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Abstract

Online portfolio selection (PS) has been exten-
sively studied in artificial intelligence and machine
learning communities in recent years. An impor-
tant practical issue of online PS is transaction cost,
which is unavoidable and nontrivial in real finan-
cial trading markets. Most existing strategies, such
as universal portfolio (UP) based strategies, of-
ten rebalance their target portfolio vectors at ev-
ery investment period, and thus the total transac-
tion cost increases rapidly and the final cumulative
wealth degrades severely. To overcome the limita-
tion, in this paper we investigate new investment
strategies that rebalances its portfolio only at some
selected instants. Specifically, we design a novel
on-line PS strategy named semi-universal portfo-
lio (SUP) strategy under transaction cost, which
attempts to avoid rebalancing when the transac-
tion cost outweighs the benefit of trading. We show
that the proposed SUP strategy is universal and has
an upper bound on the regret. We present an effi-
cient implementation of the strategy based on non-
uniform random walks and online factor graph al-
gorithms. Empirical simulation on real historical
markets show that SUP can overcome the draw-
back of existing UP based transaction cost aware
algorithms and achieve significantly better perfor-
mance. Furthermore, SUP has a polynomial com-
plexity in the number of stocks and thus is efficient
and scalable in practice.
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SRF for ROCS, SEM, the Key Projects of FRM of Shanghai MCST
(14JC1400300), the NSF of Shanghai (15ZR1408300), Shanghai
Key Laboratory of Intelligent Information Processing (IIPL-2014-
001) and Singapore MOE tier 1 research grant (C220/MSS14C003).

1 Introduction
Portfolio selection (PS) aims to optimize the allocation of
wealth across a set of assets to achieve certain long-term fi-
nancial goal. Some early research on PS can be dated back
to the mean variance theory [Markowitz, 1952], which opti-
mizes portfolios by trading off the expected return (mean) and
risk (variance). The subsequent capital growth theory [Kelly,
1956] focuses on multiple-periods or sequential PS, aiming
at maximizing portfolio’s expected growth rate, or expected
log return. While both theories can solve the PS problem, the
latter is fitted to the online scenario and thus constitutes the
basis of online PS, and has been extensively explored in arti-
ficial intelligence [Cover, 1991; Cover and Ordentlich, 1996;
1998] and machine learning communities [Agarwal et al.,
2006; Borodin et al., 2004; Huang et al., 2013].

Most state-of-the-art on-line PS strategies ignore transac-
tion cost [Li and Hoi, 2014]. Transaction cost, as one central
friction in financial markets, is prevalent in almost all of the
financial trading. When investors face transaction costs in fi-
nancial markets, their trading strategies may be much differ-
ent. Therefore, how investors should trade in the presence of
transaction cost remains an open yet important question.

Recently, some on-line PS studies [Blum and Kalai, 1997;
Helmbold et al., 1998; Kozat and Singer, 2011; Das et
al., 2013; 2014] have attempted to address transaction cost.
Though these transaction cost aware algorithms, such as
universal portfolio (UP) based strategies [Blum and Kalai,
1997], achieve encouraging results on many datasets, the ac-
tual suffering under transaction cost is still very high. This is
because the existing UP based transaction cost aware strate-
gies often rebalance their target portfolio vectors at every in-
vestment period, which is not always necessary, and makes
the total transaction cost increase rapidly. Furthermore, these
algorithms have an exponential complexity in the number of
stocks [Blum and Kalai, 1997], which makes them impracti-
cal in real world scenarios.

To address the above drawbacks, in this paper, we present
a new multi-period online PS strategy named semi-universal
portfolio (SUP) with transaction cost. The basic idea is to em-
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ploy Cover’s UP as a moving target portfolio and rebalance
the portfolio only at some selected instants, which may avoid
rebalancing when the transaction cost outweighs the benefit
of rebalancing. Then, we approach this strategy from a com-
petitive algorithmic perspective, and compete against all such
SUPs with arbitrary numbers of rebalancing times and at ar-
bitrary corresponding rebalancing instants. We show that the
proposed SUP strategy is universal and has an upper bound on
the regret. We also develop an efficient implementation of the
universal algorithm based on non-uniform random walks and
learn the semi-universal portfolios based on an online factor
graph algorithm.

To the best of our knowledge, the proposed SUP is the first
algorithm that explicitly exploits the transaction cost for on-
line PS by considering a Cover’s moving target portfolio with
occasional rebalancing. Though simple in nature, SUP suf-
fers much less under transaction cost than existing algorithms
and has been empirically validated via extensive experiments
on real markets. On the one hand, the SUP strategy signifi-
cantly surpasses a number of state-of-the-art transaction cost
aware strategies in terms of long-term compound return. On
the other hand, it has a polynomial complexity in the number
of stocks and thus has better scalability in practice.

The rest of the paper is organized as follows: Section 2
formulates the on-line PS problem with transaction cost, and
Section 3 reviews some related works. Section 4 presents the
proposed algorithm, and Section 5 empirically evaluates its
effectiveness on real markets. Section 6 concludes the paper.

2 Problem Setting
Consider a financial market with m assets for n trading pe-
riods. The asset prices on the tth period are represented by
a close price vector pt ∈ Rm+ , and each element pit is the
close price of asset i. The changes of asset prices are de-
noted by a price relative vector xt = (x1

t , . . . , x
m
t ) ∈ Rm+ ,

where xjt is the ratio of current close price to last close price
of asset j at the tth period, i.e., xjt = pjt/p

j
t−1. We denote

xn1 = (x1, . . . ,xn) as the sequence of price relative vectors
for n periods. We abbreviate xn1 to xn below.

The capital of the m assets at the beginning of the tth pe-
riod is denoted as a portfolio vector bt = (b1t , . . . , b

m
t ) ∈

Rm+ , where bjt is the proportion of wealth invested in the jth

asset at the tth period. Typically, we assume that the portfolio
is self-financed and no margin/short is allowed, which means
bt ∈ ∆m, where ∆m = {bt : bt ∈ Rm+ ,

∑m
j=1 b

j
t = 1}.

The investment procedure is denoted as a portfolio strat-
egy, i.e., b1 = 1

m1 and following sequence of mappings
bt : (Rm+ )t−1 → ∆m, t = 1, 2, . . . , where bt = bt(x

t−1)

is the portfolio used at the tth trading period, given the last
market sequence xt−1 = (x1, . . . ,xt−1). We denote by
Bn = [b1,b2, ...,bn] the strategy for n periods.

At the tth trading period, a portfolio bt achieves a portfo-
lio period return st, i.e., the wealth increases by a factor of
st = bTt xt =

∑m
j=1 b

j
tx
j
t . When the portfolio manager sets

up his new portfolio at the beginning of the (t+1)th period,
i.e., buys/sells stocks according to the actual portfolio vec-
tor bt+1, he has to pay transaction cost. We assume a sym-

metric proportional transaction cost with cost ratio c, where
c = cs + cb for both selling cs and buying cb and 0 ≤ c ≤ 1,
i.e., the trade of 1 dollar worth of asset i nets only 1− c dol-
lars. Hence, the portfolio manager should spend the transac-
tion costs Ct = [C1

t , . . . , C
m
t ]T ∈ Rm+ at the beginning of the

(t+1)th period, where Cit = st|b
i

t − bit+1|c is the cost for the

ith asset, b
i

t represents the current portfolio of the ith asset
at the end of the tth period and the current portfolio vector

bt = [b
1

t , . . . , b
m

t ]
T

= [
b1tx

1
t

m∑
i=1

bitx
i
t

, ...,
bmt x

m
t

m∑
i=1

bitx
i
t

]T . The total costs

for all assets at the beginning of the (t+1)th period are de-
noted as Costt = CT

t e, where e = [1, . . . , 1]T ∈ Rm+ . We
denote sct = st−Costt as the net wealth at the end of the tth
period, which is less than st after the transaction. We will use
the above formula to solve the SUP strategy with transaction
cost in this paper.

Since we reinvest and adopt price relative, the portfolio
wealth will multiplicatively grow. Thus, after n trading pe-
riods, a portfolio strategy Bn+1 produces a portfolio cumula-
tive wealth with transaction cost Scn, Scn(xn) = S0

∏n
t=1(sct),

where S0 is the initial wealth, which is set to 1 in this paper.
Finally, we formulate the on-line PS problem as a sequen-

tial decision task. The portfolio manager aims to design a
strategy Bn+1 to maximize the portfolio cumulative wealth
Scn. The portfolios are selected in a sequential fashion. At
each period t, given the historical information, the manager
learns to select a new portfolio vector bt for the next price
relative vector xt, where the decision criterion varies among
different managers. The resulting portfolio bt is scored based
on the portfolio period return of sct . Such procedure repeats
until the end of trading periods and the portfolio strategy is
finally scored by the cumulative wealth Scn.

3 Background Review
On-line PS has been extensively explored following the prin-
ciple of Kelly investment [Kelly, 1956]. Although the need for
considering transaction cost has been mentioned in [Cover,
1991; 1996; Ordentlich and Cover, 1996; Helmbold et al.,
1998; Borodin et al., 2004; Li and Hoi, 2014], only a few
works deal with online PS with transaction cost.

Blum and Kalai [1997] exploited universal portfolios
[Cover, 1991] with proportional transaction cost, which pays
transaction cost proportionally from each asset and utilizes
Cover’s UP formulation as a moving target portfolio, and
then rebalances the portfolio at each investment period. Bean
and Singer [2011; 2012], Kozat and Singer [2008; 2009]
discussed switching strategies with transaction cost, which
transfers the benchmark portfolio according to the market in-
formation and also rebalances at each investment period. On
the other hand, some strategies focus on occasional rebalanc-
ing. Helmbold et al. [1998] considered constant rebalanced
portfolio (CRP) with transaction cost, and further introduced
a semi-CRP (SCRP), which rebalances only at some periods.
Blum and Kalai [1997] showed that no strategy can guaran-
tee the exponential growth rate of the best SCRP in hindsight,
even without commission. Recently, Kozat and Singer [2011]
extended this idea to a universal SCRP strategy that rebal-
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ances the target portfolio vectors in arbitrary investment peri-
ods.

Moreover, there is another category of online PS that inves-
tigates transaction cost via parameters update of stochastic
optimization model. Das et al. [2013] proposed online lazy
updates (OLU) and online lazy updates with group sparsity
(OLU-GS) [2014] for transaction cost based on the exponen-
tial gradient algorithm [Helmbold et al., 1998], which rebal-
ances the portfolio vector by sparse or lazy updates of the
parameters in the optimization model.

Finally, there are some algorithms that deal with growth
optimal investment with transaction cost in discrete times.
Cover and Iyengar [2000] formulated the problem of horse
race markets. Iyengar [2002] considered growth optimal in-
vestment with several assets. Bobryk and Stettner [1999] in-
vestigated the case of PS with consumption. Schafer [2002]
considered the maximization of the long run expected growth
rate. Gyorfi and Vajda [2008] investigated discrete time in-
finite horizon growth optimal investment with transactions
cost. Ormos and Urbn [2011] presented a nonparametric
model using kernel-based agents to approximate the maxi-
mum theoretical growth rate with transaction cost.

3.1 Analysis of Existing Work
The most related works to this paper are the UP-based, SCRP
and OLU strategies. Here we analyze their drawbacks.

First, let us focus on the transaction costs of these exist-
ing works. In practice, at the beginning of the tth period,
a Kelly portfolio manager intends to rebalance the portfolio
from closing price rebalanced portfolio bt−1 to a new port-
folio bt. After the rebalancing portfolio period, return st−1

will be decomposed into two parts: the net wealth sct−1 in the
new portfolio bt and the transaction costs incurred during the
buying and selling. If the wealth on asset i before rebalanc-
ing at the (t− 1)th period is higher than that after reblanc-
ing, that is, b

i

t−1st−1 ≥ bits
c
t−1, then there will be a selling

rebalancing with transaction cost rates cs. Otherwise, a buy-
ing rebalancing with transaction cost rates cb is required. De-
note Vt−1 = [V 1

t−1, · · · , V mt−1] as the trading volume at the
(t − 1)th period, where V it−1 = b̄it−1st−1 − bitsct−1, and let
x+ be the positive part of x. Formally,

st−1 = sct−1 + cs
m∑
i=1

(V it−1)
+

+ cb
m∑
i=1

(−V it−1)
+
.

Thus, after k trading periods, the portfolio manager obtains a
portfolio cumulative wealth with transaction cost Sck:

Sck =
k∏
j=1

[sj − (cs

m∑
i=1

(V ij )
+

+ cb

m∑
i=1

(−V ij )
+

)].

With this, we can see that the cumulative wealth and transac-
tion cost heavily rely on the target portfolio bt, price relative
xt (t = 1, · · · , n) and the total trading times k (k ≤ n).

Now we turn to the algorithms: UP-based, SCRP and
OLU, which investigate the online PS with transaction cost
in the framework of competitive analysis and all belong
to the benchmarks and follow-the-winner category [Li and

Hoi, 2014]. The UP-based transaction cost aware strat-
egy is extended from Cover’s UP and employs bi =∫

∆m
bSc

i−1(b)dµ(b)∫
∆m

Sc
i−1(b)dµ(b)

as a target portfolio. Although this strategy
keeps a moving target portfolio that can avoid the impact of
market information, it rebalances the portfolio vector at every
period, which means that the trade volume Vj 6= 0, and thus

loss is cs
m∑
i=1

(V ij )
+

+ cb
m∑
i=1

(−V ij )
+ at every period j, where

j = 1, · · · , n.
Rather than rebalancing at every investment period, SCRP

considers choosing k suitable periods from the whole invest-
ment periods (1, · · · , n) to rebalance and keeps a fixed target
portfolio b = [1/m, . . . , 1/m]T ∈ Rm+ , which means that the
trading volume Vj > 0 for the t1th, . . . , tkth periods, and
Vj = 0 for the other n-k periods, therefore the transaction
cost is reduced severely.

OLU uses an online update setting where the target portfo-
lio satisfies bt+1 = arg min

b∈∆m
(−log(bTxt)) + α ‖b −bt‖1 +

1
2 ‖b −bt‖

2
2 . The parameter α > 0 decides how often the

trading is done. A large α leads to lazy update of the port-
folio with a small number of transactions, while a small α
allows the portfolio to change more frequently, which means
Vj is close or equals to zero for some investment period j,
and thus the cost is reduced.

Though these strategies empirically effective on most
datasets, they have potential problems. First, the UP based
algorithms rebalance it portfolio vector at every investment
period, thus the total transaction cost increases rapidly, which
results in poor performance in practice. Moreover, UP is also
computationally demanding and has unsatisfactory empirical
performance [Helmbold et al., 1998]. Second, SCRP uses the
same weight on each asset/stock in all investment periods,
which does not change with the dynamic market and thus de-
grades the final cumulative wealth. Third, for OLU the diffi-
culty of parameter selection substantially influences the ef-
fectiveness of the algorithm and even the final cumulative
wealth. Considering these drawbacks of the existing works,
we try to develop a new SUP strategy with transaction cost,
which combines the idea of occasional rebalancing with a
moving target portfolio.

4 Semi-Universal Portfolios
4.1 Motivation
Theoretical and empirical results [Helmbold et al., 1998;
Kozat and Singer, 2011] for CRP strategy show that if a port-
folio rebalance only on a subset of the possible trading days, it
will reduce the transaction commissions remarkably and thus
achieve maximum cumulative wealth on most datasets. This
idea is also true for UP strategy. Let us consider a toy example
to illustrate this point.

Assume a market consists of two stocks and the invest-
ment periods is set to 6 days. Let [3, 3, 3, 0.33, 0.33, 0.33]
and [1/1.1, 1/1.1, 1/1.1, 1.1, 1.1, 1.1] be the price sequence
of the two stocks. Here c = 0.1. We assume the initial
vector of UP, SCRP, OLU, SUP are all b1 = [1/2, 1/2]T .
Let Sn(UP ) be the wealth achieved by the UP strategy:
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C2 C3 C4 C5 C6 Cost Scn
UP 0.046 0.092 0.095 0.059 0.038 0.329 1.384
SCRP 0.052 0.099 0 0 0 0.152 1.567
OLU 0.039 0.067 0.103 0.032 0.028 0.269 1.457
SUP 0.046 0.092 0 0 0 0.137 1.577

Table 1: The cost and wealth gain of SUP, UP, SCRP, OLU
when c = 0.1.

Scn(UP ) = S0

∏n
t=1(sct). The portfolio will rebalance at ev-

ery period. For SUP, if the cost of rebalancing Costt is larger
than the factor of increasing wealth st in UP at the end of tth
period, we will not trade at the beginning of (t+ 1)th and the
portfolio will run itself. Otherwise, the portfolio will rebal-
ance to Cover’s UP bt+1. This is the main point of SUP strat-
egy. For OLU, we use updates setting in Section 3.1 where
the parameters are η = 20, α = 0.1. OLU will also trade at
every period. For SCRP, we will not rebalance at (t+ 1)

th

period when Costt > st. Otherwise, the portfolio will rebal-
ance to the target portfolio b = [1/2, 1/2]T . We compute the
cost, the wealth gain and rebalancing times for each strategy,
which are illustrated in Table 1.

The results clearly show that the total cost of UP is the
largest with 5 times rebalancing, which thus leads to the
smallest wealth gain. By Contrast, the proposed methods has
the least transaction commissions with 2 times rebalancing
and attains the largest total wealth. Furthermore, both SUP
and SCRP do not change the portfolio at 4th, 5th, 6th period,
but the wealth gain of SUP is larger than SCRP, which shows
that the moving target portfolio used in SUP is superior to
the fixed target portfolio used in SCRP. Note that although
the toy example is on two assets, such advantage can be eas-
ily extended to the scenario of multiple assets. Based on the
above motivation, we propose SUP strategy in the following
and then solve it by developing an universal algorithm.

4.2 Two Semi-Universal Portfolio Strategies

SUP is to exploit the rebalancing of Cover’s UP at some
selected instants. We first give a standard SUP strategy,
which rebalances the portfolio vector to UP at selected
instants with all the knowledge of the past market. However,
with the increase of investment periods, it might be better
to consider only the most recent market. Therefore, we
present an alternative version SUP-q strategy by considering
a market sliding window–q, in which the rebalanced portfolio
depends on the price relative vector of the last q periods.

SUP strategy
We divide the total investment periods n into an arbitrary

number (say k) segments, and fit each segment to a Cover’s
UP. Let Tk,n be a rebalancing path with k rebalancings, which
is represented by (t1, · · · , tk). Given n and k, there exists

(
n− 1
k

) such possible choices for Tk,n.

For an arbitrary sequence of price relative vectors xn and
a given Cover UP bi, i = 1 . . . k, a competing SUP with a
rebalancing path Tk,n divides xn into k + 1 segments such

that xn is obtained by the concatenation of

{x1, . . . ,xt1−1} {xt1 , . . . ,xt2−1} . . . {xtk , . . . ,xn} .
The SUP with the rebalancing path Tk,n rebalances only
to Cover’s UP bi (i = 1, . . . , k) on the selected times
(t1, ..., tk). For notational simplicity, we assume t0 = 1 and
tk+1 = n + 1. Suppose we pay transaction cost only at
the start of each segment that rebalances to Cover’s UP bi
(i = 1, . . . , k).

In each segment, this SUP will achieve the accumulated
wealth si = bTi

⊗ti−1
t=ti−1

xt, where
⊗

denotes element-wise

product, b1 =
(

1
m , . . . ,

1
m

)
,bi =

∫∆m bSc
ti−1(b)dµ(b)

∫∆m Sc
ti−1(b)dµ(b) ,

and Scti−1(b) = Sti−1(b) −
∑ti−1
j=1 Costj , Sti−1(b) =

ti−1∏
j=1

bTxj , µ(b) equals to the uniform distribution. Then,

for a selected rebalancing path Tk,n, the total accumulated
wealth including commission costs c = cs + cb on xn by
using a Cover’s UP b is Sc(xn|Bk, Tk,n) = Πk+1

i=1 s
c
i , which

is the combined gains of each segment’s, where sci is the net
wealth in ith segment, i.e., sci = si − Costi.

SUP-q strategy
For the SUP strategy, Scti−1(b) is the net wealth in all the last
ti−1 periods. While for SUP-q strategy, Scti−1(b) means the
net wealth in the last q periods. That is, when we rebalance
to the universal portfolio, the portfolio depends only on the

prices of the last q periods, i.e., Scti−1(b) =
ti−1∏

k=ti−1−q
sck.

The other parts are the same as in the SUP strategy.

We next investigate the proposed strategies from the frame-
work of competing algorithms. In determining the best algo-
rithm in the competing class, we attempt to outperform all
such portfolios, including the one that has been optimized
by choosing the rebalancing path Tk,n and k and UP strat-
egy bi in each segment based on observing the entire se-
quence xt, t = 1, ..., n − 1 in advance, including the trans-
action costs. In other words, we try to seek an algorithm such
that even in the worst case, it will achieve the performance
of the best algorithm in the competition class, uniformly for
all sequences xn and all n. As such, we try to minimize the
following wealth ratio with transaction cost:

Rcb(n) = sup
xn

sup
Tk,n

Sc(xn |Bk, Tk,n )

Sc(xn
∣∣∣b̂u,n )

where Sc(xn|b̂u,n) =
∏n
t=1(b̂Tu,txt − Costt) is the wealth

achieved by this algorithm; b̂u,t is a sequential assignment at
time t, i.e., b̂u,t may be a function of x1, ...,xt−1 but does not
depend on the future; Tk,n represents any rebalancing times
(t1, ..., tk) and any k. Since the geometric average return over
the period is (Scn)(1/n), we will minimize the log geometric
average ratio lnRc

b(n)
n alternatively. In this way, we will show

that we can construct a sequential portfolio for which the log-
arithm of this ratio is at most k ln(n) + O(k + 1) for any of
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Tk,n, k or n, without knowledge of Tk,n, k and n a priori. So
we have the following universal theorem.

4.3 Universal Theorem
Theorem 1 Let {xt}t≥1 be an arbitrary sequence of price
relative vectors such that xt ∈ Rm+ for all t and where
some components of xt can be zero. Then, for all ε > 0
and given a Cover’s universal portfolio bi, i = 1 . . . k, bi ∈
Rm+ ,Σmj=1b

j
i = 1, we can construct sequential portfolios b̂u,t

with complexity linear in t per investment period, such that,
when applied to {xt}t≥1 for any c = cs + cb, and for all k,
n and a parameter δ > 0 for random walks, the wealth ratio
Rcb(n) satisfies
(i) SUP strategy,

lnRc
b(n)
n ≤ δ(k + 1)(m− 1) ln((1+c)n+1)

n

+(k + ε) lnn
n + 1

n (log(1 + ε) + klog 1
ε )

(ii) SUP-q strategy,
lnRc

b(n)
n ≤ δ(k + 1)(m− 1) ln((1+c)q+1)

n

+(k + ε) lnn
n + 1

n (log(1 + ε) + klog 1
ε )

for any Tk,n representing rebalancing times (t1, ..., tk) and
any k, such that b̂u,t does not depend on Tk,n, k or n.

Theorem 1 states that given a UP strategy bi (i = 1 . . . k),
the logarithm of the wealth ratio of the universal sequential
portfolio b̂u,t is withinO(k ln(n)) for any n of the best batch
SUP with any k rebalancing times (tuned to the underlying
sequence), uniformly, for every sequence of price relatives
{xt}t≥1 and c.

Note that the bound in Theorem 1 is different from those
given in SCRP [Kozat and Singer, 2011]. Our bound consists
of two parts: one is the regret on universal portfolio bi, which
comes from [Blum and Kalai, 1997]; another is the regret
on the rebalancing path Tk,n, where a Krichevsky-Trofimov
(KT) weighting [Willems, 1996] of the probability of the path
is used, which is the same as that in SCRP.In addition, our re-
gret is related to the parameter δ of random walks [Kalai and
Vempala, 2000] and c, which is also different from SCRP.
Due to space limit, here we omit the proof of Theorem 1.

4.4 Factor Graph-Based Implementation
We now need to solve semi-universal portfolio b̂u,t. Because
SUP defined in Section 4.1 is ideal, that is, if we compare the
wealth and cost at every period, for given n and k, there ex-

ist (
n− 1
k ) such possible rebalancing time Tk,n. Moreover,

with no information of the future price, we don’t know the
parameter k in the real world. Therefore, there are 2n−1 dif-
ferent rebalancing path and the algorithm complexity will be
very large.

Due to the above fact, we will use the factor graph-
based implementation [Kschischang et al., 2001] to solve
the b̂u,t. In Figure 1, any directed path represents a rebal-
ancing path where a horizontal move denotes no rebalanc-
ing, while an upward move represents a rebalancing. We

Figure 1: The factor graph. Each box represents a state,
where each number in the box is the time of the last rebal-
ancing instant. In each box, we have accumulated wealth for
each stock, j = 1,m.

label the last transition times with state variables st =
1, 2, ..., t, and each class represented as a box. We then de-
fine Sct (x

t, s, j) as the net wealth of jth asset/stock achieved
on xt by all sequential strategies that have the last rebal-
ancing time at st , i.e., if st = s then Sct (x

t, s, j) =

Pkt(st = s|st−1 = s)Sct−1(xt−1, s, j)xjt , s = 1, · · · , t− 1,
where Pkt is KT weighting [Willems, 1996]. If there is
a rebalancing at time t, then, the net wealth will rebal-
ance from Sct−1(xt−1, s, j) to Sct (x

t, t, j), and Sct (x
t, t, j) =

t−1∑
s=1

(
m∑

j=1

Sct−1(xt−1, s, j))Pkt(st = t|st−1 = s)bjtx
j
t , b

j
t is the

universal portfolio of j asset at tth period. We can
formulate the wealth achieved by each subsets, and
then, the wealth gain can be the sum of all the sub-
set Scu(xt) =

∑t−1
s=1 S

c
t (xt, s, j) + Sct (xt, t, j) . Since,

Scu (xn) =
n∏
t=1

Sc
u(xt)

Sc
u(xt−1) =

n∏
t=1

(b̂u,t)
T · xt. Finally, we can

obtain the recurrence formula of b̂u,t as follows:

b̂u,t =
t−1∑
s=1

m∑
j=1

σt−1 (s, j) {Pkt (st = s |st−1 = s) ej

+Pkt (st = t |st−1 = s)bt}
(1)

Here, σt−1 (s, j) =
Sc
t−1(xt−1,s,j)∑t−1

s=1

∑m
r=1 S

c
t−1(xt−1,s,r)

, bt is universal

portfolio at tth investment period. Due to space limit, here
we omit some detailed formulas and computation analysis.

Based on the analysis above, we can design the proposed
algorithm with a polynomial complexity. The computation
process for b̂u,t of SUP strategy is outlined in Algorithm 1,
and for m > 2 it is also outlined in the random walk Algo-
rithm 2.

5 Experiments
In this section, we use the index-wealth gain and turnover
to measure the performance of the SUP algorithms (SUP
and SUP-q), and compare them with four of the most rel-
evant transaction cost aware strategies (CRP [Cover, 1991],
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Algorithm 1 Online factor graph implementation for SUP
Input: xn price relative vector
Output: b the portfolio
Procedure:
Initialize b1 = [1/m, . . . , 1/m], S0 (0, 0, :) = b1

b̂u,t = b1
for t = 1 to N do

Wealth gain b̂Tu,txt
for s = 1 to t− 1 do

for j = 1 to m do
calculate Sct (xt, s, j)

end for
end for
for s = 1 to t− 1 do

for j = 1 to m do
calculate Sct (xt, t, j)

end for
end for
calculate b̂u,t+1 from (1)

end for

Algorithm 2 Random walk implementation for m > 2

Input: Minimum coordinate:δ0 Spacing of grid:δ Num-
ber of steps in random walk: S
Output: TheSamples∆m
Procedure:
for i = 1 to Samples do

for s = 1 to walk do
Choose 1 ≤ j ≤ n− 1 at random
Choose X ∈ {−1,+1} randomly
if δ0 ≤ ri +Xδ and δ0 ≤ rn −Xδ then
x := Qt(r

1, r2, ..., rn)
y := Qt(r

1, r2, ..., rj + Xδ, ..., rn − Xδ) %
[Kalai and Vempala, 2000].
With probability Min(1, x/y) rj := rj + Xδ,
rn = rn −Xδ;

end if
end for

end for

SCRP [Kozat and Singer, 2011], OLU [Das et al., 2013]
and UP [Blum and Kalai, 1997]) on two datasets: NYSE(O)
and SP500. The first two strategies CRP and SCRP are the
“Benchmark” strategies, UP and OLU belong to “follow the
winner” category. Moreover, SCRP and OLU are the two
newest transaction cost aware strategies for online PS. We
focus on the performance of investing into two stocks and
evaluate the average wealth over 50 pairs of stocks.

5.1 Datasets
Experiments are conducted on two historical datasets1. The
first one is the well-known NYSE(O) dataset, which consists
of 36 stocks in New York Stock Exchange for a 22-year pe-
riod [Cover, 1991]. The second is SP500, which is the Stan-

1All datasets and their compositions can be downloaded from
http://olps.stevenhoi.org/.

Table 2: Average net wealth for 50 independent trials (c=0,
0.001, 0.01, 0.02 and 0.05) on the NYSE(O) dataset.

Strategy c=0 c=0.001 c=0.01 c=0.02 c=0.05
CRP 23.519 23.387 22.233 21.017 17.754
SCRP 23.754 23.753 23.740 23.726 23.684
OLU 23.624 23.487 23.012 22.235 20.037
UP 23.513 23.429 22.693 21.909 19.758
SUP 23.909 23.908 23.894 23.880 23.837
SUP-q 24.092 24.090 24.078 24.064 24.024

Table 3: Average net wealth for 50 independent trials (c=0,
0.001, 0.01, 0.02 and 0.05) on the SP500 dataset.

Strategy c=0 c=0.001 c=0.01 c=0.02 c=0.05
CRP 1.7340 1.7339 1.7101 1.6764 1.5792
SCRP 1.7444 1.7410 1.7334 1.7329 1.7312
OLU 1.7439 1.6481 1.6316 1.6152 1.5664
UP 1.7428 1.7406 1.7210 1.6995 1.6371
SUP 1.7538 1.7538 1.7533 1.7527 1.7511
SUP-q 1.7541 1.7541 1.7535 1.7530 1.7513

dard & Poor’s 500 with 1276 daily prices from Jan. 2, 1998
to Jan. 31, 2003. We choose 2 days as an investment period.

5.2 Results

The two datasets NYSE(O) and SP500 contain 36 and 25 dif-
ferent stocks respectively, from each of which we randomly
select 50 pairs of stocks, and invest them using the six strate-
gies: CRP, SCRP, OLU, UP, SUP and SUP-q. Here, we set
q=100 in SUP-q, η=20 and α=0.1 in OLU. Table 2 and Ta-
ble 3 presents respectively the wealth achieved by various
strategies on NYSE(O) and SP500 when the cost ratio c=0,
0.001, 0.01, 0.02 and 0.05. In all cases, we can see that SUP
and SUP-q outperform the other strategies. Intuitively, SUP
and SUP-q can reduce the transaction costs and react well to
the dynamic market.

Fig. 2 shows the turnover results of the six strategies.
turnover indicates the average percentage of wealth traded
in each period, which is used for stability analysis of trading
strategy. From Fig. 2, we can see that SUP and SUP-q achieve
smaller turnover than the others. With smaller turnover and
higher net wealth, the SUP and SUP-q strategies are more
profitable and stable, and incur less transaction cost.

Figure 2: The turnover results with c=0.01.
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6 Conclusion
In this paper, we proposed a novel on-line PS strategy named
semi-universal portfolio (SUP) with transaction cost, which
rebalances its portfolio only at some selected instants. The
proposed approach can solve the transaction cost problem of
UP strategy caused by frequently adjusting portfolio at every
period. Experiments on real markets show that the proposed
SUP strategy can achieve better performance than major ex-
isting strategies. Future work will study other universal port-
folios and do theoretical analysis on the rebalancing problem.
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