
Finding Diverse Solutions of High Quality to Constraint Optimization Problems

Thierry Petit
Foisie School of Business,

Worcester Polytechnic Institute, USA
Mines de Nantes / LINA, France

tpetit@{wpi.edu,mines-nantes.fr}

Andrew C. Trapp
Foisie School of Business,

Worcester Polytechnic Institute, USA
atrapp@wpi.edu

Abstract

A number of effective techniques for constraint-
based optimization can be used to generate either
diverse or high-quality solutions independently, but
no framework is devoted to accomplish both simul-
taneously. In this paper, we tackle this issue with a
generic paradigm that can be implemented in most
existing solvers. We show that our technique can
be specialized to produce diverse solutions of high
quality in the context of over-constrained problems.
Furthermore, our paradigm allows us to consider
diversity from a different point of view, based on
generic concepts expressed by global constraints.

1 Introduction
Most existing techniques for solving optimization problems
in Artificial Intelligence naturally give the priority to the
value of an objective function. While this is essential from
the optimality point of view, there are scenarios where it may
be advantageous to consider multiple solutions. In Constraint
Programming (CP), a number of effective methods can be
used to generate multiple solutions that are significantly di-
verse, e.g., [Hebrard et al., 2005; 2007]. However, these tech-
niques deal with satisfaction problems and are not concerned
by solution quality, i.e., the value of the objective function of
each diverse solution. On the other hand, constraint solvers
routinely generate a single solution to optimization problems,
ideally optimal. In this paper, we suggest a generic constraint-
based paradigm for assessing both solution diversity and so-
lution quality, which can take as argument any constraint op-
timization problem. Motivated by practical applications, we
propose to consider several diversity norms and to use them in
conjunction with a quality constraint. In this way, we provide
a set of solutions that optimize a compromise between solu-
tion diversity and quality. Such a tradeoff is especially use-
ful, for instance, in personnel scheduling (when not all user
preferences are known in advance), for routing problems (al-
ternative paths are useful in case of unexpected events), and
in configuration (a good quality product can be made using
diverse sets of components). As there is no requirement for
the initial solution to be optimal, there is therefore no theoret-
ical restriction on solving large problems, using for instance

Large Neighborhood Search. Our approach can easily be im-
plemented in most existing solvers. Moreover, our paradigm
can be specialized to produce diverse solutions of high qual-
ity in the context of over-constrained problems. A second
contribution of our paper is to consider diversity from a dif-
ferent point of view, based on global constraints. The intuitive
idea is to propose to the end-user solutions that correspond to
some generic concepts, such as concentration or fair distribu-
tion of high values, deviation, etc. We show that our paradigm
is naturally well-suited to use these new notions, extending
the state-of-the art in CP also for satisfaction problems.

2 Background
Constraint Programming. A constraint network N con-
sists of a sequence of problem variables X = (x1, . . . , xn),
a sequence of domains D = {D(x1), D(x2), . . . , D(xn)},
where the domain D(xi) is the finite set of at most d values
that variable xi can take (we also use the notation Di), and a
set C of constraints that specify the allowed combinations of
values for given subsets of variables. A relation R of arity k
is any set of tuples 〈a1, a2, . . . , ak〉 where all aj’s

are values from the given universe U . A constraint of arity
k is a pair C = (X , R), where X is a sequence of k vari-
ables and R is a relation of arity k. An assignment t is a
function from X to the universe of values U . t[x] is the value
of x in t. An assignment t to a sequence X = (x1, . . . , xk)
of variables, or to a superset of X , satisfies C = (X , R) iff
〈t[x1], . . . , t[xk]〉 ∈ R. Otherwise, t violates C. A solution
of N = (X , D, C) is an assignment t to X such that t[xi] ∈
Di for all xi ∈ X , and t satisfies all the constraints in C. In a
Constraint Optimization Problem (COP), a variable obj ∈ X
represents the objective value. Without loss of generality,
consider the minimization COP. An optimal solution is then a
solution t∗ of the constraint network such that no other solu-
tion t exists with t[obj] < t∗[obj]. An alternative way to rep-
resent optimization problems is to extend CP, using Semi-ring
CSPs/Cost Functional Networks [Bistarelli et al., 1999]. In
such frameworks, conversely to classical COP, costs involved
in the objective function are not encoded by problem vari-
ables. The two alternatives were successfully used for solving
real-world problems (see for example [Zampelli et al., 2013;
Allouche et al., 2014]). As our contributions in sections 5
and 6 require to set hard constraints on cost variables, in this
paper we deal with classical COP.

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

260

Solution Quality. Solution quality [Trapp and Konrad,
2015], also called performance [Billaut et al., 2010], aims
to measure the distance between the value t[obj] in a given
solution t of a COP and the objective value t∗[obj] of a
“good” solution t∗, ideally an optimal solution. Given the
objective variable obj , the relative deterioration of quality
of solution t can be quantified using the following function:
Q(X , t, t∗) = max(0, t[obj]− t∗[obj]).

Solution Diversity. Although in CP solution diversity re-
ceived less exposure than solution quality, some significant
contributions have been made in the last decade. Hebrard et
al. [Hebrard et al., 2005] distinguish offline diversity, com-
puted given the whole set of solutions, from online diversity
where solutions are computed incrementally. In this paper we
will consider online diversity, which is intuitive for COP.

1) Hamming distance. The most usual diversity measure is
the sum of Hamming distances [Hamming, 1950].

Definition 1 (Hamming Distance δH) Given two assign-
ments ti and tj of n variables X and xl ∈ X ,

• δH(ti[xl], tj [xl]) = 0 iff ti[xl] = tj [xl], 1 otherwise.

• δH(X , ti, tj) =
∑n
l=1 δH(ti[xl], tj [xl]).

The MAXDIVERSEkSet problem [Hebrard et al., 2005] con-
sists of finding a set of solutions {t1, t2, . . . , tk} maximiz-
ing

∑
1≤i<j≤k δH(X , ti, tj). Heuristic approaches [Hebrard

et al., 2005; Hentenryck et al., 2009] and knowledge com-
pilation techniques [Hadzic et al., 2009] have been used to
solve this problem.

2) Alternative Distance Functions. Depending on the prob-
lem and the solving technique, Hamming distances may not
be appropriate. For instance, consider a scheduling problem
with a horizon of one day and a time unit of one minute.
Given a solution, delaying all activities by one minute leads
to a diverse solution according to Hamming distances, yet in
practice the two solutions are quite similar. Conversely, if we
swap the k first and k last activities, even with small values
of k the end-user may consider that the new solution signif-
icantly differs from the initial one. Following the work of
Hebard et al., this observation was made in the context of
knowledge compilation [Hadzic et al., 2009] and Answer-set
programming [Eiter et al., 2013]. To address this issue in CP,
we consider measures based on the L1 and L2 norms.

Definition 2 (Manhattan (δL1
), Euclidian (δL2

) distances)
Given two assignments ti and tj of n variables X and
xl ∈ X ,

• δL1(ti[xl], tj [xl]) = |ti[xl]− tj [xl]|.
δL1(X , ti, tj) =

∑n
l=1 δL1(ti[xl], tj [xl]).

• δL2
(ti[xl], tj [xl]) = (ti[xl]− tj [xl])2.

δL2(X , ti, tj) =
√∑n

l=1 δL2
(ti[xl], tj [xl]).

3 Assessing Both Diversity and Quality
Simultaneously addressing both diversity and quality requires
two objective functions, Q and δ, δ ∈ {δH, δL1

, δL2
}. As the

MAXDIVERSEkSet problem is FNP [log(n)]-complete [He-
brard et al., 2005] without regard to quality, we introduce a

pragmatic technique for dealing with the two notions at the
same time. Just as importantly, we propose a framework that
can be easily implemented using reference constraint pro-
gramming solvers. Following a principle recently suggested
for MIP [Trapp and Konrad, 2015], a ratio can be defined to
balance between solution quality and diversity. Starting from
a “good” solution t∗, i.e., with an objective value that satisfies
the end-user, we consider the following ratio.

robj =
δ

Q
=

Relative Solution Diversity
Relative Loss in Quality

.

We assume in this section that the problem has at least
one feasible solution, and subsequently investigate the spe-
cific case of over-constrained problems. The goal is to find
the set of optimal, or at least high-quality, solutions of a new
problem derived from the original one. The new problem
maximizes the ratio starting from a solution t∗. Unlike the
MIP paradigm proposed by Trapp and Konrad, however, the
solution t∗ may be suboptimal. The first step is to express
the relative solution diversity and relative loss of quality ac-
cording to solution t∗ within the CP framework, in order to
obtain a second (diverse) solution t2. Then, iteratively, we
will compute the next solution according to the solution set
S = {t1 = t∗, t2} to obtain a third solution t3, and so on.

Relative Solution Diversity. This part of our methodology
does not fundamentally differ from the constraint satisfaction
case. We use a new problem variable xδ for storing the min-
imum allowed diversity threshold. In the case of Hamming
Distances, we use the DIVERSESUMH constraint [Hebrard et
al., 2005]. This constraint takes as argument a set of prob-
lem variables, a set of previously computed solutions and the
variable xδ . In its initial formulation [Hebrard et al., 2005],
xδ is an integer, but we aim to be as generic as possible in the
modeling description.
Definition 3 DIVERSESUMH(X ,S, xδ)⇔
(
∑n
i=1

∑|S|
j=1 xi 6= tj [xi]) ≥ xδ .

We now define similar constraints for L1 and L2 norms.
Definition 4 DIVERSESUML1

(X ,S, xδ)⇔
(
∑n
i=1

∑|S|
j=1 |xi − tj [xi]|) ≥ xδ .

Definition 5 DIVERSESUML2
(X ,S, xδ)⇔

(
∑|S|
j=1

√
(
∑i=n
i=1 |xi − tj [xi]|2) ≥ xδ .

Some alternative definitions of distance constraints exist for
Hamming distances and metrics that are component-wise de-
composable like Hamming distances [Hebrard et al., 2005;
2007; 2011]. These feature idempotent operators (minimum,
maximum) instead of a sum, or are dedicated to finding sets of
similar solutions to satisfaction problems rather than diverse
solutions.

Relative Loss of Quality. The relative deterioration in ob-
jective function quality can be expressed using a constraint
QUALITYSUM(obj , t∗, xQ), where variable xQ expresses the
loss of quality with respect to the first solution t∗.
Definition 6 QUALITYSUM(obj , t∗, xQ)⇔
max(0, obj − t∗[obj]) = xQ.

261

A New Maximization Problem. We introduce a new max-
imization problem for simultaneously assessing both diver-
sity and quality. We aim to maximize the ratio xδ

xQ+1 in each
new produced solution. Our paradigm is based on an itera-
tive scheme, summarized by Algorithm 1. Given a variable
x, we use the notation x (respectively x) for the minimum
value (respectively the maximum value) in its domain.

Algorithm 1 takes as argument a COP encoded with the
constraint network N and an integer k, as well as the two
variables xδ and xQ for defining the allowed range of val-
ues for the ratio numerator and denominator. The algorithm
returns a solution set S of size at most k, maximizing the
balance between relative diversity and quality with respect to
solutions in S. The initial values xδ and xQ provide the user
preferences in terms of minimum acceptable diversity value
between two solutions and maximum loss of quality between
two solutions. The initial maximum diversity xδ can be eas-
ily estimated for each metric, e.g., for the L1 norm an upper-
bound is the sum of domain sizes, which is convenient in our
context. As several optimal solutions may exist, we initially
set xQ = 0.

There are several ways to implement the objective con-
straint in the solving scheme described by Algorithm 1.
Therefore, we do not directly express the ratio as stated.
We use an objective constraint OPTRATIO(xδ, xQ, robj . . .),
where robj is the integer objective variable explicitly max-
imized. The dots in the signature mean that, depending on
the selected implementation, OPTRATIO may require some
additional parameters. We will detail this constraint later.

The original objective constraint used to obtain a value for
variable obj is never removed from the model. However, ex-
cept for the first solution, we maximize robj instead of mini-
mizing obj . After having solved the initial problem and iden-
tified a solution, the constraints DIVERSESUM and QUALI-
TYSUM control diversity and quality of subsequent solutions
through the two variables xδ and xQ.

While a variety of metrics could be used in Algorithm 1,
we consider the L1 norm in our pseudo-code. The domain of
the diversity variable xδ must be updated each time a new so-
lution is added to the set S, so as to maintain the same global
diversity criterion. To illustrate this need, consider a simple
example. Assume after the first run producing a solution t1 to

1 t1 := Solution toN minimizing obj ;
2 S := {t1};
3 j := 1; lbδ := xδ; ubδ := xδ;
4 C := C∪ DIVERSESUML1(X ,S, xδ);
5 C := C∪ QUALITYSUM(obj , t1, xQ);
6 C := C∪ OPTRATIO(xδ, xQ, robj . . .);
7 repeat
8 j := j + 1;
9 tj := Solution toN maximizing robj ;

10 xδ := tj [xδ] + j × lbδ; xδ := tj [xδ] + j × ubδ;
11 S := S ∪ {tj};
12 until Fail exception ∨ |S| ≥ k;
13 return S;

Algorithm 1: kBESTOPT(N , k, xδ , xQ): Solutions set S

the initial problem we start searching for a second solution t2
with xδ = 4. Assume t2[xδ] = 5. Then for the third solution
t3 we have to consider three of pairs of solutions instead of
one (t1 vs t2, t2 vs t3 and t1 vs t3), thus we add 2 ∗ 4 = 8
to the previously counted distance t2[xδ] = 5, which leads
to xδ = 13. At the next step, we have six pairs of solutions
instead of three, we add 3 ∗ 4 = 12 to t3[xδ], and so on.

Performing a similar update of xQ variable is not neces-
sary, as the quality constraint QUALITYSUM does not deal
with the entire solution set S , but rather with the initial objec-
tive variable of the problem and the first solution t1.

Concerning time complexity, we define a new but classical
COP. The generic framework takes as an argument any COP.
The distance measures should be computable in polynomial
time for any fixed assignment (this is the case for Hamming,
L1 and L2). As the new objective function is linked to the
initial objective variable by the quality constraint and no con-
straints are removed, starting from a NP-Hard COP the re-
sulting problem will generally remain in the same complex-
ity class. However, the domain size of the new objective
variable may differ from the size of the original one.

4 Filtering Algorithms

Filtering Diversity Constraints To obtain a satisfactory
solving process we need to propagate all the constraints in-
volved in Algorithm 1. We first focus on diversity.

1) Hamming distance. A filtering algorithm for
DIVERSESUMH(X ,S, xδ) has already been introduced [He-
brard et al., 2005]. This algorithm maintains Generalized Arc
Consistency (GAC, see [Bessière, 2006]) in the case where
xδ is an integer, in O(n(d+ k)) time, with n = |X |, k = |S|
and d is the maximum domain size. In our context, the most
useful filtering of the constraint is performed according to the
minimum current value xδ for variable xδ , thus the algorithm
of Hebrard et al. can be adapted in straightforward manner,
even handling xδ , and so we omit it for the sake of brevity.

2) L1 norm. We propose an algorithm for the L1 norm that
runs inO(k ·

∑
iDi) time, where

∑
iDi is the sum of domain

sizes of variables inX . We have
∑
iDi ≤ n·d but depending

on the current domains n · d may be a gross over-estimation.
Algorithm 2 takes as arguments the variables, the set S of
previous solutions, as well as the value of xδ in the last pre-
vious solution, prevxδ . The principle is to remove values that
are not consistent with the current bounds of D(xδ) using a
regret mechanism, according to the minimum and maximum
possible distances. The algorithm eliminates all the values
that are not consistent, enforcing GAC.

3) L2 norm. This case is more complex as the distance
between two solutions is not computed with a simple sum.

However, we sill can design a propagator (Algorithm 3) in
O(k ·

∑
iDi) time. The principle is first to fill a three dimen-

sional matrix with all squares and then to compute maximum
L2 norms between X and each t ∈ S. With such data we can
again use a regret mechanism to remove all the values that
are not consistent with xδ and xδ , as Algorithm 2 does for
L1 norm.

262

1 foreach i ∈ {1, 2, . . . , n} do
2 foreach vj ∈ D(xi) do
3 dist [i][j] :=

∑|S|
k=1
|vj − tk[xi]|;

4 maxSum :=
∑|X|

i=1
max(dist [i]) + prevxδ ;

5 minSum :=
∑|X|

i=1
min(dist [i]) + prevxδ ;

6 xδ := min(maxSum, xδ); xδ := max(minSum, xδ);
7 foreach i ∈ {1, 2, . . . , |X |} do
8 foreach vj ∈ D(xi) do
9 if maxSum −max(dist [i]) + dist [i][j] < xδ then

10 D(xi) := D(xi) \ {vj} ;

11 if minSum −min(dist [i]) + dist [i][j] > xδ then
12 D(xi) := D(xi) \ {vj} ;

Algorithm 2: FILTERDIVERSESUML1
(X ,S, xδ, prevxδ)

1 // Fill a three dimensional matrix with all squares
2 foreach i ∈ {1, 2, . . . , |X |} do
3 foreach k ∈ {1, 2, . . . , |S|} do
4 foreach vj ∈ D(xi) do
5 dist [i][k][j] := (vj − tk[xi])

2;

6 maxd [i][k] := maxj(dist [i][k]);
7 mind [i][k] := minj(dist [i][k]);

8 // Min. and max. L2 norms between X and each t ∈ S
9 maxSum := 0;

10 foreach k ∈ {1, 2, . . . , |S|} do
11 maxSum[k] := 0;
12 foreach i ∈ {1, 2, . . . , |X |} do
13 maxSum[k] := maxSum[k] +maxd [i][k];

14 maxSum = maxSum +
√

maxSum[k];

15 minSum := 0; . . . Symmetric to maxSum
16 // Filtering
17 maxSum := maxSum + prevxδ ;
18 minSum := minSum + prevxδ ;
19 xδ := dmin(maxSum, xδ)e; xδ := bmax(minSum, xδ)c;
20 foreach i ∈ {1, 2, . . . , |X |} do
21 foreach vj ∈ D(xi) do
22 nsummax := 0;
23 foreach k ∈ {1, 2, . . . , |S|} do
24 nsummax [k] :=

maxSum[k]−maxd [i][k] + dist [i][k][j];
25 nsummax := nsummax +

√
nsummax [k];

26 nsummin := 0; . . . Symmetric to maxSum
27 if dnsummaxe < xδ then D(xi) := D(xi) \ {vj} ;
28 ;
29 if bnsumminc > xδ then D(xi) := D(xi) \ {vj} ;
30 ;

Algorithm 3: FILTERDIVERSESUML2
(X ,S, xδ)

Filtering the Quality Constraint. Bounds can be sharply
adjusted in constant time complexity. As this filtering proce-
dure is obvious and standard in CP, for sake of space we do
not present it in this paper. The lower bound of obj is not
affected by this constraint.

Propagating the New Objective. This section investigates
the filtering algorithm of OPTRATIO(xδ, xQ, robj . . .), the
constraint used to balance between diversity and quality. We
suggest two ways for expressing this constraint: Directly
defining a ratio, or using a weighted sum.

1) Using a Ratio. We can directly define
OPTRATIO(xδ, xQ, robj) as xδ

xQ+1 . However, diversity
expressed by variable xδ and quality expressed by xQ
variable may be of widely varying scale. Fortunately, we
designed our paradigm so that the domain size of xδ does not
change. Its lower bound increases after each new solution
proportionally to its upper bound. This observation enables
straightforward normalization of the computation.

Let |xδ| be the size of D(xδ). Before starting the search
of a new solution, we define at each new step j in the loop,
that is, after line 8 of Algorithm 1, the two following rounded
integer quantities:

f = max

(
1,

xQ
|xδ| × j

)
; g = max

(
1,
|xδ| × j
xQ

)
.

Then, we add two variables x′δ and x′Q such that

D(x′δ) = [f × xδ, f × xδ]; D(x′Q) = [g × xQ, g × xQ].

We add constraints to the model stating that x′δ = f ×xδ and
x′Q = g × xQ and we use x′δ and x′Q instead of xδ and xQ in
the ratio to obtain a normalized result.

2) Using a Weighted Sum. We define the constraint
as follows. Given two positive integers α and β, an as-
signment of values to variables {xδ, xQ, robj} to constraint
OPTRATIO(xδ, xQ, robj , α, β) is satisfied iff: robj = α ×
xδ − β × xQ. This constraint can be filtered using standard
features available in most solvers. To ensure a proper balance
between the two factors of the sum, a straightforward adjust-
ment of α or β is all that is required, somewhat simpler than
the normalization of a ratio; we just need to augment either α
or β. Typically, the diversity values should grow quickly, pro-
portional to the number of solutions in S, notably when we
initially have set α = β = 1. Given the last previous solution
tj , we suggest in this case to normalize the sum by updating
β so as β = max(β,

tj [xδ]
xQ

). At last, one may consider multi-
objective optimization instead of a weighted sum. There are
no theoretical issues specific to our approach concerning this
alternative methodology.

5 Application to Over-Constrained Problems
A problem is over-constrained when no assignment of val-
ues to variables satisfies all constraints. In this situation, con-
straint violations are allowed in solutions, providing that such
solutions retain practical interest. Diversity in this problem
class is important, as it is not clear which combinations of vi-
olations are acceptable, thus making the anticipation of such
rules challenging. Typically, we would like to propose a solu-
tion set where the violated constraints are not the same from
one solution to another. On the other hand, in these prob-
lem violations should still be minimized. The quantity of vi-
olations that can be expressed in different ways (number of
violations, weights, etc.), measures the quality of solutions.

263

Petit et al. [Petit et al., 2000] suggested to express an over-
constrained problem as a classical optimization problem, us-
ing new variables to express violations. These variables can
have integer domains if a distance to satisfaction is measured
or boolean domains if we solve the Max-CSP, where the ob-
jective is to minimize the number of constraint violations. For
the sake of simplicity, and without loss of generality, we con-
sider Max-CSP. Let Xv = {xv1, xv2, . . . xv|C|} be the set of
boolean violation variables, given the constraint set C. The
objective constraint of Max-CSP is obj =

∑|C|
i=1 xvi.

Using such a formulation, applying Algorithm 1 with
Hamming distances restricted to the setXv (instead of consid-
ering all variables) generates solutions maximizing the bal-
ance between the number of constraint violations and the di-
versity of these violations. The diversity occurs when dif-
ferent constraints are violated in pairs of solutions. No new
implementation issues are introduced. We are considering a
subset of variables instead of all problem variables X . In this
way, our framework adapts to over-constrained problems.

6 An Alternative View of Solution Diversity
Semantics-Based Distance Definitions. Quite often, real-
world optimization problems contain constraints that involve
the objective function, or at least portions of it. Such con-
straints express some generic concepts which distinguish use-
ful solutions from solutions that may be optimal with re-
spect to the objective function, but not applicable in prac-
tice. In CP, this need was introduced, for instance, in the
context of over-constrained problems [Petit et al., 2000] and
subsequently by the introduction of several new global con-
straints, e.g., [Pesant and Régin, 2005; Schaus et al., 2007;
Petit, 2012; Narodytska et al., 2013]. However, end-users
are not always able to formulate their respective preferences,
even less using global constraints. In this context, we would
like a system that is able to propose different classes of solu-
tions, each one corresponding to one particular concept. Fol-
lowing this idea, we propose a new approach for defining di-
versity. Consider the following example.

Example 1 Let X = 〈x1, x2, . . . , xn=10〉 be a sequence of
variables ordered by their indexes, all involved in an objec-
tive function

∑n
i=1 xi ≤ s to minimize. Consider two solu-

tions of equal quality t1 = 〈1, 0, 0, 1, 0, 0, 1, 0, 0, 1〉 and t2 =
〈0, 0, 0, 1, 1, 1, 1, 0, 0, 0〉. δH(X , t1, t2) = δL1(X , t1, t2) = 4
and δL2(X , t1, t2) = 2.

In this example, the two solutions have equivalent quality and
they are quite similar, as 60% of variables share the same
value. Nevertheless, one may observe that in t1 zero costs
are homogeneously distributed in the sequence, whereas in t2
costs equal to 1 are concentrated in a unique area. From the
point of view of the end-user, this characteristic may make
the two solutions appear very distinct. In CP, the generic
concept of concentrating costs is a sequence is captured by
FOCUS [Petit, 2012], a counting constraint. By counting,
we mean that a particular variable is used to measure a given
property, which is here the concentration of high values.

Definition 7 Let si,j be any sequence of indices of consec-
utive variables in X , such that si,j = [i, i + 1, . . . , j],

1 ≤ i ≤ j ≤ n.
Let yc be a variable. Let k and len be two integers, 1 ≤ len ≤
n. An instantiation ofX∪{yc} satisfies FOCUS(X , yc , len, k)
iff there exists a set SX of disjoint sequences of indices si,j
such that three conditions are all satisfied: (1) |SX | ≤ yc .
(2) ∀xl ∈ X , xl > k ⇔ ∃si,j ∈ SX such that l ∈ si,j . (3)
∀si,j ∈ SX , j − i+ 1 ≤ len .

Assume we do not constrain sequence length (len = n)
and k (highest “non costly” value) is equal to 0. Regarding
Example 1, the minimum value for yc in t1 is 4, while the
minimum value for yc in t2 is 1. This means that solution t2 is
more concentrated than solution t1, and we can use this result
as a metric for estimating solution diversity. While Example 1
is restricted to constraint networks where the ordering (or
more generally the topology) of variables is important, many
other concepts are expressed by counting constraints, such
as the CHANGE constraint for timetabling [Cosytec, 1997],
DEVIATION [Schaus et al., 2007], AMONG [Bessière et al.,
2005], BALANCE [Bessière et al., 2014].

Integration in our Framework The simplest way to in-
corporate this new approach would be to replace the diver-
sity constraint by a given counting constraint. However, it
is likely more appropriate and desirable to prioritize classical
diverse solutions, e.g., obtained using Hamming-based, L1 or
L2 norms, which additionally vary according to the concept
captured by a given counting constraint. As generic concepts
may be of heterogeneous nature, we may provide a diverse
set of solutions for each concept class. Therefore, we suggest
to integrate the counting variable yc in the quality constraint
QUALITYSUM instead of modifying the diversity approach.
This is possible because quality is taken into account in the
objective of the new maximization problem. We replace the
quality variable xQ in Algorithm 1 by a new variable x′Q, such
that x′Q = γxQ + θyc , where γ and θ are positive integers.
In the case of satisfaction problems, we may consider only
x′Q = yc . Our framework can thus be considered as an exten-
sion of previous CP approaches, able to tackle new definitions
of diversity for satisfaction and optimization problems.

7 Experiments
We used an IntelXeon 2.27GHz machine and the Choco
3.2.1 solver. 1 We exclusively provided a constraint network
as argument without any specific tuning to the problem. We
systematically re-use the search strategy of the original model
(e.g., DOM/WDEG [Boussemart et al., 2004]), and then as-
sign the new variables in static order. We present the results
using the L1 norm for diversity. Other cases are similar.

1) Sorting chords. We implemented the chords
musical benchmark [Truchet and Codognet, 2004;
Petit, 2012]. Chords have to be sorted in order to min-
imize a sum of costs. All the chords should be different.
Each cost corresponds to two consecutive chords and is equal
to the number of notes changing from one chord to the next
one less one, plus additional penalties in some cases. A pair
of consecutive chords with a non zero cost is a violation.

1http://www.emn.fr/z-info/choco-solver/

264

Instances Average ti[xQ] / (t2[xδ], t20[xδ]) / # backtracks / % of optimal proofs, for 20 generations of 20 solutions sets
|X |/maxc Av. t1[obj] R NR S NS

/ Av. tδ1[xδ]
15/3 1/42 0/(31, 4278)/2K/100% 0/(31, 4675)/1.4K/100% 4/(35, 5550)/15K/100% 0.1/(35, 4779)/4K/100%
15/6 4/54 0/(32, 4927)/0.9K/100% 0/(32, 4891)/0.9K/100% 11/(46, 7376)/15K/100% 0.1/(46, 5133)/3.7K/100%
19/3 0/65 0/(45, 6307)/1.3K/100% 0/(45, 6297)/1.3K/100% 7.3/(53, 8343)/700K/40% 0.1/(53, 6655)/70K/95%
19/6 3/78 0.1/(47, 6657)/2.8K/100% 0.1/(47, 6640)/2.7K/100% 0.6/(65, 10860)/563K/25% 0.1/(65, 7163)/99K/90%
23/3 0/91 0.1/(69, 9278)/6K/100% 0.1/(69, 9279)/6K/100% 5.2/(75, 10978)/623K/5% 0.1/(75, 9510)/242K/65%
27/3 0/110 0.1/(93, 12739)/113K/90% 0.1/(93, 12741)/112K/90% 2.1/(100, 13496)/414K/5% 0.1/(100, 12902)/341K/20%

Table 1: Comparison of ratios for assessing simultaneously solution diversity and quality in optimization.

(A) (B) NS NS with x′
Q = xQ + yc

15/8 6/7 1.2/(5, 696)/1.8K/100% 2.8/(5, 696)/2K/100%
19/10 12/9 1.5/(6, 896)/43K/100% 3.4/(6, 897)/45K/100%
23/12 11/10 1.5/(8, 1095)/200K/100% 4.7/(8, 1096)/333K/100%
27/14 13/13 2.1/(9, 1276)/2648K/80% 5/(9, 1284)/2980K/80%

Table 2: Results for Over-Constrained instances of the chords
problem. (A) |X |/maxc. (B) Av. t1[obj] / Av. tδ1[xδ].

An instance with optimal sum value that is strictly positive
is over-constrained. We generated a random cost value for
each possible pair of chords. In a first experiment, we
compare methods for computing the new objective variable
robj , namely a ratio (R), a normalized ratio (NR), a sum with
α = β = 1 (S) and a normalized sum (NS). Let nc be the
number of chord variables and maxc be the maximum possi-
ble value of a cost. For each instance, we give average results
obtained with 20 randomly generated cost matrices, and we
generate 20 solutions per matrix and ratio, with a time-limit
of 15 seconds for each new solution. Moreover, after having
generated the first solution t∗ = t1 with objective value
t1[obj] and prior to searching for additional solutions, we
run our paradigm once with a weighted sum with α = 1 and
β = 0, in order to obtain a solution tδ1 with the maximum pos-
sible diversity tδ1[xδ], without regarding solution quality. This
provides a relevant upper bound of the maximum diversity
we may obtain. Thus, for each triplet (|X |,maxc, r ∈ { R,
NR, S, NS }), we solve 420 problems. Then, Table 1 shows
the average quality loss / (t2[xδ], t20[xδ]) / number of back-
tracks / percentage of optimal proofs for over 20 solution sets
generated. All first solutions were proven to be optimal. The
results show that using a ratio is the most robust approach,
both in terms of optimality proof and number of backtracks.
With respect to S and NS, t2 and t3 solutions are almost al-
ways obtained with a loss in quality, because this allows high
increases in diversity and a better objective than with xQ = 0.
Using a sum without normalization leads to a progressive
removal of the quality criterion as the number of previous
solutions increases. In a second experiment, we consider
over-constrained instances. We augment the model with a set
of boolean reified variables Y = {y1, y2, . . . , ync−1}, one-to-
one mapped with cost variables that represent violations, i.e.,
yi = (cost i > 0). Instead of considering diversity among the
X variables, we consider Y . Diversity is applied on the over-
constrained aspect of the instances, not on the values taken
by variables. Table 2 shows the results for 20 solutions per
generated set, with a 5 minute time-limit, using NS. We con-
sider instances with and without the addition of an alternative
notion of diversity, here represented by the FOCUS constraint.
In the fourth column, FOCUS(costs, yc , |costs|, 0) is used.
Quality loss is then represented by a variable x′Q = xQ + yc
instead of xQ. As in Table 1, for each ratio we show: The av-

erage quality loss / (t2[xδ], t20[xδ]) / number of backtracks
/ percentage of optimal proofs for over 20 solution sets
generated. Table 2 highlights that solution quality and diver-
sity as well as the solving process are not strongly affected
when our paradigm is used in the context of over-constrained
problems or with alternative diversity notions.

2) TSPLIB. We used a graph-variable model [Fages
and Lorca, 2012] for solving TSPLIB symmetric in-
stances [Reinelt, 1991], which are state-of-the-art routing
benchmarks. We used channeling constraints [Cheng et al.,
1999] to make the link between the edges in the graph vari-
able and boolean variables expressing whether a route takes
the road between two cities or not, used as diversity variables.

A
tt48

B
ayg29

B
erlin52

B
razil58

B
urm

a14

D
antzig42

E
il51

E
il76

G
r17

t1[obj] 10628 1610 7542 25395 3323 699 426 538 2085
% of optimal 100 100 100 100 100 47 0 0 100
proof with R

Av. % Quality 0.3% 0.8% 0.4% 0.1% 1.6% 2.9% 5.4% 11.9% 0.8%
loss

G
r21

G
r24

G
r48

H
k48

R
at99

R
d100

St70

U
lysse16

U
lysse22

t1[obj] 2707 1272 5046 11461 1211 7910 675 6859 7013
% of optimal 100 100 100 100 0 5 0 100 100
proof with R

Av. % Quality 2.4% 0.7% 0.2% 0.5% 7% 0.5% 9.2% 0.6% 0.5%
loss

Table 3: Results for Symmetric TSPLIB instances.

Table 3 shows the results for instances such that the first
optimal solution can be found and proved in less than one
minute (without giving the optimum value as an upper-bound
of the objective variable). We generated a total of 20 solutions
per instance, defining a ratio (R) with L1 norm. For most
instances, proof of optimality can be done in less than one
minute for all solutions. If it is not the case for one solution,
generally the other diverse solutions are not proved in under
a one minute. The results show low average quality losses,
which is interesting in practice for routing problems.

8 Conclusions and Future Work
We have proposed a generic paradigm for producing diverse
solutions of high quality in constraint-based optimization,
which can be specialized to the context of over-constrained
problems. We suggest considering diversity from additional
points of view, based on concepts expressed by counting
constraints. Future work includes using other counting
constraints and implementation in an industrial context.

265

References
[Allouche et al., 2014] D. Allouche, I. André, S. Barbe,

J. Davies, S. de Givry, G. Katsirelos, B. O’Sullivan,
S. David Prestwich, T. Schiex, and S. Traoré. Computa-
tional protein design as an optimization problem. Artif.
Intell., 212:59–79, 2014.

[Bessière et al., 2005] C. Bessière, E. Hebrard, B. Hnich,
Z. Kiziltan, and T. Walsh. Filtering algorithms for the
nvalue constraint. In Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Op-
timization Problems, Second International Conference,
CPAIOR, pages 79–93, 2005.

[Bessière et al., 2014] C. Bessière, E. Hebrard, G. Katsire-
los, Z. Kiziltan, É. Picard-Cantin, C.-G. Quimper, and
T. Walsh. The balance constraint family. In Principles
and Practice of Constraint Programming - CP 2014, 20th
International Conference, CP, pages 174–189, 2014.

[Bessière, 2006] C. Bessière. Constraint propagation. Re-
search report 06020 (Chapter 3 of the Handbook of Con-
straint Programming, F. Rossi, P. van Beek and T. Walsh
eds. Elsevier 2006.), LIRMM, 2006.

[Billaut et al., 2010] J.-C. Billaut, A. Moukrim, and
E. Sanlaville, editors. Flexibility and Robustness in
Scheduling. Wiley, 2010.

[Bistarelli et al., 1999] S. Bistarelli, U. Montanari, F. Rossi,
T. Schiex, G. Verfaillie, and H. Fargier. Semiring-based
CSPs and valued CSPs: Frameworks, properties, and com-
parison. Constraints, 4(3):199–240, 1999.

[Boussemart et al., 2004] F. Boussemart, F. Hemery,
C. Lecoutre, and L. Sais. Boosting systematic search by
weighting constraints. In Proceedings of the 16th Eure-
opean Conference on Artificial Intelligence, ECAI’2004,
including PAIS, pages 146–150, 2004.

[Cheng et al., 1999] B. M. W. Cheng, K. M. F. Choi, J. H.
Lee, and J. C. K. Wu. Increasing constraint propagation
by redundant modeling: an experience report. Constraints,
4(2):167–192, 1999.

[Cosytec, 1997] Cosytec. CHIP 5.1 Ref. Manual, 1997.
[Eiter et al., 2013] T. Eiter, E. Erdem, H. Erdogan, and

M. Fink. Finding similar/diverse solutions in answer set
programming. TPLP, 13(3):303–359, 2013.

[Fages and Lorca, 2012] J.-G. Fages and X. Lorca. Improv-
ing the asymmetric TSP by considering graph structure.
CoRR, abs/1206.3437, 2012.

[Hadzic et al., 2009] T. Hadzic, A. Holland, and
B. O’Sullivan. Reasoning about optimal collections
of solutions. In Principles and Practice of Constraint
Programming - CP 2009, 15th International Conference,
CP, pages 409–423, 2009.

[Hamming, 1950] R. W. Hamming. Error detecting and error
correcting codes. Bell system technical journal, 29:147–
160, 1950.

[Hebrard et al., 2005] E. Hebrard, B. Hnich, B. O’Sullivan,
and T. Walsh. Finding diverse and similar solutions in

constraint programming. In Proceedings, The Twentieth
National Conference on Artificial Intelligence and the Sev-
enteenth Innovative Applications of Artificial Intelligence
Conference, pages 372–377, 2005.

[Hebrard et al., 2007] E. Hebrard, B. O’Sullivan, and
T. Walsh. Distance constraints in constraint satisfac-
tion. In IJCAI 2007, Proceedings of the 20th Interna-
tional Joint Conference on Artificial Intelligence, pages
106–111, 2007.

[Hebrard et al., 2011] E. Hebrard, D. Marx, B. O’Sullivan,
and I. Razgon. Soft constraints of difference and equality.
J. Artif. Intell. Res. (JAIR), 41:97–130, 2011.

[Hentenryck et al., 2009] P. Van Hentenryck, C. Coffrin, and
B. Gutkovich. Constraint-based local search for the auto-
matic generation of architectural tests. In Principles and
Practice of Constraint Programming - CP 2009, 15th In-
ternational Conference, CP, pages 787–801, 2009.

[Narodytska et al., 2013] N. Narodytska, T. Petit, M. Siala,
and T. Walsh. Three generalizations of the FOCUS con-
straint. In IJCAI 2013, Proceedings of the 23rd Interna-
tional Joint Conference on Artificial Intelligence, 2013.

[Pesant and Régin, 2005] G. Pesant and J.-C. Régin.
SPREAD: A balancing constraint based on statistics. In
Principles and Practice of Constraint Programming - CP
2005, 11th International Conference, CP, pages 460–474,
2005.

[Petit et al., 2000] T. Petit, J.-C. Régin, and C. Bessière.
Meta-constraints on violations for over constrained prob-
lems. In 12th IEEE International Conference on Tools with
Artificial Intelligence, pages 358–365, 2000.

[Petit, 2012] T. Petit. Focus : A constraint for concentrat-
ing high costs. In Principles and Practice of Constraint
Programming - 18th International Conference, CP, pages
577–592, 2012.

[Reinelt, 1991] G. Reinelt. TSPLIB, a traveling salesman
problem library. ORSA Journal on Computing, 3(4):376–
384, 1991.

[Schaus et al., 2007] P. Schaus, Y. Deville, P. Dupont, and
J.-C. Régin. The deviation constraint. In Integration of AI
and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems, 4th International Con-
ference, CPAIOR, pages 260–274, 2007.

[Trapp and Konrad, 2015] Andrew C. Trapp and Renata A.
Konrad. Finding diverse solutions of high quality to binary
integer programs. to appear, IIE Transactions, 2015.

[Truchet and Codognet, 2004] C. Truchet and P. Codognet.
Musical constraint satisfaction problems solved with adap-
tive search. Soft Comput., 8(9):633–640, 2004.

[Zampelli et al., 2013] S. Zampelli, Y. Vergados, R. Van
Schaeren, W. Dullaert, and B. Raa. The berth allocation
and quay crane assignment problem using a CP approach.
In Principles and Practice of Constraint Programming -
19th International Conference, CP 2013, pages 880–896,
2013.

266

