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Abstract
Many collective human activities have been shown
to exhibit universal patterns. However, the possi-
bility of regularities underlying researcher migra-
tion in computer science (CS) has barely been ex-
plored at global scale. To a large extend, this is due
to official and commercial records being restricted,
incompatible between countries, and especially not
registered across researchers. We overcome these
limitations by building our own, transnational,
large-scale dataset inferred from publicly available
information on the Web. Essentially, we use La-
bel Propagation (LP) to infer missing geo-tags of
author-paper-pairs retrieved from online bibliogra-
phies. On this dataset, we then find statistical reg-
ularities that explain how researchers in CS move
from one place to another. However, although
vanilla LP is simple and has been remarkably suc-
cessful, its run time can suffer from unexploited
symmetries of the underlying graph. Consequently,
we introduce compressed LP (CLP) that exploits
these symmetries to reduce the dimensions of the
matrix inverted by LP to obtain optimal labeling
scores. We prove that CLP reaches identical la-
beling scores as LP, while often being significantly
faster with lower memory usage.

1 Introduction
Many collective human activities have been shown to exhibit
universal patterns. However, the possibility of strong regu-
larities underlying computer science (CS) researcher migra-
tion has barely been explored at global scale. Fortunately,
in the post-Internet era the WWW stores tons of data on re-
searchers which is frequently updated, and we here demon-
strate that this information can be utilized to extract migra-
tion behavior of researchers and to learn models for the un-
derlying process. However, there are no datasets available
on the Web that immediately allow such an analysis. We
first need to build a migration dataset to conduct a large-
scale investigation of migration. To this aim, we harvested
data from different information sources freely accessible on
the Web and merged these into bibliographic databases aug-
mented with geo-tags. However, not all information is avail-

able — it might actually be impractical to gather — and it
is uncertain. Therefore, we have to rely on an AI algorithm
to fill in the blank spots. More precisely, we provide a re-
lational view on Label Propagation (LP) [Zhu et al., 2003;
Bengio et al., 2006] and introduce a novel way to significantly
speed it up based on equitable partitions. We call the result-
ing algorithm Compressed Label Propagation (CLP) because
the original LP-graph is “lifted” or rather “compressed” be-
fore running vanilla LP on the smaller graph. Running CLP
results in the first translational dataset for more than a million
computer scientists on which we then learn statistical migra-
tion models explaining the results in sociologically plausi-
ble ways. To verify the quality of our inferred geo-tags and
statistical models, we additionally run CLP on an orders-of-
magnitude smaller but manually curated dataset. This demon-
strates that missing geo-information can be inferred automat-
ically and in turn, statistical patterns of CS researchers migra-
tion can be harvested from the Web.

Indeed, people may have had the suspicion that migration
follows certain patterns but our results show that it goes be-
yond folklore. This objectification is important, given that
migration and the demographic change is attracting much at-
tention in the media worldwide nowadays. Unveiling, ex-
plaining and ultimately predicting these processes remain key
challenges in understanding the behavior of science and sci-
entist all around the globe. The statistics belong to the key
inputs to policy formulation and funding in research. So far
however, data is mostly collected on a national scale and/or
access restricted and especially is not registered across re-
searchers. This is surprising, since it is a truly international
phenomenon that should be analyzed on a transnational scale:
(computer) science thrives on the free exchange of findings
and methods, and ultimately of the researchers themselves.

Specifically, we found the following patterns: (R1) A spe-
cific researcher’s propensity to migrate, that means to make
the next move, follows a log-normal distribution. That is,
researchers are generally not “memoryless” but have to care
greatly about their next move. This is plausible due to the
dominating early career researchers with non-permanent po-
sitions. This regularity of timing events is remarkably stable
and similar within different continents across the globe. (R2)
The propensity to make k > 1 migrations follows a gamma
distribution, suggesting that migration at later career stages
is “memoryless”. That is, researchers have to care less about
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their next move, since the majority of positions are permanent
in later career stages. (R3) Consequently, brain circulation,
i.e., the time until a researcher returns to the country of their
first publication, also follows a gamma distribution. That is,
returning is also memoryless. Researchers cannot plan to re-
turn but rather have to pick up opportunities as they arrive.

These remarkably simple but strong patterns are somewhat
surprising. Reasons to migrate are manifold and complex:
political stability and freedom of science, family influences
such as long distance relationships and oversea relatives, and
personal preferences such as exploration, climate, improved
career, better working conditions, among others. However,
recall that we estimate distributions from massive data in-
ferred from the Web; this allows one to distill the patterns.

All our contributions, the data, using AI to deal with un-
certainty and missing information, compressed LP, as well
as the discovered regularities are novel and go far beyond
studies typically carried out for migration. So far, studies
within sociology were small scale with a few thousand re-
searchers at a national scale or publicly undisclosed. In-
deed, extracting large-scale sociological information from
the Web has attracted a lot interest. However, most of the
work has focused on services like Twitter or Facebook, see
e.g. [Burke et al., 2013; Park et al., 2013], and most impor-
tantly work directly on the raw data; no AI technique has
been used to fill in missing data. Moreover, these infor-
mation sources are not open access and, hence, results are
not reproducible. Closer to our work are studies focusing
on migration and mobility data in general but not on com-
puter scientists. For example, [Zagheni and Weber, 2012]
have recently analyzed a large-scale e-mail dataset to esti-
mate international migration rates, but not specific to com-
puter scientists, since the occupation was unobserved. More-
over, Zagheni and Weber have not presented any statisti-
cal regularities nor dealt with missing information. Using
a large-scale, IP-address-based dataset, [State et al., 2013]
also investigated mobility data and migration flows. While
State et al. present a model for migration probabilities be-
tween countries, they also used access restricted data and
do not aim at unveiling the sociology of CS. Several other
people have also looked into migration, e.g. [Stillwell, 2005;
Rees et al., 2009], but have considered small scale data only
and have also not investigated computer scientists. In con-
trast, we present the first large-scale migration study for CS
inferred from publicly available data using AI, describe the
data harvesting process in detail, and report statistical reg-
ularities in this dataset. The results actually suggest that
Steward’s Poisson-log-normal model [Stewart, 1994] for bib-
liometric/scientometric distributions of productivity can be
also used for migration and scales to a transnational, mas-
sive level1. This complements many other human activities
that have been shown to exhibit patterns, see e.g. [Zipf, 1946;
Mantegna and Stanley, 1995; Cohen et al., 2008; Gonzales et
al., 2008] among others.

Finally, the algorithmic challenge of creating such a large-
scale dataset also called for an efficient inference approach.

1Due to space restrictions, we do not present the full migration
model but rather focus on data compilation and the patterns found.

Compressed LP as introduced here is akin to what is known
as lifted probabilistic inference [Kersting, 2012]. While CLP
is based on the power method, one can also implement LP
via Gaussian BP (GaBP) and in turn use lifted GaBP to ex-
ploit symmetries in LP [Neumann et al., 2011]. However,
this does not allow one to use out-of-the-box GaBP imple-
mentations since changes to the GaBP algorithm are required
to account for the lifted model [Ahmadi et al., 2011]. More-
over, this “lifted” LP approach is based on matrix inversion
and requires several re-liftings which is impractical for graphs
at massive scale. Instead, we here extend the recent lifting by
reparameterization paradigm [Mladenov et al., 2014] to the
LP problem, which allows one to lift/compress the LP weight
matrix only once. Another recent approach to speed up LP
was presented by Fujiwara and Irie [2014], who reduce the
run time by updating only the scores of a subset of labels in
each iteration. Also similar in spirit to CLP are the ideas of
Alexandrescu and Kirchhoff [2007]. They proposed to merge
identically labeled nodes to speed up LP, whereas CLP in-
tuitively clusters the entire graph. Actually, there are many
more efficient LP approaches, see e.g. the references in [Fu-
jiwara and Irie, 2014] for an overview, and any of them can
be used on top of our compressed graph.

We proceed as follows. First, we describe how we har-
vested the data and discuss how we inferred the missing data
from the Web with our logic-rule based LP. We then explain
our compressed LP and prove its correctness. We support our
theoretical analysis by experiments on two different datasets
that show how CLP reduces run times and enables the label-
ing of larger datasets then before without sacrificing quality.
Before concluding, we present the patterns found in the data.

2 Labeling Bibliographies with Geo Tags
The WWW provides several freely accessible bibliographies
with millions of papers and authors. However, most of them
do not contain affiliations or geo-information. For an exten-
sive study of researcher’s migration behavior this information
is crucial though. Our goal is to label every author-paper-pair
in a bibliography with the affiliation of that author and its geo-
graphic location. Although it is possible to manually, or semi-
automatically, retrieve such labels, a full labeling of large
databases, such as DBLP2, is not practical by such methods.
In addition, if we can build an effective automated machinery
that helps us with this task, it is also much easier to update
the database continuously with new papers arriving.

To this end, we assume an initial bibliography consisting of
papers and theirs authors. We start by adding affiliation infor-
mation to authors in our bibliographic database. One of the
resources that contain affiliation information is the ACM Dig-
ital Library3 (ACM DL). Unfortunately, ACM DL does not
allow a full download of the data. Consequently, we retrieved
the affiliation information of only a few author-paper-pairs
randomly selected from ACM DL which we then matched
with our bibliography. This gave us initial seed affiliations
per author for different papers. In order to fill in the missing
information, we resorted to AI. To do so, however, we have to

2dblp.uni-trier.de
3dl.acm.org
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be a little bit more careful. First, the names of the affiliations
in ACM DL are not in canonical form which results in a very
large set of affiliation candidates. Secondly, although we have
now partial affiliation information, we still lack exact geo-
information of the organizations to identify cities, countries,
and continents. Many of the affiliation names may contain a
reference to the city or country but these pieces of information
are not trivial to extract from the raw strings. Additionally,
we are interested in latitude and longitude values to enable
further analysis and visualization. Hence, we used Google’s
Geocoding API4 to resolve the locations. This resulted in
geo-tags for most of the affiliation strings. A remaining gap
rises from the fact that the API does not find geo-locations
for all the strings in our database. Essentially, this is because
the strings contain information not related to the geo-location
such as departments, e-mail addresses, among others.

3 Relational Label Propagation
Before we infer the missing author-paper-pairs, we revise our
obtained affiliations. To further increase the quality of our
harvested data, we hypothesized that there are actually not
that many relevant organizations as obtained from ACM and
these names need to get de-duplicated. Since we have geo-
locations for most of the affiliations, we can use this infor-
mation for a simple entity resolution and cluster affiliations
together for which the retrieved cities coincide5.

Based on these seed geo-locations, we filled in the missing
ones using LP. LP runs on an undirected graph G = (V,E)
where V is a set of nodes and E is set of weighted edges.
Each node corresponds to an author-paper-pair in our bibli-
ography. The edges represent the similarity between nodes.
In the following, we use logic rules to formulate this similar-
ity. These rules are based on relations such as co-authorship
between the authors associated with the nodes. Specifically,
in order to define the edges, we considered the following
functions over nodes that return facts about the nodes cor-
responding to the function name: author(i), paper(i),
and year(i). For shorthand, we write a(i), p(i), and
y(i). Based on these functions, we defined rules that add
a weight λk to the each edge weight wij whenever the rule
holds. Initially, we set all weights wij to zero. The first rule,
wij = wij +λ1 if p(i) = p(j), adds a weight between two
nodes if the nodes belong to two authors that co-author the
paper associated with nodes i and j. The second rule,

wij = wij + λ2 if a(i) = a(j) ∧ y(i) = y(j)

adds a weight whenever two nodes corresponds to different
publications by the same author in the same year. Finally,

wij = wij + λ3 if a(i) = a(j) ∧ y(i) = y(j) + 1

fires when the nodes belong to two publications of the same
author but written in subsequent years. Using these edge
weights, we construct an affinity matrix W ∈ Rn×n. If

4developers.google.com/maps/documentation/geocoding
5Indeed, this approach does not distinguish multiple affiliations

per city such as MIT and Harvard. However, it is simple and ef-
fective, and — as our empirical results show — the resolution is
sufficient to establish strong regularities in the timing events.
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Figure 1: Toy example for CLP. The LP graph in Fig. 1a con-
tains two labeled nodes (green shades) and three unlabeled
nodes (white). The corresponding similarity matrix is given
in Fig. 1c. Based on the CEP, the graph can be colored as
in Fig. 1b. The partition clusters X3 and X4 together. The
corresponding compressed matrix Q is depicted in Fig. 1d.
(Best viewed in color)

T = D−1W with Dii =
∑
j wij , we can implement LP

using a simple power method: Y t+1 = TY t , where Y t is
the labels matrix. At convergence, row i in Y ∗ corresponds
to a distribution over the possible labels for node i. In Y 0,
we set a cell yij to 1 if we know that node i has label j. All
other cells are set to 0. The original implementation suggests
a push-back phase in every iteration, clamping the rows of
the known nodes in Y t+1 to their original distribution as in
Y 0. Instead, we adapt the affinity matrix in such a way that
we do not need the explicit push-back anymore. More pre-
cisely, for a labeled node i, we set wij = 1 for i = j and
wij = 0 otherwise. This iterative procedure is performed un-
til convergence or a maximum number of iterations has been
reached. At convergence, the labels of the unknown nodes
are read off the labels matrix, i.e., the label of node i is given
by y∗i = arg maxj yij .

4 Compressed Label Propagation
While W , and respectively T , is very sparse, Y t becomes
denser with every iteration. Eventually, this presents an ob-
stacle in terms of both computation time and memory require-
ments. To alleviate some of this burden, we can exploit the
latent symmetries in the structure of T . In our proposed ap-
proach, CLP, we do so by means of equitable partitions.

The algorithm proceeds as follows (illustrated in Fig. 1):
we first partition the nodes according to their initial labels
(Fig. 1a). We then compute the Coarsest Equitable Partition
(CEP) of T which preserves the initial label partition. From
the partition, we obtain a (hopefully) smaller quotient matrix
Q by: a) replacing the set of all columns corresponding to
nodes in the same class by their sum; b) replacing the set of all
rows of nodes in the same class by their average (Fig. 1c). We
carry out step b) on Y 0 as well to obtain the compressed label
matrix J0. Finally, we run LP withQ and J0 (Fig 1d) in place
of T and Y 0. As we will show now, we can perfectly recover
Y k from Jk and, thus, the result of LP can be recovered from
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Figure 2: (left) Label accuracy for the AAN dataset with a varying number of initially labeled nodes. One should note that
accuracy is a very challenging performance measure for a multi-label problem with around 800 classes. (middle) Runtime of
LP on the AAN dataset with an increasing number of available cores. (right) Due to the large size of DBLP, it is not possible
to run LP with all cities in a single run. Instead, we have to split the cities into batches and run (C)LP on each batch separately.
As one can see, CLP can use up to 570 cities in a single run while LP can only handle 425 cities at once. (Best viewed in color)

the result of CLP.
Theorem 1 (Compressed LP is sound and complete). Run-
ning the power method on the compressed matrix Q returns
identical label scores as running LP on T .

Proof (sketch). First observe that algebraically, Q and J0

can be written as Q = B̂TB and J0 = B̂Y 0, where B is
an n × p matrix having Bik = 1 if node i is in class k and
0 otherwise (representing the summing of columns). B̂ is
defined as B̂ki = 1/|class k| if i is in class k, otherwise 0
and represents the averaging of rows. We first reference the
following facts [Grohe et al., 2014]: (♣) B̂B = Ip (B̂ acts
as left inverse of B); (♥) BB̂T = TBB̂ (the matrix BB̂
commutes with T since B comes from the CEP of T ).

As a first step, we need to show that Y k+1 = BB̂Y k+1.
We proceed by induction. Due to space constraints we omit
the discussion of k = 0, which follows from the construction
of the CEP. For the induction step, we have

Y k+1 = TY k
ind.
= TBB̂Y k

♥
= BB̂TY k = BB̂Y k+1 , (♠)

where the second equality follows from our induction hy-
pothesis. Note that we also omitted the discussion of the
push-back operation, however, it can be shown that the above
holds after push-back as well. Finally, induction shows that
Y k+1 = BJk+1:

BJk+1 = B(B̂TB)Jk
ind.
= BB̂T (BB̂)Y k

♥,♣
= BB̂TY k

= BB̂Y k+1 ♠= Y k+1 .

Observe now that Q ∈ Rp×p, where p is the number of
classes of the CEP of T . That is, we have one row and col-
umn per cluster instead of per node. Thus, if p� n, we need
to solve a much smaller system. Moreover, using the highly
efficient implementation of SAUCY [Katebi et al., 2012], CEP
computation is done in O [(m+ n) log n] time; even in case
of little to no symmetry, there is only little computational
overhead due to symmetry detection.

5 Inferred Regularities from Bibliographies
With CLP at hand, let us now turn towards inferring regulari-
ties. There are different choices as a starting point for the data

harvesting process. Ultimately, we are interested in a bibliog-
raphy covering all different scientific disciplines. However,
to begin with, we focus on CS. For an qualitative evaluation,
we are interested in a dataset with as much ground truth as
possible. On the other hand, for an in-depth analysis of re-
searcher’s migration behavior, we would like to construct a
database as large as possible. Resulting from these differ-
ent requirements, we will evaluate our CLP on two different
datasets to show its efficiency and effectiveness. In partic-
ular, we demonstrate (1) that relational LP produces mean-
ingful label distributions with high accuracy on a manually
curated dataset and that (2) CLP significantly speeds up stan-
dard LP and requires less memory at the same time, which is
especially important for large-scale datasets. For all our ex-
periments we used λ1 = 1, λ2 = 3, and λ3 = 2 (found by
a grid search on a small subset of the data) as weights for the
logical rules described above. LP heavily relies on an effi-
cient implementation for multiplying a sparse matrix with a
dense matrix. To this end, we used LAMA6, a very efficient
parallelized C++ linear algebra library. All experiments were
run on a Linux machine with 64GB RAM and 20 cores.

5.1 Empirical Investigation of Compressed LP
To verify the quality of relational LP, we start our analysis
with a dataset for which we have a relatively large amount
of affiliations in advance. The AAN dataset [Radev et al.,
2009] contains 19,410 publications in total written by 15,397
authors. After reducing the available affiliations to the city
level, the resulting number of author-paper-pairs is 49,530
while 33,061 of these nodes are labeled with one of 802 cities.
The graph G has a total of 145,594 edges, resulting in a very
sparse matrix T . By removing an increasingly number of la-
bels from the graph, we construct test sets of different sizes
which we use for the evaluation. We start by removing 10%
of the labels, obtaining a graph with 55% of the nodes la-
beled. We then gradually add 10% of the nodes to the test set
until only 6% of the nodes are labeled. We apply this dataset
construction ten times, to allow for multiple re-runs of the
experiment. The table in Fig. 2(left) shows the average accu-
racy of the predicted labels for each test set when running LP

6www.libama.org
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Figure 3: (top) Regularities in AAN. From left to right: The individual migration propensity for CS is log-normal. The kth
move propensities (k = 2, 3, 4, 5) become gamma distributed for higher values of k. However, due to the small size of the
AAN dataset, the data is sparse for higher values of k. (bottom) Regularities in DBLP. We find very similar patterns in the
DBLP dataset with much more data available for all values of k. For the propensity (k = 1; most left panel) the log-normal
has the best log-likelihood fit (significant at p = 0.05 according to a paired McNemar test on the continental as well as national
levels). For k > 1 (other panels) the best fit in terms of log-likelihood is a gamma distribution, again significant (McNemar
test, p = 0.05). (Best viewed in color)

for 200 iterations. Having access to only 36% of the labels
and more, we can achieve an accuracy ≥ 0.80. As expected,
reducing the number of labeled nodes slowly decreases the
performance. With only 6% labeled nodes, we still achieve
an accuracy of 0.58, which is a high performance on a multi-
label problem with roughly 800 classes; the accuracy of ran-
dom label would be 0.00125.

Next we investigated the reduction in run time due the com-
pression of the LP graph on this dataset as well as the po-
tential benefit of using a parallelized linear algebra library.
Fig. 2(middle) shows the run times of LP and CLP for a vary-
ing number of cores. Here, the run time measures the total
time required by the script. In the case of CLP, this includes
the compression of the matrix as well. By using CLP instead
LP, we reduce the run time by 20%. Of course, the relative
run time is further reduced with more iterations, as the over-
head of the compression vanishes. If we solely look at the run
time of the power method, we see that CLP spends up to 25%
less time on matrix-matrix-multiplications.

To investigate the scaling of the statistical regularities
found, we considered DBLP. Compared to AAN, DBLP is
roughly 100 times larger but contains relatively speaking way
fewer labels. More precisely, the DBLP dump in use contains
1,894,758 papers written by 1,080,958 authors. However, of
the 5,033,018 author-paper-nodes, only 10% are initially la-
beled with one of 4,350 cities. With a dataset of such size,
running LP on a single machine is not easily possible any-
more, even with modern hardware. With 4k+ labels, Y alone
requires more than 160GB with 64bit float numbers. Addi-
tionally, the LAMA implementation did not work with arbi-
trary large matrices in our experiments. One way to overcome
this barrier is to split the labels matrix into k chunks and do
the multiplications separately. Afterwards, we can merge the
results and obtain the final labeling. Using this approach, we
compared CLP with LP to see how many cities each vari-
ant can handle in a single run. We started with the first 50
cities and added cities as possible. The results are depicted in

Fig. 2(right) for 200 iterations of LP and show that CLP re-
quires far less RAM because the matrices Q and J are much
smaller than the uncompressed ones. We can now run LP
with up to 570 cities in a single run and hence would only
require 8 machines in a distributed setting. On the contrary,
LP can only handle 425 at a time and would require 11 ma-
chines. The run times in Fig. 2(right) exclude the time needed
for the compression which is negligible because we only have
to compress T once and not for every chunk. The average to-
tal run time, including compression, for 200 iteration on the
DBLP dataset with CLP is about 5.40 hours. This is a lot
faster than LP which took on average around 7.49 hours. Af-
ter running LP on both datasets, we are ready for an in-depth
analysis of migration patterns in the augmented datasets.

5.2 Inferred Migration Regularities
The previous experiments have shown that CLP can help
building large scale bibliographies augmented with geo-
graphic information. We will now use the two enriched
datasets to infer statistical regularities within migration be-
havior of CS researchers. Unfortunately, we cannot directly
observe the event of transfer from one residential location, re-
spectively institution, to another one by a researcher. Instead,
we use the affiliations mentioned in their publication record
as a proxy. Nevertheless, even after running LP on the city
level, this list may still be noisy and does not provide the tim-
ing information directly. To illustrate this, an author may very
well move to a new affiliation and publish a paper with their
old affiliation because the work was done while being with
the old affiliation. Therefore, we are considering migration
sketches as a proxy. Intuitively, a sketch captures the main
stations in a researcher’s career.

We define a migration sketch as the list of unique affil-
iations of an author ordered by the first appearance in the
list of publications. This approach has the drawback that we
cannot capture a researcher returning to an earlier affiliation
after several years. Finally, we dropped implausible entries
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from the resulting sketch database. For instance, we dropped
sketches with more than ten affiliations because such sketches
should be attributed to an insufficient entity disambiguation.
Having the migration sketches at hand, we can now define mi-
gration or a move of a researcher as the event of transfer from
one residential location to another one in the corresponding
migration sketch. With these sketches, we can now start to
investigate the statistical nature of researcher migration.

(R1) The propensity to transfer to a new research insti-
tution across scientists is log-normal: Let T ji be the point
in time when researcher j makes their ith move from one
location to the next one. Let tji be the time between the
T ji−1 and T ji . T j0 is the first temporal reference we have
for an author, i.e., the year of their first publication listed
in the bibliography. We call tji , i.e., the time between two
moves, the (migration) propensity. It reflects the bias of re-
searchers to stay for a specific amount of time until moving
on. Using maximum likelihood estimation for the parame-
ters, we fitted the data to various distributions, including log-
normal, gamma, inverse Gaussian, and Weibull. We found
the log-normal distribution [Aitchison and Brown, 1957;
Stewart, 1994] fitting the best in terms of log-likelihood; sig-
nificant according to a McNemar test (p = 0.05). That is,
the log of the propensity is a normal distribution with den-

sity f(x) = (x
√

2πσ2)−1e−
(ln x−µ)2

2σ2 . The parameters µ and
σ2 > 0 are the mean and the standard deviation of the vari-
able’s natural logarithm. This is a plausible model due to
Gibrat’s “law of proportionate effects” [Gibrat, 1930]: the
underlying propensity to move is a multiplicative function of
many independently distributed factors, such as motivation,
open positions, short-term contracts, among others. Such
factors do not add together but are multiplied together, as
a weakness in any one factor reduces the effects of all the
other factors. Moreover, a computer scientist stays on aver-
age 5.7 years at a place. Thus headhunters, should approach
young potentials in their fifth year. One should maybe also
reconsider the common practice of having projects lasting
only three years. More importantly, the log-normality of the
propensity can be found across continents and countries (re-
sults not shown here due to space restrictions) when we con-
sider only moves originating from a continent, respectively
country: there are no cultural boundaries.

(R2) k-th Move Propensities are Gamma: Fig. 3,
columns 2-5, shows the best fitting distributions in terms
of log-likelihood achieved by maximum likelihood estima-
tion for the propensity to make k > 1 moves. More pre-
cisely, the kth move propensity for an author Ai is defined
as sik =

∑k
j=1 t

i
j . The best fit is a gamma distribution,

f(x) = 1
Γ(k)θk

xk−1e−
x
θ with shape k > 0, scale θ > 0, and

Γ(k) =
∫∞

0
sk−1e−sds , suggesting that migration at later

career stages is “memoryless”; again significant according to
a McNemar test (p = 0.05). This conforms to the theory
of Poisson processes, for which the inter-arrival times are in-
dependent and obey an exponential form. Consequently, the
distribution of t conditioned on {t > s} is again exponen-
tial. That is, the remaining time after we have not moved to
a new position at time s has the same distribution as the orig-

inal time t, i.e., it is memoryless. Moreover, we know that
the time until the kth move — the kth move propensity —
has a gamma distribution; it is the sum of the first k propen-
sities of senior researchers. So, the propensities for the next
move turn exponential for later career stages. Early career
researchers have seldom taken many positions and we con-
sider here rather senior researchers with typically permanent
positions; they do not have to greatly care about their moves.

(R3) Brain Circulation is Gamma: Brain circulation, or
more widely known as brain drain, is the term generically
used to describe the mobility of high-level personnel. It is an
emerging global phenomenon of significant proportion as it
affects the socio-economic and -cultural progress of a society
and a nation, and the world. Here, we define it as the time
until a researcher returns to the country of their first publica-
tion. Only 29,398 out of 193,986 (15%) mobile researchers,
i.e., researchers that have moved at least once, and out of all
1,080,958 (3%) researchers returned to their roots (in terms of
publications) in the DBLP dataset. It also follows a gamma
distribution. This indicates that returning is memoryless as
well. Researchers cannot plan to return to their roots but pick
up opportunities as they arrive.

6 Conclusion
International mobility among researchers not only benefits
the individual development of scientists, but also creates op-
portunities for intellectually productive encounters, enriching
science in its entirety, preparing it for the global scientific
challenges lying ahead. Moreover, mobile scientists act as
ambassadors for their home country and, after their return,
also for their former host country, giving mobility a cultural-
political dimension. So far, however, no statistical regularities
have been established for the researcher migration within CS
at global scale. One explanation might be that no transna-
tional, registered dataset existed before.

We have demonstrated that harvesting and mining such
a transnational, registered dataset from the Web is possible
when using AI techniques such as label propagation (LP) to
infer missing information. Such an enriched bibliography can
be used to discover surprisingly simple and strong regulari-
ties. Actually, although not shown here due to space restric-
tions, there are no cultural boundaries underlying the timing
events. The patterns remain similar no matter what region
one looks at. Thus, moving on to a new position is a com-
mon pattern in terms of timing across different countries and
independent of geography, ideology, politics or religion. In-
deed, people have had the suspicion of many of these regu-
larities but we have shown that they go beyond folklore. To
find such regularities more quickly, we introduced a novel
LP approach, called compressed LP (CLP), that runs LP on
a compressed graph. We proved and demonstrated that CLP
can significantly reduce the run time and memory consump-
tion of LP without sacrificing performance at all.

Indeed, we have only started to look into migration
through the “AI and the Web” lens. In the future, other
AI techniques should be explored to reveal more migration
patterns, and our results should be extended beyond CS.
One should also investigate bootstrapping CLP via pseudo
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evidence [Hadiji and Kersting, 2013] in order to reduce the
required amount of memory for the labels matrix even further
and in turn speed up convergence. In other LP tasks, lossless
compression is unlikely to result in compression of the LP
graph. Therefore, one should investigate lossy compressed
LP as well.
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