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Abstract

At each node of the search tree, Branch and Bound
solvers for Max-SAT compute the lower bound
(LB) by estimating the number of disjoint incon-
sistent subsets (IS) of the formula. IS are detected
thanks to unit propagation (UP) then transformed
by max-resolution to ensure that they are counted
only once. However, it has been observed exper-
imentally that the max-resolution transformations
impact the capability of UP to detect further IS.
Consequently, few transformations are learned and
the LB computation is redundant. In this paper,
we study the effect of the transformations on the
UP mechanism. We introduce the notion of UP-
resiliency of a transformation, which quantifies its
impact on UP. It provides, from a theoretical point
of view, an explanation to the empirical efficiency
of the learning scheme developed in the last ten
years. The experimental results we present give ev-
idences of UP-resiliency relevance and insights on
the behavior of the learning mechanism.

1 Introduction
The Max-SAT problem consists in finding, for a given CNF
formula, a Boolean assignment of the variables of this prob-
lem which maximizes the number of satisfied clauses.

Among the methods to solve the Max-SAT problem,
Branch and Bound (BnB) algorithms (e.g. AKMAXSAT
[Kügel, 2010], AHMAXSAT [Abramé and Habet, 2014a;
2014b], WMAXSATZ [Li et al., 2010; 2007]) have shown their
efficiency, especially on random and crafted instances. They
explore the whole search space and compare, at each node of
the search tree, the current number of falsified clauses plus
an (under-)estimation of the ones which will become falsified
(the lower bound, LB) to the best solution found so far (the
upper bound, UB). If LB ≥ UB, then no better solution can
be found in the current branch and a backtrack is performed.
The estimation of the remaining inconsistencies is a key com-
ponent of BnB solvers: on the one hand, it is one of the most
time-consuming components and on the other hand the qual-
ity of the LB leads the backtracks and determines the number
of explored nodes.

Efficient BnB Max-SAT solvers compute the lower bound
by counting the disjoint inconsistent subsets (IS) of the for-
mula. They use unit propagation based methods [Li et al.,
2005; 2006] to detect the inconsistent subsets. Each detected
IS must be treated to ensure it will be counted only once.
One of the existing treatments is based on the max-resolution
rule [Larrosa and Heras, 2005; Heras and Larrosa, 2006;
Bonet et al., 2007]. It consists in applying several max-
resolution steps on the clauses of the IS. The resulting for-
mulas are equivalent to the original ones, thus the transfor-
mations can be learned to make the lower bound computation
more incremental. However, it has been observed empirically
that learning the max-resolution transformations may affect
negatively the quality of the lower bound estimation. For this
reason, existing solvers learn transformations selectively ac-
cording to various criteria.

We study in this paper the impact of the max-resolution
transformations on the UP mechanism. We show that in some
cases the information which can be used by UP in the orig-
inal formula are, after transformations, fragmented in sev-
eral clauses. In such situation, UP may be less efficient in
the transformed formula than in the original one. We intro-
duce the notion of UP-resiliency to characterize the transfor-
mations which are not affected by fragmentation and more
generally to measure the impact of the transformations on the
UP mechanism. We show that according to this criterion, the
most used learning scheme does not affect UP. It contributes
to explain from a theoretical point of view the empirical re-
sults obtained in the last ten years on the development of in-
ference rules [Li et al., 2007]. The results of the experimental
study we have performed confirm the relevance of the UP-
resiliency criterion. They give insight on the behavior of the
learning mechanism and open new perspectives of develop-
ment.

This paper is organized as follows. In Section 2, we give
the basic definitions and notations used in this paper. We
present in Section 3 the IS learning mechanism and we mo-
tivate our contribution. We introduce UP-resiliency in Sec-
tion 4 and present an experimental study on it in Section 5
before concluding in Section 6.

2 Definitions and Notations
A formula Φ in conjunctive normal form (CNF) defined on a
set of propositional variables X = {x1, . . . , xn} is a con-
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junction of clauses. A clause cj is a disjunction of liter-
als and a literal l is a variable xi or its negation xi. Al-
ternatively, a formula can be represented as a multiset of
clauses Φ = {c1, . . . , cm} and a clause as a set of literals
cj = {lj1 , . . . , ljk}. An assignment can be represented as
a set I of literals which cannot contain both a literal and its
negation. If xi is assigned to true (resp. false) then xi ∈ I
(resp. xi ∈ I). I is a complete assignment if |I| = n and it
is partial otherwise. A literal l is said to be satisfied by an as-
signment I if l ∈ I and falsified if l ∈ I . A clause is satisfied
by I if at least one of its literals is satisfied, and it is falsified
if all its literals are falsified. By convention, an empty clause
(denoted by �) is always falsified. A subset ψ of Φ is incon-
sistent if there is no assignment which satisfies all its clauses.
For a unit assignment I = {l}, we denote by Φ|I the formula
obtained by applying I on Φ. Formally: Φ|I = {cj | cj ∈
Φ, {l, l} ∩ cj = ∅} ∪ {cj \ {l} | cj ∈ Φ, l ∈ cj}. This no-
tation can be extended to any assignment I = {l1, l2, . . . , lk}
as follows: Φ|I = (. . . ((Φ|{l1})|{l2}) . . . |{lk}). Eventually,
solving the Max-SAT problem consists in finding a complete
assignment which maximizes (minimizes) the number of sat-
isfied (falsified) clauses of Φ. There exists other variants of
Max-SAT (weighted, partial and weighted partial Max-SAT)
which are not considered in this paper. Nevertheless, the pre-
sented results can be extended to these variants.

3 Preliminaries and Motivations
We present in this section the mechanisms of IS detection
and transformation as well as the learning schemes used in
recent solvers. Then, we show through an example that IS
transformations can impact UP efficiency.

3.1 IS Detection
Unit propagation (UP) consists in iteratively satisfying the lit-
erals which appear in unit clauses until a conflict is found (an
empty clause) or no more unit clause remains. When a con-
flict is detected, the clauses which have led to it by propaga-
tion form an inconsistent subset of the formula.

The propagation steps can be represented by an implication
graph G = (V,A) which is a directed acyclic graph where
the nodes V are the propagated literals and each arrow of A
is tagged with the clause causing the propagation [Marques-
Silva and Sakallah, 1999]. The special node � is used to
represent the empty clause.

In the remaining of this paper, we will use the following ad-
ditional notations. Let us consider a sequence of propagation
steps described by the implication graph G = (V,A). For
each literal li ∈ V , we denote predG(li) the predecessors of
li inG and succG(li) its successors. We can define the neigh-
borhood of li in G as neighG(li) = predG(li) ∪ succG(li).
Note that this last definition can be extended to any subset V ′

of V as follows neighG(V ′) =
⋃
li∈V ′ neighG(li) \ V ′.

3.2 IS Transformation
Once detected, IS must be transformed to ensure that they will
be counted only once. The most used transformation method
is based on the max-resolution inference rule [Larrosa and
Heras, 2005; Heras and Larrosa, 2006; Bonet et al., 2007].

Definition 1 (Transformation by max-resolution). Let Φ
be a formula and ψ an IS of Φ. For all variable xi s.t.
∃!cj = {xi, lj1 , . . . , ljs} ∈ ψ, xi ∈ cj and ∃!ck =
{xi, lk1 , . . . , lkt} ∈ ψ, xi ∈ ck, we denote by θ(ψ, xi) the
set of clauses obtained from ψ after application of the max-
resolution rule between cj and ck on xi. Formally:

θ(ψ, xi) = (ψ \ {cj , ck}) ∪ {cr, cc1, . . . , cct+s}

with cr = {lj1 , . . . , ljs , lk1 , . . . , lkt} the resolvent and cc1 =

{xi, lj1 , . . . , ljs , lk1 , lk2 , . . . , lkt}, cc2 = {xi, lj1 , . . . , ljs ,
lk2 , lk3 , . . . , lkt}, . . . , cct = {xi, lj1 , . . . , ljs , lkt}, cct+1 =

{xi, lk1 , . . . , lkt , lj1 , lj2 , . . . , ljs}, cct+2 = {xi, lk1 , . . . , lkt ,
lj2 , lj3 , . . . , ljs}, . . . , cct+s = {xi, lk1 , . . . , lkt , ljs} the com-
pensation clauses. For any sequence S = (xi1 , . . . , xik)
of variables appearing in ψ, we denote by Θ(ψ, S) the set
of clauses obtained from ψ after application of the max-
resolution rules on xi1 then xi2 and so forth. Formally
Θ(ψ, S) = θ(. . . θ(θ(ψ, xi1), xi2) . . . , xik).

The following example illustrates the transformation of an
IS by max-resolution.
Example 1. Let us consider a formula Φ1 = {c1, . . . , c6}
with c1 = {x1}, c2 = {x2}, c3 = {x1, x2, x3},
c4 = {x3, x4}, c5 = {x3, x5} and c6 = {x4, x5}.
The application of UP leads to the propagation sequence
(x1@c1, x2@c2, x3@c3, x4@c4, x5@c5) (meaning that x1 is
propagated by c1, then x2 by c2, etc.). The clause c6 is empty
and the corresponding implication graph is shown on Fig. 1a.
Hence, Φ1 is an inconsistent subset. Its transformation by
max-resolution is done as follows. Max-resolution is first ap-
plied between c6 and c5 on the variable x5. The intermediary
resolvent cr1 = {x3, x4} is produced as well as the compen-
sation clauses cc1 = {x3, x4, x5} and cc2 = {x3, x4, x5}.
The original clauses c5 and c6 are removed from the formula.

x1 x4

x3 �

x2 x5

c1

c2

c3

c3

c4

c5

c6

c6

(a) Implication graph

c6 = {x4, x5} c5 = {x3, x5}
cc1 = {x3, x4, x5}
cc2 = {x3, x4, x5}

cr1 = {x3, x4} c4 = {x3, x4}

cr2 = {x3} c3 = {x1, x2, x3}
cc3 = {x1, x2, x3}
cc4 = {x2, x3}

cr3 = {x1, x2} c2 = {x2} cc5 = {x1, x2}

cr4 = {x1} c1 = {x1}

cr5 = �

x5

x4

x3

x2

x1

(b) Max-SAT resolution steps

Figure 1: Implication graph and Max-SAT resolution steps
applied on the formula Φ1 from Example 1.
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Then, max-resolution is applied between the intermediary re-
solvent cr1 and the next original clause c4 on the variable x4
and so forth. Fig. 1b shows the max-resolution steps with in
boxes the compensation clauses. After complete transforma-
tion, we obtain the formula Φ′

1 = {�, cc1, cc2, cc3, cc4, cc5}
with cc3 = {x1, x2, x3}, cc4 = {x2, x3} and cc5 = {x1, x2}.

3.3 Existing Learning Schemes
Recent BnB solvers apply learning in the sub-part of the
search tree under some conditions. Two main learning
schemes are used. The first one learns a transformation only
if all the intermediary resolvents are smaller than four [Heras
et al., 2008]. The second scheme learns transformations of
the IS part matching the main following patterns [Li et al.,
2007]:

(P1)
{{x1, x2}, {x1, x2}}

{{x1}}
, (P2)

{{x1, x2}, {x1, x3}, {x2, x3}}
{{x1}, {x1, x2, x3}, {x1, x2, x3}}

,

(P3)
{{x1}, {x1, x2}, {x2, x3}, . . . , {xk−1, xk}, {xk}}

{�, {x1, x2}, {x2, x3}, . . . , {xk−1, xk}}.

These patterns have been recently extended in [Abramé
and Habet, 2014c]. Note that solvers do not learn only the
transformations of whole IS. They can also learn the trans-
formation of unit clause subsets (UCS) which are subsets of
the formula which do not include unit clauses and which pro-
duce, after transformation by max-resolution, unit resolvent
clauses.

3.4 Fragmentation Phenomenon
Two reasons are generally invoked to explain the efficiency
of the learning schemes: they limit the growing of the for-
mula size and produce small compensation clauses which are
more likely to be used by UP. However, experimental analy-
sis [Abramé and Habet, 2014c] shows that increasing learning
slightly may deteriorate significantly the solver performance.
The reasons cited above cannot explain this behavior.

Abramé and Habet [2014c] have also shown that the max-
resolution transformations may result in a “fragmentation”
of the information contained in the original clauses of the
formula. Clauses which can have been used in UP are, af-
ter transformation by max-resolution, fragmented in two (or
more) clauses. The original information can only be retrieved
by applying max-resolution between them.
Example 2. Let us consider the formula Φ2 =
{c1, c2, c3, c4, c5, c6, c7} with c6 = {x4, x6} and
c7 = {x5, x6} (c1, . . . , c5 are the same as in Exam-
ple 1). The application of UP leads to the propagation
sequence (x1@c1, x2@c2, x3@c3, x4@c4, x5@c5, x6@c6)
and the clause c7 is empty. The corresponding implication
graph is shown in Fig. 2. If we apply max-resolution
according to the sequence (x4, x6, x5, x3, x2, x1), we obtain
the formula Φ′

2 = {�, cc3, cc4, cc5, cc6, cc7, cc8, cc9} with
cc6 = {x3, x4, x6}, cc7 = {x3, x4, x6}, cc8 = {x3, x5, x6}
and cc9 = {x3, x5, x6} (cc3, cc4 and cc5 are the same as in
Example 1).

Let us assign x4 and x5 to true. In the original for-
mula Φ2, the subset {c6, c7} is inconsistent and the appli-
cation of UP leads to the following propagation sequence
(x1@c1, x2@c2, x3@c3). In the transformed formula Φ′

2, the

clauses cc7 and cc9 are reduced and become respectively
{x3, x6} and {x3, x6} but no propagation steps can be per-
formed. Note that if we apply max-resolution between this
two clauses on x6 we obtain the unit resolvent {x3} but the
sole UP cannot exploit these two clauses. Thus we can say
that the information which may have led to the propagation
of x3 is fragmented.

x1 x4 x6

x3 �

x2 x5

c1

c2

c3

c3

c4

c5

c6

c7

c7

Figure 2: Implication graph of Example 2.

When such transformations are learned, it may affect the
capability of UP to detect IS in the lower nodes of the search
tree. Thus the LB estimation may be less accurate and the
solvers may explore more nodes.

4 UP-Resiliency
We study in this section the resiliency of UP to transforma-
tions. We introduce the notion of UP-resiliency of a trans-
formation to characterize the transformations which have no
negative impact on UP and to quantify this impact. We
discuss the UP behavior on the formula resulting from UP-
resilient transformations and we show that the most used
learning scheme does not affect UP.

4.1 In an Implication Graph
When fragmentation occurs, the compensation clauses which
may propagate a literal li of the original implication graph G
contain additional literals which are not in the original neigh-
borhood of li in G. Thus, to detect if a transformation is not
affected by the fragmentation phenomenon, we can rely on
the capability of UP to propagate the literals of the original
implication graph G when only their neighborhood literals in
G are set to true. We said that such transformations are UP-
resilient.

Definition 2 (UP-resiliency in an implication graph). Let
Φ be a formula, ψ an IS detected by the propagation steps
described by the implication graph G = (V,A) and S a se-
quence of variables appearing in ψ. For a literal li ∈ V ,
we say that the transformation Θ(ψ, S) is UP-resilient for
li in G iff � ∈ neighG(li) or li can be propagated in
Θ(ψ, S)|neighG(li).

We say that Θ(ψ, S) is UP-resilient in G for a subset V ′ of
V iff it is UP-resilient ∀li ∈ V ′ and that it is UP-resilient in
G iff it is UP-resilient for V .

Note that the neighborhoods which include the special
node � are not valid assignments. All transformations are
considered UP-resilient for literals with such neighborhood.

4.2 Generalization
The definition of the UP-resiliency given in the previous sec-
tion depends on the neighborhood of the literals in the impli-
cation graph. However, the same IS can be detected by sev-
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eral sequences of propagation steps which can be described
by distinct implication graphs.
Example 3. Let us consider the formula Φ1 from Example 1.
In addition to the one presented in the original example, two
other sequences of propagation steps can lead to the detec-
tion of the inconsistent subset while changing the value given
to the propagated variables: (x1@c1, x2@c2, x3@c3, x4@c4,
x5@c6) and (x1@c1, x2@c2, x3@c3, x5@c5, x4@c6). Note
that we ignore the propagation sequences varying only by the
order of the propagation steps.

With the previous definition, the UP-resiliency of a trans-
formation may vary depending on how the IS have been de-
tected. To overcome this limitation, we propose to consider
all the possible ways (i.e. sequences of propagation steps) to
detect the IS. Let us first define the set of the possible neigh-
borhoods of a literal appearing in an inconsistent subset.

Definition 3 (Possible neighborhoods). Let Φ be a for-
mula and ψ an IS. For a literal li appearing in ψ clauses,
we can define its possible neighborhoods as pneighψ(li) =
{neighG(li), ∀ implication graph G = (V,A) of ψ s.t.
li ∈ V }. This definition can be naturally extended to any
set of literals.

Then we can give a general definition of the UP-resiliency
which does not depend anymore of the propagation steps
which have led to the IS discovery.

Definition 4 (UP-resiliency). Let Φ be a formula, ψ an IS
and S a sequence of variables appearing in ψ. For a literal
li appearing in ψ, we say that the transformation Θ(ψ, S) is
UP-resilient for li iff for all nk ∈ pneighψ(li): � ∈ nk or li
can be propagated in Θ(ψ, S)|nk

.
We say that Θ(ψ, S) is UP-resilient for a set of literals L

appearing in ψ iff it is UP-resilient ∀li ∈ L and that it is UP-
resilient iff it is UP-resilient for all the literals appearing in
ψ.

Similarly, we can quantify a transformation impact on UP
by defining its percentage of UP-resiliency as the percentage
of couples (li, nk) s.t. � ∈ nk or li can be propagated in
Θ(ψ, S)|nk

.

4.3 Impact on the IS Detection
One of the most interesting properties of the UP-resilient
transformations is the capability to retrieve the propagations
which are not necessary anymore to an inconsistent subset.
We have seen that if a transformations is UP-resilient for a
literal li, then li can be propagated in the transformed for-
mula when the literals of one of its possible neighborhoods is
set to true. We now show that this property can be extended
to sets of literals, i.e. that if a transformation is UP-resilient
for a set of literals L, then the literals of L can be propagated
in the transformed formula if the literals of one of L possible
neighborhoods are set to true.

Property 1. Let Φ be a formula, ψ an IS, S a sequence of
variables appearing in ψ and L a set of literals appearing in
ψ. If the transformation Θ(ψ, S) is UP-resilient for L then
for all nk ∈ pneighψ(L): � ∈ nk or all L literals can be
propagated in Θ(ψ, S)|nk

.

Proof. Letψ be an IS detected thanks to the propagation steps
described by a implication graph G and S = (xi1 , . . . , xim)
a sequence of ψ variables. We assume that the partial trans-
formation Θ(ψ, (xi1 , . . . , xih)) (with h < m) has already
be applied. We denote by G|(xi1

,...,xih
) the updated impli-

cation graph obtained by replacing the resolved clauses by
the intermediary resolvent produced. For every literal lij
s.t. lij , lij /∈ {xi1 , . . . , xih} the compensation clauses pro-
viding UP-resiliency for lij in G can only be obtained by
(we assume that such clause has not yet been obtained and
that � /∈ neighG(lij )): (1) applying max-resolution on lij if
� /∈ succG|(xi1

,...,xih
)
(lij ) or (2) applying max-resolution on

a successor lik of lij if � ∈ succG(lik). These two points can
be easily proved by observing the compensation clauses ob-
tained when we transform clauses containing lij or lij . In any
other cases, the compensation clauses produced do not con-
tain lij or include literals which are not in lij neighborhood
in G. Also note that we present here only the information
which is relevant to our demonstration. These conditions are
necessary but not sufficient to obtain li UP-resiliency.

We can now prove the property. Let us proceed by induc-
tion on the size of a set of literals L appearing in ψ.
Base: If |L| = 1 then obviously the property is verified.
Inductive step: We assume that the property holds for every
L′ s.t. |L′| < n and we now consider a set of literals L s.t.
|L| = n and an implication graph G = (V,A) of ψ s.t. L ∈
V . Let us consider the last literal lij of L in S.

If the UP-resiliency in G for lij has been obtained by ap-
plying max-resolution on lij (case 1), then the compensation
clauses providing UP-resiliency for lij cannot contain literals
from L \ {lij}. Thus neighG(L) is sufficient to propagate
lij in the transformed formula. By assumption we know that
neighG(L\{lij}) propagate L\{lij} in the transformed for-
mula thus the property holds for L.

Otherwise, lij UP-resiliency have been obtained thanks to
case (2). We consider the first literal lik of L which have
obtained UP-resiliency by applying max-resolution on one of
its successors lio (case (2)). We can distinguish to cases:
• if neighG|(xi1

,...,xio−1
)
(lik) ∩ L = ∅, then neighG(L)

is sufficient to propagate lik in the transformed formula.
As previously, by assumption we know that neighG(L\
{lik}) propagates L \ {lik} in the transformed formula
thus the property holds for L.
• otherwise, ∀lip ∈ neighG|(xi1

,...,xio−1
)
(lik) ∩ L, we

know that the clauses providing UP-resiliency for lip
have not yet be obtained. After application of max-
resolution on lio , we obtain the transformed implication
graph G|(xi1 ,...,xio )

and � ∈ neighG|(xi1
,...,xio

)
(lip). If

� ∈ neighG(lip) then � ∈ neighG(L) and the prop-
erty holds. Otherwise, the transformation cannot be UP-
resilient inG for lip and it contradicts the initial assump-
tion.

The same reasoning can be made for every implication graph
G of ψ, thus the property holds for any set of literals of size
n.

When a subset ψ′ of an IS ψ is not necessary anymore (for
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instance when ψ is not minimal), this property ensure that UP
can perform the same propagations in the transformed for-
mula than in the original clauses of ψ′.
Example 4. Let us consider again the formula Φ1 from Exam-
ple 1 and its UP-resilient transformation in Φ′

1. If we assign
x4 and x5 to true, the clause c6 is falsified while c4 and c5 are
satisfied. The application of UP leads to the following prop-
agation steps: (x1@c1, x2@c2, x3@c3). If we apply UP on
the transformed formula Φ′

1, we obtain the propagation steps:
(x3@cc2, x2@cc4, x1@cc3). Note that the same propagations
are performed in the transformed formula as in the original
one. The same propagations can be done in the formula Φ2

with the same assignments. But if we consider the formula Φ′
2

obtained by the non UP-resilient transformation presented in
Example 2, no propagation can be performed.

4.4 UP-Resiliency of the Existing Patterns

Empirical results [Li et al., 2007] have shown that the exist-
ing learning schemes are efficient, but until now there was no
theoretical results to explain it. The following property shows
that there exist transformations which are UP-resilient for the
existing patterns presented in Section 3.3.

Property 2. Let Φ be a formula and ψ an IS. For any ψ′ ⊂ ψ
such that ψ′ matches one of the pattern P1, P2 or P3 there
exists a sequence S of ψ variables s.t. Θ(ψ, S) is UP-resilient
for ψ′.

Proof. (sketch) For each li ∈ ψ′ and each nk ∈ pneighψ(li),
it is simple to check that � ∈ nk or li can be propagated in
Θ(ψ, S)|nk

.

5 Experimental Study
We have implemented a simple procedure to compute the per-
centage of UP-resiliency of the transformations. We generate
all the neighborhoods of the literals and then we check if each
literal can be propagated when each one of its neighborhoods
is satisfied. This naive implementation is time consuming and
increases the solving time of 25% in average. Its purpose is
to evaluate the IS transformation and learning mechanisms,
not to be competitive. The implementation is performed in
the solver AHMAXSAT, which was ranked first in three out of
nine categories during the last Max-SAT Evaluation1.

We have run all the variants presented below on the un-
weighted and weighted random and crafted instances of the
Max-SAT Evaluation 2013. We did not include partial and
industrial instances. We have made 66,501 separate runs of
the solver. In our opinion, it is sufficient to show the impact
of the studied components on the solver behavior. Neverthe-
less, the presented results can be extended to these instance
categories. All the experiments are performed on machines
equipped with Intel Xeon 2.4 Ghz processors and 24 Gb of
RAM and running under a GNU/Linux operating system. The
cutoff time is fixed to 1800 seconds per instance.

1http://maxsat.ia.udl.cat:81/13

5.1 Impact of the Max-Resolution Application
Order on the UP-resiliency

We first evaluate the impact of the order of application of the
max-resolution steps on the UP-resiliency of the transforma-
tion. We compare two variants:
• AHMAXSAT-RPO applies the max-resolution steps in re-

verse propagation order
• AHMAXSAT-SIR uses the smallest resolvent heuristic de-

scribed in [Abramé and Habet, 2014a].
The results are presented in Table 1. We can observe that

the average percentage of UP-resiliency of the transforma-
tions is significantly higher with the SIR heuristic (54% vs.
60%). Consequently, less decisions are necessary to solve
the instances (123,028 vs. 102,088 in average) and the solv-
ing time is reduced (135.5 vs. 108.4 seconds in average). It
shows that max-resolution application order has an important
impact on the UP-resiliency of the transformations, and thus
on the solver performance.

Table 1: Evaluation of the impact of the max-resolution ap-
plication order on the solver behavior. Columns S(T ), D and
UPR give respectively: the number of solved instances with
in bracket the average solving time, the average number of
decisions and the average percentage of UP-resiliency of the
transformations. Columns marked with a star consider only
the instances solved by both solver variants.

Categories # RPO SIR
S(T) D* UPR* S(T) D* UPR*

ms crafted 167 156(110.5) 100618 53% 156(94.3) 84148 57%
ms random 378 299(187.3) 208420 52% 302(149.6) 171236 58%

wms crafted 116 83(61.1) 62987 74% 83(47.4) 58110 80%
wms random 160 160(101.1) 14409 48% 160(76) 11474 55%

Overall 821 698(135.5) 123028 54% 701(108.4) 102088 60%

5.2 Impact of the Existing Learning Schemes on
the UP-resiliency

In the second set of experiments, we evaluate the impact of
the existing learning schemes on the learned transformation
UP-resiliency. We consider the following variants:
• AHMAXSAT-IRS uses the learning scheme of MINI-

MAXSAT [Heras et al., 2008]. A transformation is
learned if all the intermediary resolvents contain less
than four literals.
• AHMAXSAT-PAT learns the transformations when IS

match the patterns presented in Section 3.3.
• AHMAXSAT-PAT+ learns the transformations when IS

match the patterns presented in Section 3.3 or the ex-
tended sets of patterns presented in [Abramé and Habet,
2014c].
• AHMAXSAT-UPR learns the transformations of the IS

and UCS which are UP-resilient.
Table 2 shows the results obtained. We can first observe

that the IRS learning scheme behaves very differently than the
PAT and PAT+ ones. It learns in average 80% of the transfor-
mations (columns %L) while PAT and PAT+ learn less than
20% of them. The average percentage of UP-resiliency of the
transformations learned by the IRS learning scheme (columns
%UPRL) is relatively low (78%) compared to the ones of PAT
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Table 2: Evaluation of the impact of the learning schemes on AHMAXSAT behavior. Columns S(T ), %L and %UPRL give
×103),

Categories # IRS PAT PAT+ UPR
S(T) D %L %UPRL S(T) D %L %UPRL S(T) D %L %UPRL D %L %UPRL

ms crafted 167 58(160,3) 655 89% 82% 156(106,1) 111 14% 100% 156(94,3) 84 17% 99% 81 19% 100%
ms random 378 182(378,0) 1303 80% 80% 301(188,6) 228 13% 100% 302(162,9) 220 16% 98% 220 15% 100%

wms crafted 116 76(38,1) 67 90% 84% 83(83,8) 121 30% 100% 83(47,4) 58 40% 98% 53 46% 100%
wms random 160 110(406,1) 113 70% 69% 157(88,2) 13 8% 100% 157(76,0) 11 10% 96% 12 9% 100%

Overall 821 426(295,0) 687 80% 78% 697(135,1) 140 14% 100% 698(114,3) 124 18% 97% 122 18% 100%

(a) Average solving time (b) Average number of decisions

Figure 3: Impact of the percentage of non UP-resilient neighborhoods allowed in the learning of IS and UCS transformations.

and PAT+ (respectively 100% and 96%). Consequently, UP
detects IS less efficiently with the IRS learning scheme than
with the PAT and PAT+ ones. Thus, the solver explores four
times more nodes of the search tree (columns D) than with
PAT or PAT+ and it solves less instances with a higher aver-
age solving time (columns S(T)). From these results, we can
conclude that the IRS learning scheme, as it is implemented
in AHMAXSAT-IRS, does not control efficiently the impact of
the transformations on the UP mechanism.

The comparison of the PAT and PAT+ learning schemes
shows a slight increase of percentage of transformations
learned for the latter (columns %L) while keeping a high per-
centage of UP-resiliency (96%). Consequently, the average
number of decisions as well as the average solving time are
slightly reduced.

It is also interesting to observe that the percentage of trans-
formations learned with the PAT+ learning scheme is similar
to the one obtained with the UPR learning scheme. The de-
tailed results show that on the crafted instances, the PAT+
learning scheme does not detect all the UP-resilient transfor-
mations. From this observation, we can conclude that the
PAT+ learning scheme can be improved.

5.3 UP-resiliency Based Learning Schemes
We have implemented a new learning scheme based on
the minimum percentage of UP-resiliency allowed in the
learned transformations of IS (noted %UPRIS) and UCS
(noted %UPRUCS). We have tested this new learning scheme

with %UPRIS and %UPRUCS ranging respectively from 0 to
100 and from 40 to 100. Results are presented in Fig. 3.

We can observe that the best results are obtained with
%UPRIS and %UPRUCS ranging from 60% to 100%. On
these ranges of values, the average UP-resiliency percent-
age of the learned transformation is always higher than 90%.
With values lower than 60%, the average number of decisions
increases importantly and so does the average solving time.
It shows that UP-resiliency quantifies accurately the transfor-
mation impact on UP efficiency.

6 Conclusions
We have introduced in this paper the notion of UP-resiliency
of a transformation which quantifies the impact of the max-
resolution rule on UP. We have shown that, according to UP-
resiliency criterion, the most used learning scheme based on
patterns does not affect UP. It contributes to explain theoret-
ically the learning scheme efficiency which was proved only
empirically until now. The results of the experimental study
we have performed provide evidences of the UP-resiliency
relevance. They also show that (1) the order of application of
the max-resolution steps has an impact on the UP-resiliency
of the transformations and (2) the existing learning schemes
do not capture all the UP-resilient transformations.

These results open several perspectives. Among them, it
would be interesting to develop new max-resolution appli-
cation orders to increase the percentage of UP-resiliency of
the transformations. The existing learning schemes can also
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be improved, either by finding a characterization of the UP-
resilient transformations which can be efficiently checked or
by completing the set of patterns used in the current leaning
schemes. Now that we have a better understanding of the
behavior of the max-resolution transformations, we can con-
sider applying learning not only in the sub-part of the search
tree but also in the upper part. The expected benefits would
be an even more incremental LB computation and a better
consideration of the structural properties of the instances.

As shown in the Max-SAT Evaluations, BnB solvers per-
form poorly on structured instances such as industrial ones.
In our opinion, this is mainly due to their inability to con-
sider the structural properties of these instances in the explo-
ration of the search space. An extended learning mechanism
as described above may allow to guide the exploration of the
search tree by using the information learned as it is done
in modern SAT solvers [Marques-Silva and Sakallah, 1999;
Eén and Sörensson, 2003]. Thus, the UP-resiliency prop-
erty presented in this paper may be a significant step towards
the improvement of BnB solver performance on industrial in-
stances.
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