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Abstract
In this paper, we study the problem of design-
ing new mechanisms for selling reserved instances
(also referred to as virtual machines) in cloud com-
puting. Unlike the practice in today’s clouds in
which users only have a few predefined options to
reserve instances (i.e., either 1-year reservation or
3-year reservation), we allow users to reserve re-
sources for any length and from any time point in
the future. Our goal is to maximize the social wel-
fare. We propose two mechanisms, one for the case
where all the jobs are tight (their lengths are exactly
their reservation time intervals), and the other for
the more general case where jobs are delayable and
have some flexibility on their reservations. Both of
the mechanisms are prompt in the sense that the ac-
ceptance and the payment for a job is determined at
the very moment of its arrival. We use competitive
analysis to evaluate the performance of our mecha-
nisms, and show that both of the mechanisms have
a competitive ratio of O(ln(kT )) under some mild
assumption, where k (res. T ) is the maximum ratio
between per-instance-hour valuation (res. length)
of any two jobs. We then prove that no algorithm
can achieve a competitive ratio better than ln(2kT )
under the same assumption. Therefore, our mecha-
nisms are optimal within a constant factor.

1 Introduction
Cloud computing becomes more and more popular nowa-
days because it can provide scalable and elastic access to
IT resources and applications via the Internet [AWS, 2015;
Azure, 2015; Google Cloud Platform, 2015]. Infrastructure
as a service (IaaS), in which computing resources are mainly
sold through instances (also referred to as virtual machines),
is one of the several fundamental models of cloud computing.
There are two main pricing models in today’s IaaS market:
the pay-as-you-go model (for on-demand instances), and the
subscription model (for reserved instances).1

1There is a third one, the auction based pricing model for spot
instances. However, it is supported by only one of the mainstream
cloud provider.

The pay-as-you-go model is the most commonly used pric-
ing mechanism, in which the cloud provider sets a fixed per-
instance-hour price, and users pay for their utilization of in-
stance hours. In the subscription model, a user should first
pay some upfront fee2 for the instances he/she is going to re-
serve for a pre-defined period of future time. Then the user
can use the reserved resource whenever he/she wants during
the subscription period, under a significantly discounted per-
instance-hour usage price.

The pay-as-you-go pricing mechanism is easy to imple-
ment, since users do not need to specify the length of their
jobs at the beginning. However, the pay-as-you-go price is
usually higher than the subscription price for the same type
of instances. Therefore, many users prefer to reserve some
resources in the near future, if their demand is predictable.
However, the options for buying reserved instances through
the subscription model are very limited in today’s cloud in-
dustry. For example, in Amazon EC2 users can only make
a 1-year or 3-year reservation, and they cannot adjust their
reservation according to their real demand.

To address the limitation of the current pricing model for
reserved instances, in this work we design new pricing mech-
anisms which allow users reserve instances depending on
their own need and offer them more flexibility. In particu-
lar, we allow a user i to specify the number of instances ni
he/she needs, the start time ri, the end time di, and the time
length li of his/her reservation. Note that the reservation can
be tight (i.e., di − ri = li) or delayable (i.e., di − ri > li).
For example, a user can submit a delayable reservation say-
ing that he/she wants to reserve 5 instances for one week dur-
ing next month. When the user submits his/her reservation to
the cloud, the system will post the total price for the reserva-
tion immediately. If he/she is willing to pay the price, his/her
reservation will be accepted. Otherwise, his/her reservation
will be rejected. Once a reservation is accepted it will never
be interrupted.

We focus on posted pricing mechanisms for selling re-
served instances because posted pricing mechanisms have
certain advantages. For instance, a user can adjust his/her
reservation interval to minimize his/her cost. He/she may also
have enough time to switch to other cloud providers if his/her
value is lower than the price offered by a cloud provider, since

2The upfront fee could be zero depending on his/her choice.
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posted pricing mechanisms provide immediate price response
to his/her request. Another advantage of posted price is that
users do not need to reveal their exact value to the mechanism,
which is their private information.

Our goal is to maximize the social welfare. We propose
two posted pricing mechanisms based on the utilization rate
of the cloud. The main idea of the mechanisms is that the
price of a reservation is positively correlated with the utiliza-
tion rate of the cloud at its reservation period: When a reser-
vation request arrives, if the cloud is heavily loaded (i.e. the
available capacity is relatively small) during its reservation
period, it needs to pay more to make it accepted; if its value
is not large enough, it will be rejected, and the available ca-
pacity will be left to more valuable requests. This kind of
pricing principle has already been used in many businesses
such as air tickets selling, hotel reservation and so on. Differ-
ent from those businesses, the cloud reservation faces more
challenges. For example, the reservation may be quite flexi-
ble, starts at any time and the demands are hard to predict.

Our work can be summarized as follows:
• We first study the case in which all the reservations are

tight. For this case, we propose a pricing mechanism
which determines the price of a reservation based on
the utilization rate of the cloud. The mechanism has a
competitive ratio of 1 + 12 ln(3kT + 1) under a mild
assumption, where k (res. T ) is the maximum ratio be-
tween per-instance-hour valuation (res. length) of any
two jobs.
• We then extend our result to a more general case where

reservations can be delayable and have some flexibility.
By slightly modifying the previous mechanism, we de-
rive a new pricing mechanism that has the same compet-
itive ratio.
• We also prove that no deterministic algorithm can obtain

a competitive ratio less than ln(2kT ) under the same as-
sumption, which shows the optimality (within a constant
factor) of our mechanisms.

2 Related Work
Because of its popularity and great impact to IT industry,
cloud computing has attracted a lot of attention from re-
search community [Abhishek et al., 2012; Fox et al., 2009;
Funke et al., 2012; Jain et al., 2014; Vinothina et al., 2012].
We only review those papers closely related to our work.

Our work is part of the large body of literature on design-
ing truthful online mechanisms [Friedman and Parkes, 2003;
Parkes et al., 2004; Hajiaghayi, 2005; Parkes, 2007]. How-
ever, most mechanisms in these papers are auction-based
mechanisms, in which the payment of each agent is deter-
mined at the (reported) deadline of his/her job, while in our
mechanisms, the payment is determined right upon the arrival
of the agent (i.e., posted price). In this sense, our setting is
more suitable for cloud computing because if an agent im-
mediately gets notified upon his arrival that his job cannot be
completed, he can switch to other cloud computing platforms
with minimum time cost.

The online resource allocation problem for cloud comput-
ing has been investigated in many papers [Mashayekhy et al.,

2014; Zaman and Grosu, 2012; Zhang et al., 2013]. A closely
related work is [Zhang et al., 2013], in which the authors pro-
pose an online mechanism framework for cloud resource allo-
cation. Different from our work, agents’ valuation functions
are continuous and concave in their model: An agent will get
a positive value even if his/her demand is only partially sat-
isfied, and the more resources he/she is allocated, the more
value he/she will get. In our model, the valuation function of
an agent is binary: He/she gets a positive value if and only if
his/her reservation is accepted and fully satisfied.

Azar and Khaitsin [2011] consider an online ad placement
problem which is similar to our problem. Each ad has an
arrival time, a deadline, a length and a value. Similar to
our work, they are interested in truthful “prompt” mechanism
where the payment is determined for an agent at the very mo-
ment of his/her arrival. The difference is that the jobs (ads) in
their setting are of the same length, while jobs (reservation)
in our model are of different length. That is, their problem
can be regarded as a special case of our problem.

Chakrabarty et al. [2013] consider the online version of
knapsack problem. Both their work and our work belong to a
class of online decision problem: whether to accept an item
(reservation) at its arrival. The difference is that their prob-
lem is much simpler than ours. Once an item is accepted in
the online knapsack problem, it will be in the knapsack for-
ever and one does not need to concern whether to pack the
item inside the knapsack. In contrast, in our model, once a
reservation is accepted, we need to find a time interval for the
reservation (and determine its payment), and the resources
can be re-used by other jobs when the time interval of the
reservation has passed.

The reservation problem of perishable products originates
from the airline industry [Williamson, 1992], and then draws
a lot of attention in hotel industry [Baker and Collier, 1999;
Bitran and Gilbert, 1996; Bitran and Mondschein, 1995;
Goldman et al., 2002; McMahon-Beattie, 2002; Schütze,
2008]. Comparing to the airline reservation, the hotel reser-
vation problem is more closely related to ours since the ho-
tel booking requests can occur for different lengths and can
therefore overlap. Bitran and Mondschein [1995] consider
the room allocation problem, and formulate this problem as a
stochastic and dynamic programming model. Baker and Col-
lier [1999] compare the performances of five booking con-
trol policies. Our work has obvious differences with these
work on hotel reservation. First, all these work focuses on
the revenue maximization, while our goal is to maximize the
social welfare. Second, they empirically evaluate the perfor-
mance of their algorithms by simulation, while we theoret-
ically study the performance of our pricing mechanisms by
competitive analysis.

3 Problem Formulation
In this section, we formally setup the problem of designing
pricing mechanisms for instance reservation in cloud.

Let C denote the capacity of a cloud provider, i.e., the
cloud provider has C instances (virtual machines) for reser-
vation. Customers/agents arrive sequentially and submit their
reservation requests. For simplicity, we also call a reservation
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j a job, which is characterized by (rj , dj , lj , nj , vj), where rj
is the earliest start time of the reservation, dj is the latest end
time of the reservation, lj(≤ dj − rj) is the time length of the
reservation, nj (� C) is number of instances to reserve, and
vj is the value of the reservation. We call a job tight (resp.
delayable) if lj = dj − rj (resp. lj < dj − rj ). For any job
set S, we use v(S) to denote

∑
j∈S vj .

We consider an online setting, in which jobs arrive online
and the provider has no knowledge about future jobs. The
agents are self-interested and may misreport the attributes of
their reservations to be better off. Once a job j arrives, the
agent (the owner of the job) submits its attributes r̂j , d̂j , l̂j and
n̂j to the cloud system (note that r̂j is not necessarily equal
rj , so are d̂j etc.), the system immediately calculates the price
pj of the reservation, and then the agent decides whether to
accept the price. The utility of j is vj − pj if he/she accepts
the price, and 0 otherwise. We assume each agent is rational:
he/she will accept the price and buy the reserved instances
if vj ≥ pj , and reject the price and give up the reservation
otherwise. Note that the agent does not need to reveal his/her
value vj to the system. Similar to [Hajiaghayi, 2005], we
restrict the misreports of agents, i.e., r̂j ≥ rj , d̂j ≤ dj , l̂j ≥
lj and n̂j ≥ nj .

In consideration of the potential misreport of agents, we
are concerned with incentive compatible (also truthful) mech-
anisms. A mechanism is incentive compatible (IC) if, for any
agent j, regardless of the behaviors of other agents, truthful
reporting his/her job maximizes his/her utility.

The goal of the system is to design mechanisms that can
maximize the social welfare (the total value of the accepted
jobs). Once a job is accepted, it cannot be rejected or inter-
rupted in the future. We use the competitive ratio [Parkes,
2007] to evaluate the performance of a mechanism, i.e., to
compare the mechanism against the optimal offline solution.

Definition 1. A mechanism M is β-competitive in terms
of social welfare if for any job sequence θ, we have
SW (M, θ) ≥ 1/βOPT (θ), where SW (M, θ) denotes the
social welfare achieved by M over θ and OPT (θ) denotes
the optimal social welfare over θ.

It is easy to verify that no mechanism can achieve a con-
stant competitive ratio if there is no restriction on lengths or
value density of jobs. Therefore, we make the following as-
sumptions.

• We assume the per-instance-hour valuation ρj =
vj
nj lj

of every job is supported in [ρmin, ρmax].

• The length of every job falls in a known interval
[lmin, lmax].

Denote k := ρmax

ρmin
and T := lmax

lmin
. Without loss of gener-

ality, we further assume ρmin = 1 and lmin = 1.

4 The Mechanisms
In this section, we design mechanisms for selling reserved in-
stances. To warm up, we first consider a special case where
all the jobs are tight. This case reflects the way that cur-
rent clouds provide reserve services. Therefore it is helpful

to study it separately to provide theoretical guideline to real
applications. In addition, this case is much easier and can
help to demonstrate the idea of our proposal.

We then extend our result to the general case in which jobs
may be delayable.

In our mechanisms, when a job j arrives, we will set a
pj for its request (r̂j , d̂j , l̂j , n̂j). If the job (agent) accepts
the price and pays for it for its reservation, then we say our
mechanism accepts the job.

4.1 A Simple Case with Tight Jobs
In this subsection, we consider a simple case that all jobs are
tight, i.e. lj = dj − rj ,∀j. In other words, [rj , dj ] is the
exact reservation time period for request j. In the following,
we first present our post-price mechanism and then prove that
the competitive ratio of the mechanism is O(ln(kT )).

Let γj(t) denote the utilization rate of the cloud at time t
when job j arrives, i.e.

γj(t) :=
∑

i∈Sj and bric≤t<ddie

ni
C
,

where Sj denotes the set of jobs that come earlier than j and
are accepted by the cloud.

Our proposed mechanism is shown in Mechanism 1, in
which f(x) is an auxiliary function defined as below.

f(x) := (3kT + 1)x − 1

The intuitive requirement on the auxiliary function is that the
price monotonically depends on the cloud utilization rate x:
the higher the utilization rate, the higher the price. With this
in mind, one can actually choose different forms of auxiliary
functions, and will correspondingly obtain different competi-
tive ratios. We show that this specific form can lead to a good
competitive ratio.

Mechanism 1
Pricing rule:
When job j arrives,

• If j does not overfill the system (i.e. ∀t ∈
[
brjc, ddje

)
,

γj(t) +
nj

C ≤ 1), set price

pj =

∫ ddje
brjc

∫ γj(t)+
nj
C

γj(t)

f(x) · ρmin · C
3

dxdt;

• Otherwise, set price pj = +∞.
Allocation rule:
If j accepts the price pj and pays for it, allocate nj instances
to j from rj to dj .

Note that when calculating the payment in the mechanism,
we round the start time downwardly and the end time up-
wardly to integers. For example, for a job with rj = 0.5 and
dj = 1.5, we will treat it as rj = 0 and dj = 2; if it is ac-
cepted, we will assume it occupies the allocated instances for
the time interval [0, 2) while computing the utilization rate of
the cloud, even if its actual reservation interval is [0.5, 1.5).
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The purpose of such an operation is to ease the theoretical
analysis.

Since Mechanism 1 gives a take-it-or-leave-it price, it is
obviously truthful about user’s private value. Recall that we
restrict the misreports of each agent j to r̂j ≥ rj , d̂j ≤ dj ,
l̂j ≥ lj and n̂j ≥ nj . It is easy to check that Mechanism 1 is
also truthful about other attributes.

By the definition of γj(t) we have the following observa-
tion.

Observation 1. For any tz ∈ Z+ and any j, the utilization
rate γj(t) during [tz, tz + 1) is a constant.

Theorem 1. Mechanism 1 is IC, and its competitive ratio
is at most 1 + 12 ln(3kT + 1) if all the jobs are tight and
nj

C ≤
ln(3/2)

ln(3kT+1) ,∀j.

For any job sequence, denote S as the set of jobs accepted
by Mechanism 1 and S∗ as the set of jobs accepted by the
optimal offline algorithm. We need to prove

v(S∗)

v(S)
=
v(S ∩ S∗) + v(S∗ \ S)

v(S)
< 1 + 12 ln(3kT + 1).

Since v(S ∩ S∗) ≤ v(S), we only need to prove

v(S∗ \ S)
v(S)

< 12 ln(3kT + 1). (1)

Let γ(t) be the utilization rate of time t after all the jobs in
S have been accepted. We will prove the following inequal-
ities separately (Lemmas 1-2), and then Theorem 1 follows
directly.

v(S∗ \ S) < 2

∫ +∞

0

f(γ(t)) · ρmin · Cdt

v(S) ≥
∫ +∞
0

f(γ(t)) · ρmin · Cdt
6 ln(3kT + 1)

Lemma 1. v(S∗ \ S) < 2
∫ +∞
0

f(γ(t)) · ρmin · Cdt.

Proof. Note that we assume all the jobs are rational. For any
job j ∈ S∗ \ S, its rejection by the mechanism due to one
of the two reasons: vj < pj or the system will over fill if
accepting j. We show that in both cases,

vj ≤
∫ ddje
brjc

f(γj(t) +
nj

C
) · ρmin · nj

3
dt. (2)

If vj < pj , then by the definition of pj and the monotonic-
ity of f(x), we have

vj < pj =

∫ ddje
brjc

∫ γj(t)+
nj
C

γj(t)

f(x) · ρmin · C
3

dxdt

≤
∫ ddje
brjc

f(γj(t) +
nj

C
) · ρmin · nj

3
dt,

If it is the over-fill case, by Observation 1, there must exist
some time interval [t1, t2) ⊆

[
brjc, ddje

)
such that t2− t1 ≥

1 and γj(t) +
nj

C > 1 for any t ∈ [t1, t2). According to the
assumptions on job’s attributes, we have

vj ≤ kTρmin · nj =
f(1)ρmin · nj

3
,

which combines with γj(t) +
nj

C > 1 for any t ∈ [t1, t2)
implying

vj ≤
∫ t2

t1

f(1) · ρmin · nj
3

dt

<

∫ t2

t1

f(γj(t) +
nj

C
) · ρmin · nj

3
dt

≤
∫ ddje
brjc

f(γj(t) +
nj

C
) · ρmin · nj

3
dt.

With all the above facts, we have

v(S∗ \ S) <
∑

j∈S∗\S

∫ ddje
brjc

f(γj(t) +
nj

C
) · ρmin · nj

3
dt

≤
∑

j∈S∗\S

∫ ddje
brjc

f(γ(t) +
nj

C
) · ρmin · nj
3

dt

=
∑

j∈S∗\S

∫ ddje
brjc

ρmin · nj
3

· [(3kT + 1)
nj
C · f(γ(t)) +

(3kT + 1)
nj
C − 1]dt.

Recall that nj

C ≤
ln(3/2)

ln(3kT+1) . Thus we get (3kT + 1)
nj
C ≤ 3

2 .
Furthermore,

v(S∗ \ S) <
∑

j∈S∗\S

∫ ddje
brjc

f(γ(t)) · ρminnj
2

dt

+
∑

j∈S∗\S

∫ ddje
brjc

ρminnj
6

dt

≤ 1

2

∫ +∞

0

f(γ(t)) · ρmin ·
( ∑
j∈S∗\S and brjc≤t<ddje

nj
)
dt

+
∑

j∈S∗\S

(lj + 2)ρminnj
6

≤
∫ +∞

0

f(γ(t)) · ρmin · Cdt+
v(S∗ \ S)

2
.

The last inequality is from the fact that lj ≥ 1 and vj ≥
ljnjρmin.

Therefore,

v(S∗ \ S) < 2

∫ +∞

0

f(γ(t)) · ρmin · Cdt.

This completes the proof.

Lemma 2. v(S) ≥
∫ +∞
0

f(γ(t))·ρmin·Cdt
6 ln(3kT+1) .

Proof. Since all the jobs in S are accepted by the mechanism
and all the jobs are rational, we obtain

v(S) ≥
∑
j∈S

∫ ddje
brjc

∫ γj(t)+
nj
C

γj(t)

f(x) · ρmin · C
3

dxdt

=
∑
j∈S

∫ ddje
brjc

∫ γj(t)+
nj
C

γj(t)

(
(3kT + 1)x − 1

)
ρmin · C

3
dxdt.(3)
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Since for any job j, lj = dj − rj ≥ 1 and its per-instance-
hour value is at least ρmin, we have

∑
j∈S

∫ ddje
brjc

∫ γj(t)+
nj
C

γj(t)

ρmin · C
3

dxdt

≤
∑
j∈S

(lj + 2) · ρmin · nj
3

≤ v(S). (4)

Using (3) and (4), we have

2v(S) ≥
∑
j∈S

∫ ddje
brjc

∫ γj(t)+
nj
C

γj(t)

(3kT + 1)x · ρminC

3
dxdt

=
1

3

∫
t:γ(t) 6=0

∫ γ(t)

0

(3kT + 1)x · ρminCdxdt

=
1

3 ln(3kT + 1)

∫ +∞

0

f(γ(t)) · ρmin · Cdt.

Thus we derive

v(S) ≥
∫ +∞
0

f(γ(t)) · ρmin · Cdt
6 ln(3kT + 1)

This completes the proof.

4.2 The General Case with Delayable Jobs

In this subsection, we consider the general case that lj ≤
dj − rj for any job j. For this general case, we show that
with a slight modification on Mechanism 1, we obtain a new
mechanism with the same competitive ratio for the general
case.

In our mechanism, for every job j, we will only consider
allocating it to time interval [rj , rj+ lj) or [tz, tz+ lj), where
tz ∈ Z and drje ≤ tz ≤ bdj − ljc. Let a∗j denote the start
time of the interval allocated to j if j is accepted by our mech-
anism. Apparently,

a∗j ∈ Aj := {rj , drje, drje+ 1, . . . , bdj − ljc}.

We still use γj(t) to denote the utilization rate of every time t
according to the allocation of the mechanism when j arrives,
i.e.

γj(t) :=
∑

i∈Sj and a∗i≤t<da
∗
i +lie

ni
C
,

where Sj denotes the set of jobs that come earlier than j and
are accepted by the cloud. Define AFj ⊆ Aj to be the set of
feasible start time that if allocate j from this time, the system
will not overfill, i.e.,

AFj := {aj ∈ Aj : ∀t ∈ [bajc, daj + lje), γj(t) +
nj
C
≤ 1}.

Besides, the auxiliary function f(x) is the same as that in the
previous subsection.

Mechanism 2
Pricing rule:
When job j arrives,

• If AFj 6= ∅, set price

pj = min
aj∈AF

j

∫ daj+lje
bajc

∫ γj(t)+
nj
C

γj(t)

f(x) · ρmin · C
3

dxdt;

• Otherwise, set price pj = +∞.
Allocation rule:
If j accepts the price pj , allocate j to time interval [a∗j , a

∗
j +

lj), where

a∗j = arg min
aj∈AF

j

∫ daj+lje
bajc

∫ γj(t)+
nj
C

γj(t)

f(x) · ρmin · C
3

dxdt.

Note in Mechanism 2, an agent still does not need to re-
veal its private value. Now we show the competitive ratio of
Mechanism 2 is also O(ln(kT )) for the case with delayable
jobs.

Theorem 2. Mechanism 2 is IC, and its competitive ratio is
at most 1 + 12 ln(3kT + 1) if nj

C ≤
ln(3/2)

ln(3kT+1) ,∀j.

Proof. We still use S and S∗ to denote the sets of jobs that
are accepted by Mechanism 2 and the optimal offline algo-
rithm respectively. For any job j ∈ S∗ \ S, denote its
allocated time interval by the optimal offline algorithm as
[tj , tj + lj) ⊆ [rj , dj). Since j is rational and not accepted
by our mechanism, it must be one of the following cases:
• The following inequality holds.∫ dtj+lje

btjc

∫ γj(t)+
nj
C

γj(t)

f(x) · ρmin · C
3

dxdt

≥ min
aj∈AF

j

∫ dsj+lje
bsjc

∫ γj(t)+
nj
C

γj(t)

f(x) · ρmin · C
3

dxdt

> vj

• There exists some time period [t1, t2) ⊆ [ btjc, dsj+lje)
such that γj(t) +

nj

C > 1, ∀t ∈ [t1, t2) and t2 − t1 ≥ 1.

Then similar to the proof of Theorem 1, we can still prove

v(S∗ \ S) < 2

∫ +∞

0

f(γ(t)) · ρmin · Cdt

and

v(S) ≥
∫ +∞
0

f(γ(t)) · ρmin · Cdt
6 ln(3kT + 1)

,

where γ(t) is the final utilization rate after all jobs in S are
accepted by Mechanism 2. Thus

v(S∗)

v(S)
=
v(S ∩ S∗) + v(S∗ \ S)

v(S)
< 1 + 12 ln(3kT + 1).

This completes the proof.
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4.3 Optimality of Our Mechanisms
One may wonder whether the competitive ratio bound of our
mechanisms depends on the assumption that nj

C ≤
ln(3/2)

ln(3kT+1) ,
∀j. In fact, without any restriction on nj and C, no deter-
ministic algorithm can obtain a competitive ration better than
C · kT . This can be seen from the following example.

Example 3. Consider two jobs. The first job has unit length,
unit demand, unit value, and its reservation interval is [0, 1].
For the second job, its length is T , its number of machines is
C, its value is C · kT and its reservation interval is [0, T ],
i.e., their types are (0, 1, 1, 1, 1) and (0, T, T, C,C · kT ), re-
spectively. The first job comes earlier than the second one. If
an algorithm accepts the first job, the second job will not be
accepted, and then the competitive ratio is at least C · kT . If
the mechanism does not accept the first job, the second job
will not show up, and then the competitive ratio is∞.

Besides, in today’s cloud industry, the capacity C is very
large, e.g., a provider usually hosts tens of thousands of
servers which can serve even more virtual instances. There-
fore, our assumption holds in practice.

In the following, we give a lower bound Ω(ln(kT )) on the
competitive ratio of any deterministic algorithm for the case
nj = 1,∀j. This bound shows that our mechanisms are opti-
mal within a constant factor.

Theorem 3. The competitive ratio of any deterministic algo-
rithm for this problem is at least ln(2kT ).

Proof. We prove the theorem by constructing an example and
show that no deterministic algorithm performs well for this
example.

In this example we assume nj = 1 for any job j. Therefore
the maximum value of any job j is at most kT .

Given any parameter η > 0. Let

M = log1+η(2kT ) =
ln(2kT )

ln(1 + η)
and M ′ = ln1+η(kT ).

Suppose there are M + 1 bundles of jobs. For i =
0, 1, . . . ,M ′, the i-th bundle consists of C tight jobs with
value (1 + η)i, and all the C jobs’ reservation periods in-
clude a same time interval [t, t+ 1]. For i = M ′+ 1, . . . ,M ,
the i-th bundle consists of 2C tight jobs with value 1

2 (1+η)i,
half of which end at t+0.5, and the others start at t+0.5. Be-
sides, the i-th bundle comes earlier than the (i+ 1)-th bundle
for i = 1, 2, . . . ,M − 1.

Given any online algorithm. For i = 1, 2, . . . ,M ′, let xi
be the number of jobs in the i-th bundle accepted by the algo-
rithm. For i = M ′+1, . . . ,M , let yi (resp. zi) be the number
of accepted jobs in i-th bundle that end at t+ 0.5 (resp. start
at t+0.5), and xi be yi+zi

2 . Since we can only accept at most
C jobs that reserving a same time interval, thus we have

M′∑
i=0

xi +

M∑
i=M′+1

yi ≤ C

M′∑
i=0

xi +

M∑
i=M′+1

zi ≤ C

Adding the above two inequalities, we have

M∑
i=0

xi ≤ C.

We first prove that there always exists some h (1 ≤ h ≤
M ) such that

h∑
i=0

xi · (1 + η)i

(1 + η)h
≤ C(η + 1)

ηM
.

Denote Sj =
∑j
i=0

xi·(1+η)i
(1+η)j . Then we have

M∑
j=1

Sj =

M∑
j=1

j∑
i=0

xi · (1 + η)i

(1 + η)j
≤

M∑
i=0

xi · (
M∑
j=i

(1 + η)i−j)

≤
M∑
i=0

xi
η + 1

η
≤ C(η + 1)

η
.

Since all Sj ≥ 0, thus there must exist some h ∈ [1,M ] such
that Sh ≤ C(η+1)

ηM .
If we only use the first h + 1 bundles as input, then the

jobs that are accepted by the algorithm must be the same as
the previous one (M + 1 bundles), and the total value of the
accepted jobs is

h∑
i=0

xi · (1 + η)i.

However, apparently the optimal offline algorithm is to ac-
cept all the jobs in the h-th bundle whose social welfare is
C · (1 + η)h. Then the competitive ratio of the given online
algorithm is at least

ηM

1 + η
=

ln(2kT )

1 + η
· η

ln(1 + η)
.

Since limη→0
η

ln(1+η) = 1, we derive the conclusion by set-
ting η → 0.

5 Future Work
In this work, we have designed two mechanisms with worst-
case performance guarantee for selling reserved instances in
cloud. There are multiple aspects to investigate to make the
mechanisms practically useful.

First, we have assumed that the agents know the lengths
of their reservations and required them to report their job
lengths. It is possible that they do not have this knowledge.
The cloud provider may need to take this responsibility. How
to estimate the length of a job is an independent research
topic.

Second, we have considered only one cloud provider. In
today’s cloud market, there are usually multiple providers of-
fering the same or similar service. It is interesting to consider
the competition between cloud providers.

Third, we have focused on social welfare maximization.
Another research topic is revenue maximization for the cloud
provider.
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