Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

Maximum Satisfiability Using Cores and Correction Sets

Nikolaj Bjorner
Microsoft Research
Redmond, USA
nbjorner @microsoft.com

Abstract

Core-guided MAXSAT algorithms dominate other
methods in solving industrial MAXSAT problems.
In this work, we propose a new efficient algorithm
that is guided by correction sets and cores. At ev-
ery iteration, the algorithm obtains a correction set
or a core, which is then used to rewrite the for-
mula using incremental and succinct transforma-
tions. We theoretically show that correction sets
and cores have complementary strengths and em-
pirically demonstrate that their combination leads
to an efficient MAXSAT solver that outperforms
state-of-the-art WPMS solvers on the 2014 Eval-
uation on industrial instances.

Introduction

Maximum Satisfiability (MAXSAT) is an optimisation ver-
sion of satisfiability (SAT) that contains both hard clauses and
weighted soft clauses. A solution of MAXSAT is an assign-
ment that satisfies all hard clauses and violates a minimum
weight subset of soft clauses. Many industrial applications
can be naturally encoded in MAXSAT. Successful application
areas include bioinformatics [Strickland et al., 2005; Graga
et al., 2012], planning and scheduling [Cooper et al., 2006;
Vasquez and Hao, 2001; Juma ef al., 2012].

There exist a number of different approaches to solving
MAXSAT. The most successful approach for industrial prob-
lems performs iterative solving using a SAT solver as an or-
acle on each iteration [Morgado er al., 2013; Ansétegui et
al., 2013]. Existing solvers differ in how they perform opti-
mal cost estimation, e.g. linear or binary search, and the kind
of information they use to estimate the cost, e.g. cores, the
structure of cores, or satisfying assignments. While there are
many algorithms that perform search on either upper bound or
lower bound of the optimal cost [Ansétegui er al., 2013; Mor-
gado et al., 2013; Narodytska and Bacchus, 2014; Morgado
et al., 2014], there are very few algorithms that efficiently
perform combined search over two bounds, e.g. [Heras et al.,
2011; Ignatiev et al., 2014]. The current state-of-the-art ap-
proach for combined search performs binary-like search over
the range of possible cost values, which can be exponentially
more efficient than linear search. However, one of the draw-
backs of binary search-based algorithms is that they modify

246

Nina Narodytska
Carnegie Mellon University
Pittsburgh, USA
ninan@cs.cmu.edu

the formula using expensive PseudoBoolean (PB) constraints,
while, for example, the lower bound-based linear search does
not introduce PB constraints. PB constraints increase the size
of the formula and, potentially, slow down the solver.

We present an efficient and robust algorithm that takes ad-
vantage of lower and upper bounds estimates. Our approach
is in the spirit of linear search [Marques-Silva and Planes,
2008], as we create a sequence of SAT problems. A key
strength of our algorithm is that it uses succinct formula trans-
formations that do not use PB constraints and can be applied
incrementally. Our algorithm is based on a fundamental du-
ality between cores and correction sets. In each incremen-
tal step it arbitrates between cores and correction sets mak-
ing low overhead progress towards optimality. Experimen-
tal results demonstrate the potential of this approach: our
PRIMALDUALMAXSAT solver, shows robust performance
and outperforms the best WPMS algorithms on industrial in-
stances by a noticable margin.

Background

A satisfiability problem consists of a set of clauses ¢ =
{C1,...,Cp} over a set of Boolean variables X. A literal
[is either a variable x; € X or its negation T;. A clause C'is a
disjunction of literals ({1 v --- Vv 1,). A unit clause is a clause
containing only one literal. We denote the set of variables in
the formula ¢ by vars(¢). An assignment I of the variables
vars(¢) is a mapping vars(¢) — {0, 1}, extended to literals
by I(Z) = 1 - I(x), clauses I(C) = max{I(l) | [e C},
and sets of clauses ¢, by I(¢) = min{I(C) | C € ¢}. If
I(¢) =1, then I is a solution to the satisfiability problem ¢.

A weighted clause is a pair (C,w), where C is a clause
and w is the weight of C, w € N u {0}, that gives the
cost of violating C. Clauses with w = oo are called hard
clauses; otherwise, the clause is a soft clause. A Weighted
Partial MAXSAT (WPMS) Problem consists of a set of a
set of weighted clauses, ¢ = {(C1,w1),...,(Cm,wm)}. A
special case of WPM is Partial MAXSAT (PMS), where the
problem weights are in the set {1, c0}. We denote the set of
soft clauses in ¢ by softCis(¢) and the set of hard clauses by
hardClis(¢). W.lo.g., we can assume that soft clauses (C, w)
in ¢ are unit clauses (b, w) as ¢ can be converted to this form
by introducing reification variables: ¢ = [¢ \ {(C,w)}] U
{(C < b),(b,w)}. We also assume standard clausification,
e.g., C<bdenotes {(bv C)} U Uec{(lVvD)}.

An assignment [is feasible for ¢ iff I satisfies all
hard clauses of ¢. The cost of I is the sum of weights
of clauses that it falsifies: cost(I,®) = ¥ (4 w)epn1(b)=0 W-
I is an optimal assignment for ¢ iff it is a feasible as-
signment of minimal cost. We denote this minimal cost by
cost(¢) = miny i feasivle c0st(I, ¢). The maximal finite cost
is mazcost($) = ¥ (p.w)eprw<oo W-

To simplify notation, we omit weights for hard clauses and
we assume they are satisfiable. A ¢ C ¢ is a core of ¢ iff
 is unsatisfiable. A core ¢ is minimal iff V(b,w) € @, © \
{(b,w)} is a satisfiable formula. A 7 € ¢ is a correction set iff
¢~ is satisfiable. A correction set 7 is minimal iff ¥V (b, w) €
m o~ (m~ {(b,w)}) is unsatisfiable. The cost of a correction
set 7 is maxcost(m). A smallest minimal correction set 7 is a
minimum correction set. We denote Z(¢) the set of solutions
of ¢. A solution I corresponds to a correction set 7 iff 7(b;) =
0 for (b;) € wand 1(b;) = 1 otherwise.

Related work

There are two main classes of SAT-based algorithms for
solving MAXSAT [Morgado et al., 2013]. Algorithms in the
first class perform linear search on the value of the cost. It
can be partitioned into two subclasses. The first subclass of
solvers perform so called UNSAT-SAT search (LBLINEAR),
e.g. [Ansétegui et al., 2013; Manquinho et al., 2009; Naro-
dytska and Bacchus, 2014; Morgado et al., 2014]. They start
with an unsatisfiable formula and gradually increase the lower
bound on the optimal cost by performing a sequence of relax-
ations of the formula. The second subclass of solvers perform
so called SAT-UNSAT search (UBLINEAR). They start with a
satisfiable formula and perform a sequence of strengthenings
on it [Parrain, 2010; Martins et al., 2014]. The second class
combines upper and lower bound searches by performing bi-
nary or linear search on the cost value [Cimatti er al., 2010;
Heras et al., 2011; Morgado et al., 2012; Marques-Silva and
Planes, 2008; Ignatiev et al., 2014].

The work [Marques-Silva and Planes, 2008] is the most
relevant to us as it performs lower and upper bound search.
The main distinction of our approach is in how we transform
the formula based on using a core or a correction set. In par-
ticular, we do not use PB constraints in our transformations.

PRIMALDUALMAXSAT algorithm

We first present our algorithm for unweighted partial
MAXSAT, so that all soft clauses have weight one. The
weighted case, solved using cloning, is discussed later.

The algorithm searches for cores and correction sets of the
formula simultaneously by performing a sequence of SAT
calls. At each step the algorithm detects either a core or a
correction set. However, we do not know in advance which of
two will be found and let our search procedure decide on this.
The algorithm terminates in at most m steps, which is the
same worst case guarantee as linear search algorithms. The
algorithm uses two phases: a partition and a transformation
phase. Algorithm 1 shows the pseudocode. Core minimiza-
tion (line 23) is optional. It does not affect correctness. Let us
detail the two phases.

Partition. The algorithm partitions all soft clauses into two
sets ' and 7" at the ith round. The first set of soft clauses

247

must be satisfied along with the hard clauses and the second
set of clauses can be violated at this round. We call ¢* a can-
didate core and 7' a candidate correction set. Note that by
splitting soft clauses, we guarantee that either ¢° is a valid
core or 7' a valid correction set. The main question here
is how to perform partitioning of the clauses. Our idea is
inspired by relaxation search [Rosa and Giunchiglia, 2013;
Bacchus et al., 2014]. Relaxation search branches on vari-
ables from soft clauses positively. Using unit propagation,
these decisions may force other variables to be falsified. After
all variables from soft clauses are instantiated (Algorithm 1,
lines 7-10), we have a candidate core ¢" = {b | I(b) = 1} and
a candidate correction set 7* = {b | I(b) = 0}. We call the
SAT solver in the context of hardCls(¢$"), and partial assign-
ment / in line 13 to determine satisfiability of hardCls(¢") |r.
If hardCls(¢") |; is UNSAT then it returns a subset of ¢* as a
valid core; otherwise 7* is a valid correction set.

The partition phase has several useful properties. First, if
the solver is satisfiable using a candidate set 7, then it is min-
imal (Proposition 2 in [Bacchus ef al., 2014]). So there is no
need to reduce it. Second, suppose I (b) = 0 is implied during
the partition phase. Then {b} u {b’ | I(d") = 1} is a core of
¢. In this case, if checking whether 7 is a correction set is
computationally expensive, we can apply the primal transfor-
mation to this core. Third, suppose I is a partial assignment
such that [{b | I(b) = 0}| > ub. Then I is not going to be ex-
tended to a minimal solution. In this case, we can block this
assignment and resume the search. We omit these extensions
in our pseudocode.

Transformation. The transformation phase takes as input
a core or a correction set. If hardCls(¢") | is satisfiable
and 7' is empty then we can satisfy all soft clauses in ¢
and the algorithm terminates (line 16). A dual case is when
hardCls(¢") |1 is unsatisfiable and ¢" is empty (line 18). In
this case, hardCls(¢") is unsatisfiable and the algorithm ter-
minates. If neither of these cases hold, we perform transfor-
mations. To ensure overall correctness we identify three main
properties of the transformations of Algorithm 1. The prop-
erties ensure that costs are computed correctly, the algorithm
terminates and that the overall space overhead is linear in each
round. Each transformation takes ¢ and (/7 as input. It intro-
duces new variables, adds new clauses and deletes some soft
clauses in ¢. Let SZ () be the set of solutions that assign all
clauses in 7 to false.

Property 1 (TransformCore) Let @ be a core of ¢ and sup-
pose ¢’ = TransformCore(, p). Then we require:

Solutions There is a bijection A between I(¢) and Z(¢")
such that for I € Z(¢) and I' = A(I): cost(I) =
cost(I") + 1.

Cost Update cost(¢’) = cost(¢) —1,

Termination mazcost(¢’) < mazcost().

Property 2 (TransformCSet) Let 7 be a correction set of ¢
and suppose ¢’ = TransformCSet(¢,). Then we require:

Solutions There is a bijection I" between I(¢") and Z(¢) ~
SZ(w) such that for I € Z(¢p) ~ SI(n) and I' =T'(I):
cost(I) = cost(I").

Cost Update cost(¢) = min{cost(¢"), mazcost(m)},

Termination mazcost(¢') < mazcost(p).

Algorithm 1 PRIMALDUALMAXSAT

Input: ¢ ={(b1,1),...,(bm,1),Crm+1,...
Output: (I*, cost(¢))

,Cn}

1 i=0,¢°=¢,ub=m,lb=0
2 I* ={b1 =0,..,bm = 0} {The current best solution }
3 solver.add(hardCls(¢°)) {Add hard clauses to a SAT solver}
4 while ib < ub do
5 Undo all branches, reset I
6 {The ‘partition’ phase}
7 for (b,1) € ¢* do
8 if 7(b) is undefined then
9 solver.branch(b = 1) { updates I(b) = 1}
10 solver.propagate() { updates I with implied assignments }
11t ={(b1) e ¢* | I(b) = 1} {A candidate core}
12 7wt ={(b,1) € ¢* | I(b) = 0} {A candidate min correction set}
13 (issat, p?) = solver.solve(I)
14 {The ‘transformation” phase }
15 if (issat A 7' =) then
16 return (1, 1b)
17 if (~issat A ' = &) then
18 return (I, ub)
19 if (issat A 7t + &) then
20 ¢**1 = TransformCSet(¢?,)
21 if mazcost(n?) < ub - 1bthen I* = I, ub = mazcost(n®) + b
22 if (—issat A @' # &) then
23 [minimize(p®)] {Optional core minimisation}
24 ¢**1 = TransformCore(¢?, %)
25 b=Ib+1
26 i=1+1

27 solver.add(hardCls(¢**')\hardCls(¢*)) {Add new hard clauses}
28 return (I*,ub)

Next we prove correctness of Algorithm 1 assuming that
the transformation procedure satisfies Properties 1-2.

Theorem 1 Consider TransformCore and TransformCSet
that satisfy Properties 1-2. Then Algorithm 1 is correct and
terminates in at most m steps, where m = |softCls(¢)|.

Proof: First, we prove that the algorithm terminates. Note
that at each step we have mazcost(¢*™') < maxcost(¢").
Hence, as mazcost(¢”) = m, the algorithm terminates in at
most m steps. Second, we sketch a proof of correctness. The
algorithm implicitly partitions solutions of ¢ into two sets:
preserved and eliminated solutions. At the ¢th step, a pre-
served solution [of ¢ is a solution that is mapped to a solution
I' in ¢ by a sequence of transformations. Other solutions are
eliminated. We will show that the algorithm keeps track of an
optimum solution in each partition.

Suppose ' is a core. By Property 1, TransformCore guar-
antees that for I € Z(¢") cost(I) = cost(A(I)) + 1. Suppose
7' is a correction set. By Property 2, we know that Transform-
CSet eliminates solutions, SZ(7"), that assign all clauses in
7' to false. Moreover, it guarantees that other solutions are
preserved: for I € Z(¢*) \ SZ(x") cost(I) = cost(T'(I)).
By induction, we can prove that at the ith step there is a
bijection ©; between solutions Z(¢") and a subset of so-
lutions of the original formula Z(¢) \ RZ;, where RZ; =
{U'n'jisacorreclion set,j<i®]_'1(8-’[(77j))}7 such that (a) for I «

Z(p) N RZ; and I' = ©;(I) we have cost(I) = cost(I") +1b,
where [b is the number of cores the algorithm found before
round ¢, and (b) VI € RZ;, cost(I) > ub > cost(¢).

Suppose the algorithm terminates at round i. We assume
that ¢ is satisfiable and I is a corresponding solution, so that
cost(I) = 0 (line 16). By the reasoning above, there exists a
preimage I* = ©;71(I) such that cost(I*) = cost(I)+1b = Ib.
Moreover, for all I € RZ;, cost(I) > ub > cost(¢), and
b < ub. Hence, the algorithm returns the correct result.

Suppose, ¢i is unsatisfiable (line 18). In this case, S’ =
Z(¢") = @. Hence, the optimal solution was eliminated in the
previous steps and RZ; contains it. Let 77/ be the minimum
size correction set that the algorithm encountered and I 7 be
the corresponding solutions. Let I* = @;1 (I7). We know that

cost(I*) = cost(17) + b, where b is the lower bound value
at the jth step. We set ub = cost(I7) + Ib in line 21. As |7/
is minimum, VI' € RZ;, cost(I') > cost(I*). Hence, the
algorithm returns the correct value ub and the corresponding
solution. <

Note that our transformations change the set of soft clauses
so the variables used in the partition phase changes. Next we
present our transformations and discuss their properties.

Correction Set Transformation

In this section we describe a transformation for a correction
set. Note that a standard way to transform a formula given
the correction set 7 is to add a PseudoBoolean constraint
(2 (5, ,w;)esoficis(p) Wibj < mazcost(m)]. However, this con-
straint can be very large. For example, the number of soft
clauses in the majority of industrial MAXSAT benchmarks is
more than one million. Hence, even if the size of the cor-
rection set is small, we will have to add a constraint over
one million variables, which is impractical. In the weighted
case, such transformations are also very costly. It has to be
noted that if the number of soft clauses is not very large and
there are no weights, the problem of expensive cardinality
constraints was mitigated in [Martins et al., 2014] by smart
reuse of cardinality constraints in an incremental manner.

In this section, we propose an alternative approach that
avoids adding expensive cardinality/PseudoBoolean con-
straints. Our idea is that on discovering a correction set ™ we
transform ¢ by adding clauses only over variables in clauses
of 7 and some fresh variables. Unfortunately, it does not en-
sure that we can improve the upper bound at each step when
a correction set is found. Nevertheless, our transformation
procedure satisfies Property 2, which is sufficient to show
that PRIMALDUALMAXSAT terminates in at most /m rounds,
where m is the number of soft clauses in ¢.

Definition 1 (TransformCSet) Consider a MAXSAT for-
mula ¢ with an optimum cost w. Let w = {(b1,1),...,(b,1)}
be a correction set of ¢. The transformation from ¢ to ¢/,
@' = TransformCSet(p,), is defined as follows:

¢ = (p~7) U{(Viet,..bi) } Uing {(B, 1)}u (D)
Ujea{b) < (bj A (b1 v v bjo1))},

where b;-, 7 =2,...,tare new variables.

The intuition behind TransformCSet is that we eliminate all
correction sets ', w € 7', from ¢. Algorithm 2 shows pseu-
docode that implements this transformation. It tracks com-
mon sub-expressions [Narodytska and Bacchus, 2014] to en-
sure that the transformation has linear overhead.

Algorithm 2 TransformCSet

Input: ¢77r = {(bh 1) ceey (bta 1)}

Output: ¢

dy = false

6= (9~ mU{(vi_ib)}

forj=2,...,tdo
¢ =¢u{d; < (bj_1 vdj_1)}, where d; is a new variable
¢ =9 U {b; < (bj Ad;)}, where b, is a new variable
b= 6u{(H),1))

return ¢

NN RW N =

To establish that Algorithm 2 satisfies Property 2 we show:

Lemma 1 Consider ¢' = TransformCSet(¢,), where m =
{(b1,1),...,(bs,1)}. There is a cost-preserving bijection be-
tween solutions of ¢ A (Viz1,...+b;) and solutions of ¢'.

Proof: Consider a solution I of A (v,-1. .b;). We perform
a functional extension of [to variables b;, J =2,...,tas
follows: I(b}) = 1(bj) A (L(by) v -+ Vv I(bj-1)). Now I is
a well-defined complete assignment for both ¢ and ¢'. We
show that I has the same cost in ¢ and ¢'.

For j > t the variables b; are unchanged. Suppose j < .
Consider two cases. We need to keep in mind that satisfaction
of a soft clause (b}, 1) in ¢’ functionally depends on assign-
ment of b; as b <> bj A (by V-V bj_1).

Suppose 7(b1) = 1. We show that for j = 2,...,¢ under the
assignment [the following holds: 1(b;) = I(b%).

Consider the jth pair of clauses (b;,1) and (b},1). If
I(bj) = 0 then both clauses are violated. If 7(b;) = 1 then
both clauses are satisfied as J(b;) = 1 and I(b1) = 1. The last
clause to consider is (by,1). It is also satisfied as I(by) = 1.
Therefore, we proved that I has the same cost in ¢ and ¢'.
Suppose I(b;) = 0. There exists a least p € [2,¢] such that
I(b,) =1 as I satisfies the formula (v;-1,.. +b;) by the as-
sumption. We will prove that for j = [2,...,¢] \ {p} under
the assignment I we have I(b;) = I(b}).

Consider the jth pair of clauses (b;, 1) and (b}, 1).

* Case j <p. As I(b;) =0, both soft clauses are violated.

* Case p < j <t. Note thatas I(b,) =1, (I(b1)v...v
I(by) v ...V I(bj-1)) is true. Hence, I(b}) = I(b;).

Three clauses are left to consider: {(b1,1),(b,,1)} ¢
¢ and (b,,1) € ¢'. As I(b1) 0 and I(by) = 1,
we have cost(I,(b1,1)) = 1, cost(I,(by,1)) = 0 and
cost(I, (b, 1)) = 1. Therefore, we proved that I has the same
costin ¢ and ¢'.

Consider the reverse direction. Note that ¢’ and ¢ A
(Vi=1,....+b;) have the same set of hard constraints. Hence,
they have the same set of solutions. The cost preserving ar-
gument is analogous to the forward case.

<4

249

Note that we never used the fact that 7 is a correction set in
the proof of Lemma 1. Therefore, the following result holds.

Corollary 1 Consider ¢' = TransformCSet(,8), where § C
softCls(¢). Lemma 1 holds for ¢, 0 and ¢'.

Corollary 2 Consider ¢’ = TransformCSet(¢,), where w =
{(blv 1); ceey (btv 1)} Then (1) |S0ﬁClS(¢)| > |S0ﬁClS(¢,) ’
cost(¢') > cost(¢) and (2) cost(d’) cost(p A
(Vizl,...,tbi))

Theorem 2 Consider ¢’
where T {(b1,1),...
min{ cost(¢"), mazcost(m)}.

TransformCSet(¢,),
, (b, 1)}. Then cost(¢)

Proof: Suppose 7 is a minimum correction set of ¢. By
Corollary 2, cost(¢') > cost(¢), so we get cost(p) =
min{ cost(¢"), mazxcost(m)}. Suppose 7 is not a minimum
correction set of ¢. Consider a minimum correction 7* of ¢.
Asm ¢ m*, m* is a minimum correction set of ¢ A (vi_;b;). By
Corollary 2, cost(¢") = cost(pn(Vi_1bi)). As mazcost(r) >
mazcost(m*) we proved the result. «.

Hence, from Lemma 1, Theorem 2, Corollaries 1-2 it fol-
lows that TransformCSet satisfies Property 2.

An extension of Algorithm 2 to the weighted case can
be obtained using a standard cloning technique [Mor-
gado et al, 2013; Ansétegui et al., 2013]. However,
there is one complication to take into account. Consider
a correction set m = {(by,w1),...,(bs,ws)}, wy < w,
i = 2,...,t. We split a clause (b;,w;) into two clones:
(bi, wl) and (bl, w; —’LUl). Note that {(bl, wl), ceey (bt, wl)}
might not be a correction set after splitting. We perform
¢' = TransformCSet(¢, {(b1,w1),..., (b, w1)}). Corol-
lary 1 tells us that ¢’ contains all solutions of ¢ that vio-
late (V;=1,...+b;). For Theorem 2 to hold, we need to prove
that all correction sets that violate (V-1 .b;) are super-
sets of 7. This condition holds as any feasible solution [
of ¢ that violates (v,-1. .b;) must falsify all clauses in
{(b1,w1),...,(bs,w1)} and their clones. Such a solution
corresponds to a correction set that is a superset of 7.

Core Transformation

Our core transformer is dual to the correction set transformer.
It is based on a recently proposed MAXRES-based algo-
rithm [Narodytska and Bacchus, 2014]. Following MAXRES,
given a core ¢ we convert ¢ into a formula ¢’ using Trans-
formCore, such that cost(¢') = cost(¢) — 1. We here only
provide the definition of TransformCore.

Definition 2 (TransformCore) Consider a MAXSAT for-
mula ¢ with an optimum cost w. Let ¢ = {(b1,1),...,(b,1)}
be a core of ¢. The transformation from ¢ to ¢', ¢’ =
TransformCore(,), is defined as follows:

¢ = (o~ @)U (Vict,. tb;) U;‘:Q {(v, 1) }u
u?zz{b;- < (b; v (by A ADj_1))),

where b;-, 7 =2,...,tare new variables.

2

The fact that TransformCore satisfies Property 1 can be
easily derived from [Narodytska and Bacchus, 2014]; alter-
natively it can be proved by dualizing the proof of lemma 1.
Note that the TransformCore and TransformCSet fulfill the
following property: |¢'| is linear in |¢| + |y|, v € {|7,|¢|}
which is helpful to keep the formula small in each iteration.

Core minimisation. Core minimisation is considered an
expensive routine in MAXSAT solving. However, it was
shown to be beneficial for example in verification do-
main [Belov et al., 2013]. We found a useful lightweight core
minimisation procedure. Our algorithm is based on destruc-
tive core minimisation proposed in [Belov ef al., 2012]. We
also borrow the clause-set refinement technique from MUS
extraction algorithms [Belov er al., 2012]. We omit pseu-
docode here due to space restrictions. Given a core ¢, the
algorithm considers each clause in the core ¢ and checks
whether the remaining clauses still form a core. If so, this
clause is removed and we can reduce the size of the core us-
ing the new core ¢’ returned by the SAT solver. Otherwise,
we move to the next clause. For efficiency, we only minimise
cores of size at most 500. We also count the number of unsuc-
cessful attempts to remove a clause from a core and terminate
if it exceeds a constant threshold, which was 25 in our case.
We call this variant of our algorithm PRIMALDUALMIN.

Theoretical analysis and discussion

Next, we carry out a theoretical analysis of our algorithm. It
can produce many possible sequences of SAT and UNSAT
problems. We analyse two corner executions of it, PRIMAL
and DUAL, and show that they complement each other. We
also compare PRIMALDUALMAXSAT and UBLINEAR to
demonstrate the space-time tradeoff between the two algo-
rithms. As the most expensive operation in these search pro-
cedures is a SAT call, we compare these algorithms in terms
of the number of SAT calls they perform. The number of calls
usually depends on core/correction sets that the SAT solver
returns. Thus, for uniformity we only consider lower bounds
on the number of SAT calls for each algorithm.

Proposition 1 There is a family of formulas
which UBLINEAR performs O(l) SAT calls
PRIMALDUALMAXSAT performs Q2(/m) SAT calls.

on
and

Proof: Consider a problem ¢ such that there are \/m dis-
joint correction sets of size \/m each and similarly \/m dis-
joint cores. As all correction sets are disjoint and all cores are
disjoint, Algorithm 1 will make at least /m SAT calls before
it terminates. UBLINEAR solves the problem in two calls. It
gets one correction set of size v/m, and adds a strengthen-
ing cardinality constraint to ¢. This results in an unsatisfiable
formula and UBLINEAR terminates. «

Note that UBLINEAR solves any problem with two SAT
calls in the best case. Hence, Proposition 1 shows that
UBLINEAR dominates PRIMALDUALMAXSAT in terms of
the number of calls if we consider the best possible execu-
tion. However, best possible executions are rare in practice.
In fact, the SAT solver tends to return large correction sets as

250

those are easy to find and UBLINEAR needs to post cardinal-
ity/PseudoBoolean constraint over a large set of variables.

Proposition 2 There is a family of formulas on which
UBLINEAR and PRIMALDUALMAXSAT performs O(1)
SAT calls. However, UBLINEAR increases the size of the for-
mula by O(m?) and PRIMALDUALMAXSAT by O(m).

Proof: Consider a problem ¢ such that (b;,w;) ¢
softCls(¢p),w; = 2%, = 1,...,m. Suppose, there is a single
correction set 7. Both algorithms terminate after the first iter-
ation. PRIMALDUALMAXSAT adds O(m) clauses and vari-
ables to ¢. UBLINEAR adds O(mlog(Xi w;)) = O(m?)
clauses and variables to ¢ as it has to encode Y[y w;b; <
mazcost(m) [Aavani ef al., 2013]. 4

Next we investigate relations between two corner execu-
tions of PRIMALDUALMAXSAT, PRIMAL and DUAL.

Proposition 3 There is a family of formulas where DUAL
makes O(1) SAT calls and PRIMAL makes 2(m) SAT calls.

Proof: Consider a problem ¢ such that there are m unit cores
and a single correction set. In the best execution, PRIMAL
takes m calls to a SAT solver. On the other hand, DUAL finds
the single correction set at the first iteration. Hence, the for-
mula on the 2nd step ¢°, ¢ = 2, is unsatisfiable and algorithm
terminates with two calls. «

Proposition 4 There is a family of formulas where PRIMAL
makes O(1) SAT calls and DUAL makes Q2(m) SAT call.

Proof: Consider a formula ¢ that has a single core of size m.
In the best execution, PRIMAL takes 2 calls to the SAT solver.
On the other hand, DUAL needs to call the solver m times in
order to enumerate all correction sets. «

Next we discuss high-level properties of
PRIMALDUALMAXSAT which, we believe, make it ef-
ficient in practice as we will show in our experiments. First,
Propositions 3—4 demonstrate that corner executions of the
solver, PRIMAL and DUAL, are complementary in their
strengths. If we have a small number of minimal correction
sets then DUAL execution might solve the problem. If we
have a small number of cores then PRIMAL might occur
to solve the problem efficiently. Second, as our partition
phase is inherited from the relaxation search, we only
obtain minimal correction sets that are potentially more
useful in proving the optimality and, at the same time we
do not need to perform costly correction set minimisation.
Third, as mentioned before, our new procedure to process
correction sets is very lightweight compared to the standard
UBLINEAR procedure with PB constraints. Forthly, the
structure of PRIMALDUALMAXSAT allows incremental
implementations so that learnt clauses are carried across SAT
calls regardless of whether we find a core or a correction set.

Experimental Evaluation

We ran our experiments on a cluster of AMD Opteron@2.1
GHz machines restricted to 3.5Gb or RAM and 3600
seconds of CPU time. We used all industrial instances

PD™ PD eva® msuoll msunc wpmi®
pPD™ - 21 61 87 191 199
PD 5 - 46 78 174 184
eva® 7 8 - 58 158 144
msuoll 3 10 28 - 117 134
msunc 3 2 24 13 - 110
wpmi® 2 3 1 21 101 -

Table 1: The number of instances solved by algorithm ¢ but
not by algorithm j is shown in row ¢, column j.

from the 2014 Evaluation of Max-SAT Solvers competi-
tion. We compare our solver, PRIMALDUALMAXSAT (PD)
and PRIMALDUALMIN (PD™), with state-of-the-art ground
weighted partial MAXSAT solvers: eva® [Narodytska and
Bacchus, 2014], the ‘msu-oll-sn-wo’ solver(msuoll) [Mor-
gado et al., 20141, wpmi® [Ansétegui et al., 2013], and
msunc [Morgado et al., 2012]. PRIMALDUALMAXSAT
(PD) and PRIMALDUALMIN (PD™) are implemented in-
side MiniSAT [Een and Sorensson, 2003] and takes advan-
tage of properties mention in the ‘PRIMALDUALMAXSAT
algorithm’ section. We observed that some candidate cor-
rection sets were expensive to check. We, therefore, apply
a timeout of three seconds when checking 7. The time-
out was gradually decreased as search proceeded. We recall
that if 7(b) = O then {b} U {b’ | I(b') = 1} is a core. If
the timeout is exceeded we apply the primal transformation
to this core. The eva® solver also uses MiniSAT as a SAT
solver. Note that the top performing (non-portfolio) solvers
in MaxSAT’ 14 evaluation, Fva500a and M SCG are hybrid
solvers, incorporating different algorithms in problem cate-
gories. We compare against their WPMS solvers that are pub-
lished in the literature: eva® [Narodytska and Bacchus, 2014]
and the ‘msu-oll-sn-wo’ solver [Morgado et al., 2014]. We
used stratification and hardening techniques [Ansétegui et al.,
2013] in PRIMALDUALMAXSAT for solving weighted par-
tial MAXSAT instances.

Tables 2-4 show that PRIMALDUALMAXSAT and
PRIMALDUALMIN significantly improve over other solvers
in the majority of benchmarks, solving more instances and
using less time. For example, on ‘pref. plan.” and *One path’
benchmarks, PRIMALDUALMIN is about three times faster
than eva®, msuoll and msunc. Our algorithms also solve
significantly more instances in ‘Multiple path’ and ‘msp’ sets
compared to other solvers. Note also that our use of mini-
mization does not help in the MAXSAT category, but is useful
in the two other categories. Table 1 gives a pairwise compar-
ison between all pairs of the algorithms and Figure 1 shows a
cactus plot over all industrial instances. Table 1 illustrates that
PRIMALDUALMIN solves almost all problems also solved by
other solvers, and other solvers do not offer any significant
edge. For example, eva® can only solve 7 instances not solved
by PRIMALDUALMIN, while PRIMALDUALMIN solves 61
problems not solved by eva®.

Conclusions

We developed a new iterative algorithm for MAXSAT that
solves MAXSAT using a sequence of SAT and UNSAT for-
mulas. We investigated theoretical properties of the algorithm
and demonstrated its efficiency on a wide range of industrial

251

4000
° pp"
s ¥
3500f « pp ! 3 io
T X C c -
3000 *eva d . 10
©e msu-oll-sn-wo,’ . - do
2500 = = = msuncore 0' f J o
A 13 s . <
2000, 4 WP, JEi°

900

800

700

Figure 1: The cactus plot for all industrial instances from the
2014 Evaluation of MaxSAT Solvers competition.

benchmarks from the 2014 Evaluation of Max-SAT Solvers.

PD™ PD eva® msuoll msunc ’wp'mi3
avgt |# avgt|# avgt | # avgt | # avgt | # avgt
haplotyping| 98 51.1 |97 19.0|95 3238 |97 370.6 |60 589.8 |92 130.6
hs-time. | 1 176.0 | 1 342.0| 2 1202.0| 1 1230 | 1 11300/ 0 0.0
packup |97 16.5 |95 35.6|89 45.1 |69 1704 |28 2085 |90 263
pref.plan. |29 51.1 |29 36.6 |29 125.6|27 2300 |28 1753 |27 58.1
timetabling | 12 618.8 |13 554.7| 11 285.1 [10 616.7 | 8 2725 | 8 6875
upgrad. (100 1.2 [100 0.9 {100 44.1 {100 128.4 [100 128.2 [100 6.2
wespdir |14 1.6 |14 12 |14 59 |14 954 |11 352 |14 1244
wesplog |14 125 |13 3783|14 903 |14 37.6 |12 3168 |14 5276
[Total 365 43.9 [362 52.1[354 623 [332 225.6 [248 2679 [345 90.4
Table 2: WPMS Industrial instances
References

[Aavani et al., 2013] Amir Aavani, David G. Mitchell, and Eu-
genia Ternovska. New encoding for translating pseudo-
boolean constraints into sat. In Alan M. Frisch and Peter
Gregory, editors, SARA. AAAI, 2013.

[Ansétegui er al., 2013] Carlos Ansétegui, Maria Luisa Bonet,
and Jordi Levy. SAT-based MaxSAT algorithms. Artificial
Intelligence, 196:77-105, 2013.

[Bacchus et al., 2014] Fahiem Bacchus, Jessica Davies, Maria
Tsimpoukelli, and George Katsirelos. Relaxation Search: A
Simple Way of Managing Optional Clauses. In Proceedings
of the 28th Conference on Artificial intelligence (AAAI’14),
pages 2717-2723, 2014.

[Belov er al., 2012] Anton Belov, Ines Lynce, and Joao
Marques-Silva. Towards efficient mus extraction. Al Com-
mun., 25(2):97-116, 2012.

[Belov et al., 2013] Anton Belov, Huan Chen, Alan
Mishchenko, and Joao Marques Silva. Core minimiza-
tion in SAT-based abstraction. In Design, Automation and
Test in Europe (DATE), pages 1411-1416. ACM, March
2013.

[Cimatti et al., 2010] Alessandro Cimatti, Anders Franzen, Al-
berto Griggio, Roberto Sebastiani, and Cristian Stenico. Sat-
isfiability modulo the theory of costs: Foundations and ap-
plications. In Javier Esparza and Rupak Majumdar, editors,

PD™ PD eva® msuoll msunc 'wp’m}?’
avgt |# avgt | # avgt | # avgt | # avgt | # avgt
aes 1 10 1 1.0 (1 00 |1 240 |1 65800 0.0
mesat |11 584.7 |11 530.5 |11 661.8 973.1 [10 1021.5| 5 15748
sugar |12 294.8 |12 3463 |12 3428 | 11 729.5 |11 7327 | 8 1551.1
fir 29 234.1 |29 205632 63.1 |31 184 |31 28.8 |31 446
simp 9 1496 |9 662 |9 940 |9 2852 |9 4150|9 3814
su 32 754 |33 178.1 |31 825 |32 214.8 |33 4434 |27 2123
msp 21 98.6 19 164.5| 8 1300.9| 14 356.1 |19 290.7 | 2 93.0
mtg 30 38 30 93 (30 1.0 {30 38 |30 26 |30 105
syn 20 948 19 2304 |16 198 |15 94.1 |14 1375 |15 264.0
circuit. |4 1148 |4 2020| 4 317.8| 4 5920 | 4 1915 | 4 2970
close sol. [49 281.6 |50 94.6 |49 288.9|38 540.9 |26 413.8 |25 415.2
des 37 371.2 |32 3554 |30 345.6 |35 5764 |31 657.8 |19 1779
ap.-assem,| 5 15.8 5 1205 40 |5 176 |4 868 |5 56
hs-time. |1 149.0 |1 1200(1 14601 630 |1 450 |0 0.0
mbd 42 823 (39 23.0 |41 849 |43 137.5 |37 484.6 |36 180.7
packup (40 127 (40 8.9 [40 16.7 |40 136.6 |40 418.0 (40 108
nencdr |25 134.3 (25 486.2 |23 415.0 |21 763.0 |25 4613 |15 271.7
nlogencdr (25 254 |25 251.6 |25 230.2 |25 4219 |25 1043 |17 399.9
routing |15 4.5 15 02 |15 01 |15 13 |15 13 |15 83
proteinins| 6 1412.2 |3 291.0| 2 505 | 3 8223 | 3 5123 | 2 1645
Mult. path |36 250.3 |33 1102.2| 21 400.0 |30 971.2 |26 12493 | 3 121.7
One path |25 15.0 |25 453 |23 1453 |25 426 |25 1425 |9 27592
Total 475 165.7 460 229.1 [429 197.7 [436 335.4 [420 3915 [317 2957 |
Table 3: PMS Industrial instances
PD™ PD eva® msuoll msunc wpm%
Foavgt |F# avgt|# avgt |# avgt |# avgt |# avgt
circuit-deb. |3 177.3 |3 333|3 167 |2 490 |2 350 |2 8385
sean-safarpour|34241.6 |36223.7|37 348.6 |23 206.5 |19 1054 (16 177.6

Total [37236.4 [39209.1[40323.7[25 193.9 [21 987 [i8 251.1 |

Table 4: MaxSat Industrial instances

TACAS, volume 6015 of Lecture Notes in Computer Science,
pages 99-113. Springer, 2010.

[Cooper et al., 2006] Martin C. Cooper, Sylvain Cussat-Blanc,
Marie de Roquemaurel, and Pierre Regnier. Soft Arc Con-
sistency Applied to Optimal Planning. In Frederic Ben-
hamou, editor, Proceedings of the 12th International Con-
ference on Principles and Practice of Constraint Program-
ming (CP’06), volume 4204 of Lecture Notes in Computer
Science, pages 680-684. Springer, 2006.

[Een and Sorensson, 2003] Niklas Een and Niklas Sorensson.
An extensible SAT-solver. In Enrico Giunchiglia and Ar-
mando Tacchella, editors, Proceedings of the 6th Interna-
tional Conference on Theory and Applications of Satisfiabil-
ity Testing (SAT’03), volume 2919, pages 502-518. Springer,
2003.

[Graga et al., 2012] Ana Graga, Inés Lynce, Jodo Marques-
Silva, and Arlindo L. Oliveira. Efficient and accurate haplo-
type inference by combining parsimony and pedigree infor-
mation. In Proceedings of the 4th International Conference
on Algebraic and Numeric Biology, pages 38-56, Berlin,
Heidelberg, 2012. Springer-Verlag.

[Heras et al., 2011] Federico Heras, Anténio Morgado, and
Jodo Marques-Silva. Core-Guided Binary Search Algorithms
for Maximum Satisfiability. In AAAI, 2011.

[Ignatiev et al., 2014] Alexey Ignatiev, Anténio Morgado,
Vasco M. Manquinho, Inés Lynce, and Jodo Marques-Silva.
Progression in maximum satisfiability. In Proceedings

252

of the 21th European Conference on Artificial Intelli-
gence(ECAI’14), pages 453-458, 2014.

[Juma et al., 2012] Farah Juma, Eric 1. Hsu, and Sheila A.
Mcllraith. Preference-based planning via maxsat. In Pro-
ceedings of the Canadian Conference on Artificial Intelli-
gence, pages 109-120, 2012.

[Manquinho et al., 2009] Vasco M. Manquinho, Joao P. Mar-
ques Silva, and Jordi Planes. Algorithms for weighted
Boolean optimization. In Oliver Kullmann, editor, Proceed-
ings of the 12th International Conference on Theory and Ap-
plications of Satisfiability Testing (SAT’09), volume 5584,
pages 495-508. Springer, 2009.

[Marques-Silva and Planes, 2008] Joao Marques-Silva and
Jordi Planes. Algorithms for maximum satisfiability using
unsatisfiable cores. In DATE, pages 408—413. IEEE, 2008.

[Martins et al., 2014] Ruben Martins, Saurabh Joshi, Vasco
Manquinho, and Inés Lynce. Incremental Cardinality Con-
straints for MaxSAT. In International Conference on Princi-
ples and Practice of Constraint Programming. LNCS, 2014.

[Morgado et al., 2012] Antonio Morgado, Federico Heras, and
Joao Marques-Silva. Improvements to core-guided binary
search for MaxSAT. In Alessandro Cimatti and Roberto Se-
bastiani, editors, Proceedings of the 15th International Con-
ference on Theory and Applications of Satisfiability Testing
(SAT’12), volume 7317, pages 284-297. Springer, 2012.

[Morgado et al., 2013] Anténio Morgado, Federico Heras,
Mark H. Liffiton, Jordi Planes, and Joao Marques-Silva. It-
erative and core-guided MaxSAT solving: A survey and as-
sessment. Constraints, 18(4):478-534, 2013.

[Morgado et al., 2014] Anténio Morgado, Carmine Dodaro,
and Joao Marques-Silva. Core-guided maxsat with soft car-
dinality constraints. In Principles and Practice of Constraint
Programming - 20th International Conference, CP 2014,
Lyon, France, September 8-12, 2014. Proceedings, pages
564-573,2014.

[Narodytska and Bacchus, 2014] Nina Narodytska and Fahiem
Bacchus. Maximum satisfiability using core-guided maxsat
resolution. In Proceedings of the 28th Conference on Artifi-
cial intelligence (AAAI’14), pages 2717-2723, 2014.

[Parrain, 2010] Daniel LeBerre Anne Parrain. The sat4j library,
release 2.2. JSAT, 7(2-3):59-6, 2010.

[Rosa and Giunchiglia, 2013] Emanuele Di Rosa and Enrico
Giunchiglia. Combining approaches for solving satisfia-
bility problems with qualitative preferences. Al Commun.,
26(4):395-408, 2013.

[Strickland et al., 2005] Dawn M. Strickland, Earl Barnes, and
Joel S. Sokol. Optimal protein structure alignment using
maximum cliques. Oper. Res., 53(3):389-402, May 2005.

[Vasquez and Hao, 2001] Michel Vasquez and Jin-Kao Hao. A
”logic-constrained” knapsack formulation and a tabu algo-
rithm for the daily photograph scheduling of an earth obser-
vation satellite. Comp. Opt. and Appl., 20(2):137-157, 2001.

