
Improving the Efficiency of Dynamic Programming
on Tree Decompositions via Machine Learning

Michael Abseher, Frederico Dusberger, Nysret Musliu and Stefan Woltran
Institute of Information Systems 184/2

Vienna University of Technology
Favoritenstraße 9–11, 1040 Vienna, Austria

Abstract
Dynamic Programming (DP) over tree decomposi-
tions is a well-established method to solve prob-
lems – that are in general NP-hard – efficiently for
instances of small treewidth. Experience shows that
(i) heuristically computing a tree decomposition
has negligible runtime compared to the DP step;
(ii) DP algorithms exhibit a high variance in run-
time when using different tree decompositions; in
fact, given an instance of the problem at hand, even
decompositions of the same width might yield ex-
tremely diverging runtimes. We thus propose here
a novel and general method that is based on a se-
lection of the best decomposition from an avail-
able pool of heuristically generated ones. For this
purpose, we require machine learning techniques
based on features of the decomposition rather than
on the actual problem instance. We report on ex-
tensive experiments in different problem domains
which show a significant speedup when choosing
the tree decomposition according to this concept
over simply using an arbitrary one of the same
width.

1 Introduction
The notion of treewidth – and, as basic underlying con-
cept, tree decompositions – was introduced by Bertelè and
Brioschi [1973], Halin [1976] and Robertson and Sey-
mour [1984]. Many NP-hard problems become tractable
for instances whose treewidth is bounded by some con-
stant k [Arnborg and Proskurowski, 1989; Niedermeier,
2006; Bodlaender and Koster, 2008]. A problem exhibit-
ing tractability by bounding some problem-inherent constant
is also called fixed-parameter tractable (FPT) [Downey and
Fellows, 1999]. While constructing an optimal tree decom-
position, i.e. a decomposition with minimal width, is in-
tractable [Arnborg et al., 1987], researchers proposed sev-
eral exact methods for small graphs and efficient heuristic ap-
proaches that usually construct tree decompositions of almost
optimal width for larger graphs (see recent surveys, e.g. [Bod-
laender and Koster, 2010; Hammerl et al., 2015]). Tree de-
compositions have been used for several applications includ-
ing inference problems in probabilistic networks [Lauritzen

and Spiegelhalter, 1988], frequency assignment [Koster et al.,
1999], computational biology [Xu et al., 2005], Answer-Set
Programming [Morak et al., 2012], etc.

A promising technique for solving problems using this
concept is the computation of a tree decomposition followed
by a dynamic programming (DP) algorithm that traverses
the nodes of the decomposition and consecutively solves
the respective sub-problems [Niedermeier, 2006]. The gen-
eral runtime of these algorithms for an instance of size n is
f(k) · nO(1), where f is an arbitrary function of width k of
the used tree decomposition. However, experience shows that
even decompositions of the same width lead to significant dif-
ferences in the runtime of DP algorithms. Recent research
results confirm that the width is indeed not the only impor-
tant parameter that has a significant influence on the runtime.
Morak et al. [2012], for instance, suggested that the consid-
eration of further properties of tree decompositions is impor-
tant for the runtime of DP algorithms for answer set program-
ming. In another paper, Jégou and Terrioux [2014] observed
that the existence of multiple connected components in the
same tree node (bag) may have a negative impact on the effi-
ciency of solving constraint satisfaction problems.

In this paper we therefore want to gain a deeper under-
standing of the impact of tree decompositions on the run-
time of DP algorithms by conducting extensive experiments
on different problem domains, instances and tree decomposi-
tions. Moreover, we run our experiments on two inherently
different prominent systems that apply DP algorithms on tree
decompositions. We propose a new set of tree decomposition
features that allows for a reliable prediction of the influence
of a given tree decomposition on the performance of DP algo-
rithms. To select the most promising tree decomposition from
a pool of generated ones using those features we consider the
application of machine learning techniques. Using fast con-
structive heuristics the overhead for generating the different
tree decompositions is negligible in comparison to the gain
in overall runtime. Our experiments show a significant ben-
efit of selecting a decomposition that is promising according
to our prediction in contrast to simply choosing an arbitrary
one. Furthermore, the results confirm that our approach is
generally applicable, independent from the particular solver
and problem domain. Finally, the results provide valuable
insights for laying the foundation to construct customized de-
compositions optimizing the relevant features.
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Recently, researchers have used successfully machine
learning for runtime prediction and algorithm selection on
several problem domains. Such problems include SAT [Xu
et al., 2008; Hutter et al., 2014], combinatorial auc-
tions [Leyton-Brown et al., 2009], TSP [Hutter et al., 2014],
Graph Coloring [Musliu and Schwengerer, 2013], etc. For
surveys on this domain, see e.g. [Smith-Miles, 2008; Hutter
et al., 2014]. Our research gives new contributions in this
area, as to the best of our knowledge, this is the first applica-
tion of machine learning techniques towards the optimization
of tree decompositions in DP algorithms.

2 Background
In the following we give a formal definition of tree decompo-
sitions and treewidth and illustrate the principle of DP on such
decompositions. Furthermore, we provide a short overview
on D-FLAT [Abseher et al., 2014] and SEQUOIA [Kneis et
al., 2011], highlighting how each of them realizes DP on tree
decompositions.

Tree decomposition is a technique often applied for solv-
ing NP-hard problems. The underlying intuition is to obtain a
tree from a (potentially cyclic) graph by subsuming multiple
vertices in one node and thereby isolating the parts respon-
sible for the cyclicity. Formally, the notions of tree decom-
position and treewidth are defined as follows [Robertson and
Seymour, 1984; Bodlaender and Koster, 2010].

Definition 1 Given a graph G = (V,E), a tree decomposi-
tion of G is a pair (T, χ) where T = (N,F ) is a tree and
χ : N → 2V assigns to each node a set of vertices (called the
node’s bag), such that the following conditions hold:

1. For each vertex v ∈ V , there exists a node i ∈ N such
that v ∈ χ(i).

2. For each edge (v, w) ∈ E, there exists an i ∈ N with
v ∈ χ(i) and w ∈ χ(i).

3. For each i, j, k ∈ N : If j lies on the path between i and
k then χ(i) ∩ χ(k) ⊆ χ(j).

The width of a given tree decomposition is defined as
maxi∈N |χ(i)| − 1 and the treewidth of a graph is the min-
imum width over all its tree decompositions.

Note that the tree decomposition of a graph is in general not
unique. In the following we consider rooted tree decomposi-
tions, for which additionally a root r ∈ N is defined.

Definition 2 Given a graph G = (V,E), a normalized (or
nice) tree decomposition of G is a rooted tree decomposition
T where each node i ∈ N is of one of the following types:

1. Leaf: i has no child nodes.

2. Introduce Node: i has one child j with χ(j) ⊂ χ(i) and
|χ(i)| = |χ(j)|+ 1

3. Forget Node: i has one child j with χ(j) ⊃ χ(i) and
|χ(i)| = |χ(j)| − 1

4. Join Node: i has two children j, k with χ(i) = χ(j) =
χ(k)

a
b

c
d

{a, b} {c, d}

{a, b, c} {c}

{c}

Figure 1: Example graph and a possible tree decomposition.

i a b ext.
0 o o -
1 d i -
2 i d -
3 i i -

i c d ext.
0 o o -
1 d i -
2 i d -
3 i i -

i a b c ext.
0 o o o {0}
1 d d i {0}
2 d i d {1}
3 d i i {1}
4 i d d {2}
5 i d i {2}
6 i i d {3}
7 i i i {3}

i c ext.
0 d {1}
1 i {2, 3}

i c ext.
0 d {(2, 0), (4, 0), (6, 0)}
1 i {(1, 1), (3, 1), (5, 1), (7, 1)}

Figure 2: DP tables for the problem instance in Figure 1.

Each tree decomposition can be transformed into a normal-
ized one in linear time without increasing the width [Kloks,
1994]. Figure 1 gives an example of a graph and a possible
(non-normalized) tree decomposition of it.

For graph problems and problems that can be formulated
on a graph, tree decompositions permit a natural way of ap-
plying DP by traversing the tree from the leaf nodes to its
root. For each node i ∈ N solutions for the subgraph of
the instance graph induced by the vertices in χ(i) are com-
puted. When traversing to the next node the (partial) solu-
tions computed for its children are taken into account, such
that only consistent solutions are computed. Thus the par-
tial solutions computed in the root node are consistent to the
solutions for the whole graph. Finally, the complete solu-
tions are obtained in a reverse traversal from the root node
to the leaves combining the computed partial solutions. Fig-
ure 2 shows the tables computed in a DP algorithm for solv-
ing the DOMINATING SET problem on the graph given in
Figure 1. The central columns of each table list the possi-
ble values for the vertices in the node constituting the partial
solutions. Here, i, d and o stand for the respective vertex
being in the selected set, dominated by being adjacent to a
vertex from the set or simply out. The last column stores the
possible partial solutions from the child node(s) that can con-
sistently be extended to these values. Note that infeasibilities
in the partial solutions can already lead to an early removal
of solution candidates. The partial solution {c = o, d = o}
can, for instance, already be discarded when d is forgotten
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during the traversal to the next node, since d cannot appear
again in any further node and can thus not become dominated
or a part of the solution set anymore. For the sake of sim-
plicity it is common practice to define DP algorithms on nor-
malized tree decompositions [Bodlaender and Koster, 2008;
Kneis et al., 2011]. Thus, in the following, we refer to nor-
malized decompositions unless stated otherwise.

In our experiments we use two systems that apply DP on
tree decompositions, D-FLAT and SEQUOIA.

D-FLAT is a general framework capable of solving any
problem expressible in monadic second-order logic (MSO) in
FPT time w.r.t. the parameter treewidth. The D-FLAT system
combines DP on tree decompositions with answer set pro-
gramming (ASP) [Brewka et al., 2011]. Given an ASP encod-
ing Π of the DP algorithm and an instance graph G, D-FLAT
first constructs a tree decomposition from G in polynomial
time using internal heuristics. If desired, this decomposition
can be left untouched or be normalized in a preprocessing
step. The decomposition is then traversed bottom-up in the
manner described above, i.e. at each node the program speci-
fied by Π and the currently known facts for the vertices in that
node’s bag is solved. Notice that due to its internal structure
D-FLAT always stores all partial solutions in its DP tables
and thus generally solves the problem of enumerating all so-
lutions to a given instance.

An alternative approach also based on DP on normalized
tree decompositions is realized in the SEQUOIA framework.
Similarly to D-FLAT, SEQUOIA is a general solver that can
be applied to any problem expressible in MSO. One general
difference to D-FLAT is that it expects the problem definition
directly in terms of an MSO formula, rather than an ASP pro-
gram and that this formula has to describe the problem in a
monolithic manner. In other words, the “decomposition” of
the formula into the parts relevant to the separate tree decom-
position nodes, as well as the special considerations on how
partial solutions from child nodes are considered, are done
internally. The system is based on the model checking game
in which the verifier tries to prove that a given formula holds
on the input graph while the falsifier tries to refute it [Hin-
tikka, 1973]. Another major difference is that the dynamic
programming algorithm relies on lazy evaluation and visits
the nodes in the tree decomposition only on demand. SE-
QUOIA always outputs one (optimal) solution and does not
enumerate all possibilities.

3 Improving the Efficiency of DP Algorithms
Systems, such as SEQUOIA and D-FLAT, follow a straight-
forward approach for using tree decompositions: a single
decomposition is generated heuristically and then fed into
the DP algorithm used in the system (see Figure 3a). How-
ever, experiments have shown that the “quality” of such tree
decompositions varies, leading to differing runtimes for the
same problem instance. Most interestingly, “quality” does
not necessarily mean low width. Even tree decompositions of
the same width lead to huge differences in the runtime of a
DP algorithm when applied to the same problem instance.

The approach we propose in this work is illustrated in Fig-
ure 3b. The main idea is to generate a pool of tree decomposi-

Figure 3: Comparison of Approaches

tions for the given input instance and then to select, based on
features of the decomposition, the one which promises best
performance. The key aspects of the approach are as follows:
• Generating dozens of tree decompositions can be usu-

ally done within seconds by effective heuristics for tree
decompositions (e.g. min-fill heuristic), thus the runtime
overhead will be negligible in almost any case.
• Models allowing to predict the runtime behavior of a tree

decomposition for a given DP algorithm are required.
These models can be obtained in an off-line training-
phase by running several instances with different tree de-
compositions and by storing the runtime and the feature
values which are then processed by machine learning
algorithms. For our purposes, machine learning tech-
niques need to predict a good ranking of tree decom-
positions based on the predicted runtime for these de-
compositions. We note that a very accurate prediction of
runtime is not crucial in our case, but rather predicting a
correct order of tree decompositions. For example if the
actual runtime of the DP algorithm using tree decompo-
sition TD1 is faster than with TD2, it is important that
machine learning algorithms predict that the runtime for
TD1 is shorter than the runtime for TD2. In that case
the order of tree decompositions is correct even if the
runtime prediction for both tree decompositions is not
completely exact.
• The main challenge and novel aspect of the approach is

given by the fact that the features used to obtain these
rankings need to be defined on the tree-decomposition
not on the problem instance. To successfully exhibit
machine learning techniques we need to find powerful
features that characterize well the quality of tree decom-
positions. Moreover, the computation of these features
needs to be done efficiently.

In other words, our approach works as follows: First, a
number (which can be arbitrarily large) of decompositions
of the given problem instance is computed and stored in a
pool; in our concrete evaluation we shall generate ten tree
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decompositions for the input problem. Second, the features
(acting as explanatory variables) of these decompositions are
extracted and used to predict the runtime as the response vari-
able. This gives us a ranking from which we select the de-
composition with minimal predicted runtime (in case of ties,
we choose randomly one of the decompositions with minimal
predicted runtime). We apply regression algorithms, such as
linear regression, regression trees, nearest-neighbor, multi-
layer perceptrons and support-vector machines to generate
the models for prediction. Finally, the selected decomposition
is handed over to the actual system to run the DP algorithm.

In what follows we address one of the main contributions
of the work, namely the identification of 70 tree decomposi-
tion features. We group them in six main categories: decom-
position size, decomposition structure, as well as features of
introduce nodes, forget nodes, join nodes and leaf nodes.

The features dealing with decomposition size measure the
general complexity of the tree decomposition, i.e. statistics on
the bag size of all nodes and the non-leaf nodes, the number
of nodes a vertex appears in and the total number of vertices
over all nodes.

The node type specific features contain statistics on the
depth in the tree and the bag size for each respective node
type. Additionally, the count and the percentage of those
nodes among all nodes of the decomposition are proposed.

Finally, to characterize the structure of the decomposition
we propose several new structural features. In particular
these are statistics on the distance between consecutive join
nodes, the number of consecutive bags an item appears in
and the total number of children of a node. Furthermore the
BalancednessFactor is a measure of how balanced the tree is,
i.e. it is equal to 1 if the tree is perfectly balanced and ap-
proaches 0 the less balanced it is. In this category we also
gather statistics on three more sophisticated features of nodes
in a decomposition, namely:
• AdjacencyRatio: The ratio of the number of pairs of ver-

tices in the bag that are adjacent in the original graph to
the total number of vertex pairs.
• BagConnectednessRatio: The ratio of the number of

pairs of vertices in the bag that are connected in the orig-
inal graph to the total number of vertex pairs.
• NeighborCoverageRatio: For each vertex in the bag the

ratio between the number of neighbors in the bag to the
number of neighbors in the original graph is computed.
Per bag, the mean of these ratios is considered.

Most of the presented features are computed independently
per bag. To aggregate the per-bag outcome of a feature and
in order to obtain the final set of more than 70 features, we
consider the statistical functions minimum, maximum, me-
dian, 75%-percentile, mean as well as the standard deviation.
A detailed description of all features can be found under the
following link:
www.dbai.tuwien.ac.at/research/project/dflat/
features/features0415.pdf

4 Experimental Evaluation
In this section, we experimentally evaluate the proposed
method. All our experiments were performed on a single

core of an AMD Opteron 6308@3.5GHz processor running
Debian GNU/Linux 7 (kernel 3.2.0-4-amd64) and each test
run was limited to a runtime of at most one hour.

We evaluate our approach using two recently developed DP
solvers, D-FLAT (v. 1.0.1) and SEQUOIA (v. 0.9). The sub-
sequent machine learning tasks were carried out with WEKA
3.6.11 [Hall et al., 2009].

4.1 Methodology
Algorithms and Problems In our analysis we considered
the following set of problems defined on an undirected graph
G = (V,E):

1. 3-COLORABILITY (3-COL): Is G 3-colorable?
2. MINIMUM DOMINATING SET (MDS): Find all sets
S ⊆ V , s.t. ∀u ∈ V : u ∈ S ∨ (∃(u, v) ∈ E ∧ v ∈ S)
of minimal cardinality.

3. CONNECTED VERTEX COVER (CVC): Find all sets
S ⊆ V , s.t. ∀(u, v) ∈ E : u ∈ S ∨ v ∈ S) and the
vertices in S form a connected subgraph of G.

Training Data We performed extensive experiments in or-
der to collect the training data. The training dataset for
each problem and solver consists of 900 tree decompositions
which are created from 90 satisfiable1 instances of different
size and edge probability (three sizes, three edge probabili-
ties with ten instances for each combination) generated based
on the Erdős-Rényi graph model. The actual input data for
computing the models is obtained as follows:

1. Generate problem instances: The actual sizes and edge
probabilities may differ for solvers and problems as we
aim for the goal that the runtime for the DP algorithm
using the worst tree decomposition (= longest runtime)
is close to the timeout limit of one hour.

2. Compute tree decompositions and extract all features
3. Execute DP algorithm to retrieve runtime and remove

invalid measurements caused by violations of timeout or
memory limit.

4. Group the feature measurements and the corresponding
runtimes by instance and then standardize these values
X feature-wise based on the formula (X − µ)/σ.

As graphs of larger size and/or higher density in general
lead to an increase in the time consumption of overlying DP
algorithms, using different sizes and edge probabilities al-
lows us to gain an unbiased view on the applicability of our
proposed approach. In this paper we have chosen a random
graph model as basis for our experiments, in order to cover
a broad range of possible graphs. The full training dataset

1Not all generated instances are satisfiable for 3-COL or CVC.
In our experiments for these problems, we consider only those that
are, because for unsatisfiable instances, a large part of the tree de-
composition might not even be visited by a DP algorithm. This is
due to the fact that the algorithm terminates as soon as it is evident
that no solution exists for the instance at hand. Therefore, unsat-
isfiable problem instances do not allow us to investigate the effect
of decomposition selection on the runtime of DP algorithms and we
thus omit them in our comparisons.
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(a) 3-Colorability
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Figure 4: Rank and Relative Runtime for Selected Tree Decompositions (Random Instances)

used for our experiments is available under the following link:
www.dbai.tuwien.ac.at/research/project/dflat/
features/training.zip

For each of the training instances we computed ten nor-
malized tree decompositions on the basis of the min-fill-
heuristic [Dechter, 2003] (we used the min-fill implementa-
tion from [Dermaku et al., 2008]). Note that this is a random-
ized heuristic ensuring the diversity of the generated tree de-
compositions. Then, together with the problem specification
– a D-FLAT encoding or, in case of SEQUOIA, an MSO-
formulation – these decompositions were given to D-FLAT
and SEQUOIA in order to solve the corresponding problem.

Afterwards, the outcome of these test runs in terms of their
features and runtime has to be filtered. This was done by
ignoring decompositions leading to the violation of time or
memory constraints (about 5% per problem and solver). In a
final step, all results were standardized (after grouping them
by problem instance) to avoid a bias introduced by differing
ranges of feature measurements between different instances.

Model Details For each problem domain and every solver
we computed regression models for linear regression (LR), k-
nearest neighbors (IBK), regression tree (M5P), multi-layer
perceptron (MLP) and support vector machines (SMO). The
results that we present in this paper are obtained with param-
eter settings that were chosen based on several of our pre-
vious experiments using 10-fold cross validation. To allow
reasoning about the potential effect of model selection and/or
parameter tuning, we used the same algorithm parameters for
the different problems.

At this point we want to recall that the crucial property
for a model is the capability of giving a correct ranking of

the decompositions. This is because after a decomposition is
selected, the DP algorithm still has to be run and it does not
give much benefit to know the time this will take, as long as
the selected decomposition is the fastest way to go.

This means that our approach also works for all models
where only the correct order of the decompositions (based on
their implied runtime) is preserved. This is in contrast to most
“classical” regression tasks, where it is crucial to have a high
correlation between the actual and predicted values.

4.2 Experimental Results
For evaluating the trained models we proceed as follows:

1. For each combination of problem and solver we generate
50 new, satisfiable instances just as described before.

2. For each instance ten normalized tree decompositions
are computed, forming the pool of decompositions for
the respective instance.

3. For each instance we employ each model separately to
select the optimal decomposition from the pool for this
instance.

4. We retrieve the runtime implied by each decomposition
in the pool by running the DP algorithm.

To increase the significance of our results, ten iterations of
this scheme are considered for each instance. Based on these
steps, we obtain a ranking by sorting the decompositions in
an ascending order based on the runtime they lead to when
using them in the DP algorithm. Indeed, in practice, the DP
algorithm will be executed only for the decomposition which
is predicted as the best one.

Figure 4 as the central figure of this section summarizes all
aspects of our evaluation graphically. Each of the sub-figures
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deals with a separate problem type (3-Colorability, Minimum
Dominating Set and Connected Vertex Cover) and shows the
results for the solvers D-FLAT and SEQUOIA (abbreviated
by the letters D and S) for each of the models (LR, IBK, M5P,
MLP as well as SMO).

The first row of the figure uses box-plots to illustrate the
rank the selected decomposition actually achieves within the
ten decompositions in the pool for a problem instance. To get
this actual rank, we use the ranking we obtained by running
all ten decompositions. The decomposition which leads to the
lowest runtime has rank 1 and the remaining decompositions
are ranked ascendingly according to the runtime they lead to.
Basically, we want the median (bold line within boxes) as
close to the optimal rank 1 as possible and the inter-quartile-
range (boxes) should be as small as possible.

Furthermore, our setup allows us to investigate the concrete
impact of our approach on the runtime compared to average
and median runtime of the ten decompositions.

The second row of Figure 4 shows the average runtime the
decompositions selected by a model lead to via a bar-plot.
Due to different runtimes of the DP algorithm for different
instances, the range of the runtime is normalized per prob-
lem instance between 0 (0 seconds) and 1 (maximum runtime
for instance). The height of the bars in the diagram corre-
sponds to the complete runtime using our approach (runtime
of the DP algorithm + time needed to generate the ten decom-
positions + the time for feature extraction and applying the
model). The following limits are also provided and represent
the average over the 50 problem instances:

• The dotted line stands for the minimum runtime within
ten decompositions.
• The dashed line stands for the median runtime over the

ten decompositions. Whenever the bar is below this
limit, our approach works better than selecting a random
tree decomposition.
• The full line stands for the average runtime over the ten

decompositions.

With this information at hand, the big influence of the tree
decomposition on the performance of the DP algorithm be-
comes immediately clear. We observe that the relative min-
imum runtime does not exceed 0.55, even in the worst case,
which means that in most of the cases, the maximum runtime
is at least twice as high as the minimum runtime.

4.3 Discussion
As the evaluation underlines, our machine learning approach
shows great potential for improving the performance of DP
algorithms. We can see that in general there is no “perfect”
model which performs best in every case and that there exist
differences between the problems. Below we give a list of
main observations from our experiments:

• When looking at the two solvers separately, we see that
for D-FLAT our approach leads to improved selection
and an acceleration of the DP algorithm in any case.
In relative values, we save about 20% of the runtime in
the average case compared to the median runtime and in
some cases (e.g. for 3-COL/M5P) more than 40% which

Problem Model
LR IBK M5P MLP SMO

3-COL (D) 0.9995 0.9995 0.9995 0.9750 0.9995
MDS (D) 0.9995 0.9995 0.9995 0.9995 0.9995
CVC (D) 0.9995 0.9995 0.9990 0.9750 0.9995
3-COL (S) 0.9995 — 0.9995 0.9750 —
MDS (S) 0.9995 0.9995 0.9995 0.9995 0.9995
CVC (S) — — — — —

Table 1: Confidence Levels for Improvement
(D . . . D-FLAT, S . . . SEQUOIA)

we think is quite impressive. For single instances we
sometimes saved more than 25 minutes of computation
time and we saved about eight minutes in the average
case.

• For SEQUOIA, we observe that for MDS some mod-
els are actually quite close to an oracle selecting always
the best decomposition and also for 3-COL at least three
of the five models showed noteworthy improvements.
Unfortunately, for the problem of CVC we could not
achieve improvements, which needs further investiga-
tion.

• The differences between minimum and median runtime
are quite big and so is the potential for improvement.
This justifies the use of tree decomposition selection to
improve the efficiency of DP algorithms.

• The median runtime (dashed lines in Figure 4) is always
lower than the average computation time (full lines)
which is a strong hint that decompositions which lead
to high runtimes are often much worse than “average”
decompositions. Detecting such “bad” decompositions
is an interesting classification task for future work.

• Comparing the performance of the used regression tech-
niques we can conclude that no algorithm is outperform-
ing all others. Although all used prediction algorithms
could be used for improvement of our DP algorithms,
in general our experiments indicate that LR (linear re-
gression) and M5P (regression tree) give slightly better
results when considering all problems and solvers.

Finally, we mention that most of the improvements we gained
are statistically (highly) significant. Table 1 contains for each
combination of problem and solver the confidence level for
the hypothesis that our approach leads to a significantly better
selected rank. The actual values for the table were obtained
via an one-sided, paired t-test.

4.4 Experiments on Real-World Instances
Until now, we considered only randomly generated instances.
With the goal of strengthening our findings, we additionally
conducted a series of tests on real-world graphs. The dataset
we used for these tests contains 21 instances of tree-width up
to 8 from different domains.

Eight instances of our dataset represent metro and urban
train networks of a selection of prominent cities: Beijing,
Berlin, London, Munich, Shanghai, Singapore and Vienna,
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Figure 5: Rank and Relative Runtime for Selected Tree Decompositions (Real-World Instances)

where for the last city we also considered the tram network.
The remainder of our dataset is formed by a subset of the
graph collection [Batagelj and Mrvar, 2006] provided by the
University of Ljubljana by considering real-world instances
having up to 674 vertices and a tree-width up to 8. One im-
portant detail of the dataset is the fact that not all instances
are actually 3-colorable or connected. Considering also these
graphs allows us to investigate the behavior on unseen real-
world problems accurately. The complete dataset of tested
real-world instances is provided under the following link:
www.dbai.tuwien.ac.at/research/project/
dflat/features/realworld.zip

The actual results of our tests are presented in Figure 5
which follows exactly the same scheme as the figure for the
random graph instances (Figure 4). However, we had to omit
SEQUOIA here, since this system in its current state did not
support handling such large tree decompositions.

At first glance, we can see that our proposed approach
gives good results also when applied to real-world instances,
at least for the problems 3-COL and MDS. In the former case
SMO achieves the best results and in case of MDS we obtain
an almost perfect runtime behavior using the M5P-model.

Note that the results presented in Figure 5 are obtained us-
ing the models that were learned on the training set consist-
ing of random graphs, which are of much smaller size. This
not only demonstrates the versatility of the proposed method,
but also leaves room for further possible improvements when
adapting the training data. In particular, we expect to improve
the runtime also in case of the CVC by using training data of
similar size and structure.

5 Conclusion
In this work we studied the applicability of machine learning
techniques to improve the runtime behavior of DP algorithms
based on tree decompositions. To this end we identified a
variety of tree decomposition features, beside the width, that
strongly influence the runtime behavior. The models using
those features for the selection of the optimal decomposition
have been validated by means of an extensive experimen-
tal analysis including real-world instances from different do-
mains. Hereby, we considered three different problems and
two inherently different frameworks that employ DP algo-
rithms on tree decomposition, namely the systems SEQUOIA
and D-FLAT. Our approach showed a remarkable, positive ef-
fect on the performance with a high statistical significance.
We thus conclude that turning the huge body of theoretical
work on tree decompositions and dynamic programing into
efficient systems highly depends on the quality of the chosen
tree decomposition, and that advanced selection mechanisms
for finding good decompositions are indeed crucial.

The models we obtained give us further insights about
those features of tree decompositions that are most influen-
tial in order to reduce the runtime of DP algorithms. In up-
coming work we thus plan to focus on implementations of
new heuristics for constructing tree decompositions that opti-
mize the relevant features. Therefore, the ultimate goal of this
research perspective is to achieve the potential speed-up we
have observed in our experiments by directly obtaining tree
decompositions of higher quality and thus without the initial
training step our method requires.
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