB∈B |S ∩B|/|B|, and the inverse hitting rate as:
ip(S) = maxB∈B |S ∩B|/|S|, where B is chosen among all
g-basis set. Intuitively, p(S) and ip(S) measure the distance
between S and the closest g-basis set. Note that p(S) = 1
(respectively ip(S) = 1) implies the basis S is the superset
(respectively subset) of at least one g-basis in the global so-
lution. If p(S) and ip(S) are both 1, then S matches exactly
to one g-basis set4.

First, we study the overlap between a single s-basis set and
all g-basis sets. As shown in Figure 2, across the benchmarks
we considered the hitting rate is almost always one (with the
lowest mean is for A2, which is 0.9983). This means that the
s-basis sets are almost always supersets of at least one g-
basis set in the global solution.

Next, we study the relationship between the intersection of
multiple s-basis sets and g-basis sets. Figure 3 shows the me-
dian hitting rate and inverse hitting rate with respect to differ-
ent number of s-basis sets involved in one intersection. The
error bars show the 10-th and 90-th percentile. The result is

4Assuming no g-basis set is the subset of another g-basis set,
which is the case in instances A1 to A8.
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Figure 3: The median (inverse) hitting rate of a random inter-
section of multiple s-basis sets. X-axis shows the number of
s-basis sets involved in the intersection. (Top) The basis sets
in one intersection are supersets of one g-basis set. (Bottom)
The basis sets in one intersection are randomly selected.

averaged over all instances A1 through A8, with equal num-
ber of samples obtained from each instance. In the top chart,
the s-basis sets involved in one intersection are supersets of
one common g-basis set. In this case, the hitting rate is always
1. However, by intersecting only a few (2 or 3) s-basis sets,
the inverse hitting rate becomes close to 1 as well, which im-
plies the intersection becomes very close to an exact match
of one g-basis set. This is in contrast with the result in the
bottom chart, where the intersection is among randomly se-
lected s-basis sets. In this case, when we increase the size of
the intersection, fewer and fewer elements remain in the in-
tersection. The bottom chart of Figure 3 shows the percentage
of elements left, defined as |∩ki=1Ai|/maxki=1 |Ai|. When in-
tersecting 5 basis sets, in median case less than 10% elements
still remain in the intersection.

The top and bottom charts of Figure 3 provide an empirical
explanation for the success of our scheme: as we randomly in-
tersect basis sets from the solutions to the subproblems, some
intersections become close to the empty set (as in the bottom
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Figure 4: Demonstration of a phase identification problem.
(Left) A set of of sample points (blue circles) on a silicon
wafer (triangle). Colored areas show the regions where phase
(basis pattern) α, β, γ, δ exist. (Right) the X-ray diffraction
pattern (XRD) for sample points on the right edge of the tri-
angle. The XRD patterns transform from single phase region
α to composite phase region α + β to single phase region β,
with small shiftings along neighboring sample locations.

System # Points Parallel (secs) Sequential (secs)
A1 45 119.22 902.99
A2 45 156.24 588.85
A3 45 74.37 537.55
B1 60 118.97 972.8
B2 60 177.89 591.66
B3 60 122.4 1060.79
B4 60 133.25 633.52
C1 45 3292.44 17441.39
C2 45 1186.70 3948.41
D1 28 207.92 622.16
D2 28 281.4 2182.23
D3 28 903.41 2357.87

Table 3: The time for solving phase identification problems. #
Points is the number of sample points in the system. Parallel
and Sequential show the time to solve the problem with and
without parallel initialization, respectively.

chart case), but others converge to one of the g-basis sets in
the global solution (as in the upper chart case). In the sec-
ond case, we obtain good solution candidates for the global
problem by intersecting solutions to subproblems.

4.2 Phase Identification Problem
We also apply our parallel scheme to speed up solvers for a
variant of the set basis problem with extra constraints. We
show how this more general formulation can be applied to
the so-called phase identification problem in combinatorial
materials discovery [Le Bras et al., 2011].

In combinatorial materials discovery, a thin film is obtained
by depositing three metals onto a silicon wafer using guns
pointing at three locations. As metals are sputtered on the sil-
icon wafer, different locations have different combinations of
the metals, due to their distances from the gun points. As
a result, various crystal structures are formed across loca-
tions. Researchers then analyze the X-ray diffraction patterns
(XRD) at a selected set of sample points. The XRD pattern at
one sample point reflects the crystal structure of the underly-

ing material, and is a mixture of one or more basis patterns,
each of which characterizes one crystal structure. The overall
goal of the phase identification problem is to explain all the
XRD patterns using a small number of basis patterns.

The phase identification problem can be formulated as an
extended version of the set basis problem. We begin by intro-
ducing some terminologies. Similar to [Ermon et al., 2012],
we use discrete representations of the XRD signals, where
we characterize each XRD pattern with the locations of its
peaks. In this model, we define a peak q as a set of (sample
point, location) pairs: q = {(si, li)|i = 1, . . . , nq}, where
{si|i = 1, . . . , nq} is a set of sample points where peak q is
present, and li is the location of peak q at sample point si,
respectively. We use the term phase to refer to a basis XRD
pattern. Precisely, a phase comprises set of peaks that occur in
the same set of sample points. We use the term partial phase
to refer to a subset of the peaks and/or a subset of the sample
points of a phase. We use lower-case letters p, q, r to represent
peaks, and use upper-case letters P,Q,R to represent phases.
Given these definitions, the Phase Identification Problem is:

Given A set of X-ray diffraction patterns representing differ-
ent material compositions and a set of detected peaks for
each pattern; and K, the expected number of phases.

Find A set of K phases, characterized as a set of peaks and
the sample points in which they are involved.

Subject to Physical constraints that govern the underlying
crystallographic process. We use all the constraints
in [Ermon et al., 2012]. For example, one physical con-
straint is that a phase must span a continuous region in
the silicon wafer.

Figure 4 shows an illustrative example. In this example,
there are 4 peaks for phase α, and 3 peaks for phase β. Peaks
in phase α exist in all sample points in the green region, and
peaks in phase β exist in purple region. They co-exist in sev-
eral sample points in the mid-right region of the triangle.

There is an analogy between the Phase Identification Prob-
lem and the classical Set Basis Problem. In the Set Basis
Problem, each original set is the union of some basis sets. In
the Phase Identification Problem, the XRD pattern at a given
sample point is a mixture of several phases. Here, the phase
is analogous to the basis set, and the XRD pattern at a given
sample point is analogous to the original set. Because of this
relationship, we employ a similar parallel scheme to solve the
Phase Identification Problem, which also includes an explo-
ration phase followed by an aggregation phase.

Exploration Phase
In the Exploration Phase, a set of subproblems are solved in
parallel. For the Phase Identification Problem, a subproblem
is defined as finding the minimal number of phases to explain
a contiguous region of sample points on the silicon wafer.

This is analogous to the exploration phase defined for set
basis problem – finding basis for a subset of sets. The rea-
son why we emphasize a contiguous region is because of the
underlying physical constraint: the phase found must span a
contiguous region in the silicon wafer. Figure 5 shows a sam-
ple decomposition into subproblems. Here each colored small
region represents a subproblem.
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At sample point a, b, c: 

 p1  p2      p3   p4  p5 

a

b

c

Figure 5: An example showing subproblem decomposition
and merging of partial phases. (Subproblem decomposition)
Each of the red, yellow and blue areas represents a subprob-
lem, which is to find the minimal number of (partial) phases
to explain all sample points in a colored area. (Merging of
partial phases) Suppose partial phase A and B are discov-
ered by solving the subproblem in the blue and the yellow re-
gion, respectively. A has peaks p1, p2, p3 and all these peaks
span the entire blue region, while B has peaks p2, p3, p5 and
all these peaks span the entire yellow region. Notice peaks
p2, p3 match on sample points a, b and c, which are all the
sample points in the intersection of the blue and yellow re-
gions. Hence, the partial phases A and B can be merged into
a larger phase C, which has peaks p2 and p3, but span all
sample points in both the blue and yellow regions.

Aggregation Phase
The exploration phase produces a set of partial phases from
solving subproblems. We call them partial because each of
them describes only a subset of sample points.

As in the Set Basis Problem, we find partial phases can
be merged together into larger phases. Figure 4 shows an il-
lustrative example. Formally, two phases A and B may be
merged into a new phase C, denoted as C = A ◦ B, which
contains all the peaks from A and B whose locations match
across all the sample points they both present. The peaks in C
then span the union of sample points of A and B. The merge
operator ◦ plays the same role as the intersection operator of
the Set Basis Problem. Similarly, we define S as the closure
of (partial) phases S with respect to the merge operator ◦,
which generates all possible merging of the phases in S.

Suppose B0 = ∪si=1Bi is the set of all (partial) phases iden-
tified by solving subproblems, where Bi is the set of (partial)
phases identified when solving subproblem i. As with the Set
Basis Problem, the aggregation phase also has a pre-solving
step, and a re-solving step. The pre-solving step takes as in-
put the responses B0 from all subproblems, and extracts a
subset of K partial phases from the closure B0 as the can-
didate solution, which explains as many peaks on the silicon
wafer as possible. The re-solving step searches in an iterative-
deepening way for an exact solution, starting from the phases
close to the candidate solution from the pre-solving step.

As in the pre-solving step of the Set Basis Problem, B0
could be a large space and we are unable to enumerate all
items in B0 to find an exact solution. Instead, we take an
approximate approach which first expands B0 to a larger set

B′ ⊆ B0 using a greedy approach. Then we employ a Mixed-
Integer Program (MIP) formulation that selects the best K
phases from B′ which covers the largest number of peaks.
The greedy algorithm and the MIP encoding are similar in
concept to the ones used in solving the Set Basis Problem,
but take into account extra physical constraints.

The Re-solving step expands the search from the pre-
solving step in an iteratively deepening way to achieve com-
pleteness. Suppose the pre-solving step produces K phases
P ∗1 , P

∗
2 , . . . , P

∗
K . In the first round of the re-solving step, the

complete solver is initialized such that the first phase must
contain all the peaks of P ∗1 , the second phase must con-
tain all the peaks of P ∗2 , etc. If the solver can find a solu-
tion with this initialization, then the solver terminates and
returns the results. Otherwise, it usually detects a contradic-
tion very quickly. In this case, we remove some peaks from
P ∗1 , . . . , P

∗
K and re-solve the problem. We continue this re-

solving process, until all the peaks from the Pre-solving step
are removed, in which case the solver is free to explore the
entire space without any restrictions. Again, this is highly un-
likely in practice. In most cases, the solver is able to find so-
lutions in the first one or two iterations.

We augmented the Satisfiability Modulo Theory formula-
tion as described in [Ermon et al., 2012] with our parallel
scheme and use the Z3 solver [De Moura and Bjørner, 2008]
in the experiments. We use Z3 directly in the exploration
phase, and then use it as a component of an iterative deepen-
ing search scheme in the aggregation phase. Due to a rather
more imbalanced distribution of the running times across dif-
ferent sub-problems, we only wait for 50% of sub-problem
solvers to complete before conducting the aggregation phase.

Table 3 displays the experimental results for the phase
identification problem. We run on the same benchmark in-
stances used in the work of Ermon et al [Ermon et al., 2012].
We can see from Table 3 that in all cases the solver com-
pletes much faster when initialized with information obtained
by parallel subproblem solving. This improvement in the run-
time allows us to analyze much bigger problems than previ-
ously possible in combinatorial materials discovery.

5 Conclusion
We introduced a novel angle for using parallelism to exploit
hidden structure of hard combinatorial problems. We demon-
strated empirical success in solving the Set Basis Problem,
obtaining over an order of magnitude speedups on certain
problem instances. We also identified a novel application area
of the Set Basis Problem, concerning the discovery of new
materials for renewable energy sources. Future directions in-
clude applying this approach to other NP-complete problems,
and exploring its theoretical foundations.
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