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Abstract

The aim of this paper is to propose a new approach
interweaving preference elicitation and search to
solve multiobjective optimization problems. We
present an interactive search procedure directed by
an aggregation function, possibly non-linear (e.g.
an additive disutility function, a Choquet integral),
defining the overall cost of solutions. This function
is parameterized by weights that are initially un-
known. Hence, we insert comparison queries in the
search process to obtain useful preference informa-
tion that will progressively reduce the uncertainty
attached to weights. The process terminates by rec-
ommending a near-optimal solution ensuring that
the gap to optimality is below the desired thresh-
old. Our approach is tested on multiobjective state
space search problems and appears to be quite effi-
cient both in terms of number of queries and solu-
tion times.

1

In many practical search problems considered in Artificial In-
telligence (e.g path planning, game search, preference-based
configuration), the evaluation and comparison of solutions in-
volve several aspects or points of view (e.g. in path plan-
ning, time, distance, energy consumption, risk). For this
reason, standard search algorithms are worth generalizing
to be implementable in the context of multiobjective opti-
mization. This statement has motivated various contribu-
tions stemming from the initial A* search algorithm [Hart et
al., 1968] and aiming at proposing extensions to cope with
multiple conflicting criteria. Let us mention, among oth-
ers, MOA* the multiobjective extensions of A* finding all
Pareto optimal cost vectors [Stewart and White III, 1991;
Mandow and de la Cruz, 2005] in a vector-valued state space
graph, U* a variation of MOA* used to find a path maximiz-
ing a multiattribute utility function [Dasgupta et al., 1995],
and a preference-based specialization of MOA* [Perny and
Spanjaard, 2003]. The same trend can be observed for
AND/OR search [Dasgupta et al., 1996a; Marinescu, 2010],
game search [Dasgupta er al., 1996b] and constraint opti-
mization [Marinescu et al., 2013].
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In preference-based search, the preference model is of-
ten assumed to be known and the effort is put on algorith-
mic issues. Thus, the elicitation problem must be solved
in a prior stage. The standard elicitation procedures pro-
posed in multiattribute utility theory aim at providing a
complete elicitation [Fishburn, 1967; Krantz et al., 1971;
Keeney and Raiffa, 1976]; the preference model is precisely
constructed on the entire multiattribute space. This approach
is however difficult to implement on combinatorial domains,
except perhaps for very simple and decomposable utility
models. The development of recommender systems and the
need of fast and efficient preference elicitation procedures for
large databases have led researchers to propose less ambi-
tious elicitation procedures: one seeks to obtain only a part
of the preference model, sufficient to make a decision on the
given instance. This suggests resorting to more incremen-
tal elicitation processes. Preference queries are selected one
at a time, to be as informative as possible, so as to progres-
sively reduce the set of admissible utility functions until a
robust decision can be made. In this line, let us mention the
ISMAUT method [White III ef al., 1984] for the elicitation
of multiattribute utility functions, and more recently, strate-
gies developed within the artificial intelligence community
for preference query selection using the minimax-regret cri-
terion, see e.g., [Boutilier, 2002; Wang and Boutilier, 2003;
Boutilier et al., 2006; Lu and Boutilier, 2011; 2013].

Incremental elicitation procedures are also involved in the
context of voting with partial preference profiles. When indi-
vidual preferences are incomplete, one can study possible and
necessary winners (e.g., [Konczak and Lang, 2005; Xia and
Conitzer, 2011; Lang et al., 2012; Ding and Lin, 2013]). In
this setting, incremental elicitation methods are used to pro-
gressively reduce the set of possible winners until a winner
can be determined with some guarantee [Kalech et al., 2010;
Lu and Boutilier, 2011; Dery et al., 2014]). The elicitation
task consists in obtaining new individual preference judge-
ments over candidates given explicitly. In this paper, we con-
sider a slightly different elicitation context. Our aim is to re-
sort to incremental preference elicitation to refine a multiob-
jective state-space search procedure. One-dimensional pref-
erences are assumed to be known and represented by criterion
functions. The elicitation burden is focused on the determina-
tion of weights used in the aggregation phase to define overall
preferences over a combinatorial set of alternatives (implic-



itly defined as the solution paths of a state space graph).

Incremental elicitation strategies based on minimax-regret
minimization have proven quite effective but require to mini-
mize regrets for every pair of feasible solutions. This fits well
to decision problems on explicit sets of alternatives. This can
be used for multiobjective combinatorial optimization prob-
lems as well when the set of Pareto-optimal alternatives is not
too large and can be computed in a first stage prior to prefer-
ence elicitation. Our aim here is to propose a more direct ap-
proach that consists in interweaving preference elicitation and
search. Starting with an initial set of possible utility functions
characterized by some weighting parameters, we propose to
generate preference queries during the search so as to pro-
gressively reduce the set of possible weights until an optimal
solution can be determined or approximated with some guar-
antees. In this process, the decision model is progressively
revealed and constructed during the search. However, in gen-
eral, a robust solution can be found without completely spec-
ifying the model. We want to apply and test this approach on
two classes of utility models. We consider first additive util-
ity functions [Fishburn, 1968] parameterized by weights rep-
resenting the importance of attributes. Then we will consider
a more general model, namely the Choquet Expected Utility
[Schmeidler, 1986] parameterized by a set function defining
the importance of all coalitions of attributes.

A first attempt in this direction has been recently proposed
for linear weighted aggregators (which are a special case of
additive utilities) [Benabbou and Perny, 2015]. However,
it does not extend to non-linear multiattribute utility func-
tions because the proposed algorithm relies on pruning rules
based on the Bellman principle. Unfortunately this principle
does not hold anymore when multiobjective costs of paths
are aggregated with a non-linear function. Another recent
study concerns the case of incremental elicitation of capacity
weights in Choquet integrals (see [Benabbou et al., 2014]) but
assumes that the set of alternatives is given explicitly. Here
we propose an approach to overcome both difficulties simul-
taneously: the non-linearity of the multiattribute utility func-
tion and the combinatorial nature of the set of alternatives.

The paper is organized as follows: in Section 2, we intro-
duce the formal framework and recall some background on
decision models and preference-based search. Then, Section
3 and 4 are devoted to the introduction of our procedure com-
bining elicitation and search. The efficiency of this approach
will be discussed in Section 5 where numerical experiments
are reported to assess the performance of the search procedure
both in terms of number of queries and computation times.

2 Preference-based Search in MO Graphs

We consider G= (N, A) a state space graph where N denotes
the finite set of nodes representing all states and A is the set
of arcs representing the admissible transitions. Formally, A=
{(n,n") : neN,n’ €S(n)} where S(n) C N is the set of all
nodes that can be reached from node n by a single transition.
The set of all paths between node n and node n’ is denoted
P(n,n’), and each of them is characterized by a list of nodes
of type (n,...,n’). In particular, the set of solution paths,
starting at source node s € N and reaching any goal node v €
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T, is denoted P(s,T"). Besides, we consider @ = {1,...,q}
a finite set of criteria (e.g. time, distance) represented by ¢
cost functions ¢g; : A — R4, i € Q. Hence, each path p
in graph G is associated with a cost vector denoted g(p) =
(91(P):-- -+ 94(p)) and gi(p) = 32, r)ep 9i((n, n')) for all
1 € Q. Finally, the image of all solution paths in the space
of criteriais X ={g(p) : p € P(s,T')} and ND(X) is set of
Pareto-optimal vectors in X'.

Since we are in a context of cost minimization, we will use
disutility functions to be minimized rather than utility func-
tions to be maximized. Hence, we consider a multiattribute
disutility function 9%, : RY — [0, 1] which associates the
disutility: ¥7(z) = ¥, (vi(x1), ... ,v4(zq)) to any cost vec-
tor = (z1,...,24), where v; : Ry — [0,1] is a disu-
tility function measuring the subjective cost of consequence
x; for the Decision Maker (DM) , and %, : [0,1]7 — [0,1]
is a scalarizing function with a parameter denoted w. A so-
lution z is preferred to another solution y when ¢2 () <
Y2 (y). We consider here that one-dimensional disutility
functions v; have been already elicited in a prior step, us-
ing standard techniques (see e.g [Keeney and Raiffa, 1976;
Bana e Costa and Vansnick, 2000]) and we focus on the elic-
itation of paremeters w = (w1,...,Ws,) SO as to approxi-
mate DM’s preferences with a proper scalarizing function.
Throughout the paper, we will consider two main families of
utility functions:

- Additive utilities: UY(z) = Y. !_, wv;(z;) where w =
(wi,...,wq) is a vector of positive weights adding up to 1.
Note that this family v1rtually includes also quasi-arithmetic
means of the form M (z) = ¢~ (3 7_, w;¢(z;)) for strictly
increasing ¢. Minimizing Mff (z) is indeed equivalent to
minimizing ¢(M¢(x)) = UZ(z) for v;(z) = ¢(z). This
includes as special case the weighted L, norm obtained for
¢(z) = 2P, the geometric mean for ¢(z) = In(z) and the
standard weighted sum for ¢(z) = z. More generally addi-
tive utilities can use distinct one-dimensional disutility func-
tions v; to encode preferences on the different criteria.

- Choquet expected utilities: generalize additive utilities by
Co(w) = Yo [va) (@) — v (@i-1)] w(X () where
(.) denotes a permutation of (1, ..., ¢) such that v (2¢;) <
Vi) (Tgny) forall i = 1,...,q — 1, z(q) is a ficticious
value such that v;(xgy) = 0,and X(;) = {(i),...,(q)} is the
subset of indices j € () corresponding to the n + 1 — 4 largest
disutility values v;(z;). In this case w is a capacity, i.e. a
set-function w : 29 — [0, 1] such that w(})) = 0, w(Q) = 1,
and w(A) < w(B) whenever A C B (monotonicity). The
monotonicity condition ensures that C%(z) < CZ(y) when-
ever x Pareto-dominates y (denoted z <p y hereafter), i.e.
z; <y foralli € Q and z; < y; for some j € Q. The
value w(X) represents the importance attached to a coalition
of criteria X € Q. When w(X) = > . v w({i}), w is said
to be additive and C, boils down to U,. For more details see
[Grabisch et al., 2009].

Example 1. Assume we have 3 criteria. Let w be a capacity
defined on 2%, for Q = {1,2,3}, as follows:

{1y {2} {3} {12} {1 3} {2,3}
w 04 06 05 08 0.9




If v = (14,12,10), y = (8,16,12) and u;(z) = (2/20)? for
all i € Q, we obtain that x is preferred to y because:

P2 () =.52+(.6%—.5%)w({1,2})+(.7*—.6%)w({1}) =4
VY (y)=42+(.6%—.4%)w({2,3})+(.82—.6%)w({2}) =5

We wish to emphasize here the interest, from a descriptive
and prescriptive viewpoint, of resorting to non-linear multiat-
tribute utility functions. This not only provides a more gen-
eral and flexible class of decision models that can be tuned
to the observed preferences, but it also enables to enhance
the possibility of finding good compromise solutions within
the Pareto set. Let us consider indeed the example given in
Figure 1 based on a biobjective shortest path problem. In the
figure, every point represents a feasible cost vector and red
points represent the Pareto set. As can be seen from the con-
vex hull of these points, only three points in the Pareto set
can be obtained by minimizing a weighted sum of the costs.
When minimizing a convex utility U (e.g. v;(z) = z2, Fig.1
left) or a convex Choquet integral C?, (e.g. v;(z) = =, Fig.1
right), we can see from the isopreference curves plotted in
Figure 1 that more interesting compromise solutions can be
found, even when they do not belong to the boundary of the
convex hull of the feasible points.

Figure 1: Optimum with U}, and C,

Note that, whenever ¢, = U} or ¢/, = CJ, the inequal-
ity ¥2(z) < Y (y) is linear in w for any fixed cost vectors
z,y € R%. Hence, any preference judgement of type “z is
preferred to y” will be translated as a linear constraint bound-
ing the set of admissible weighting vectors 2. Therefore,
when preference judgements are obtained from the DM, the
set of admissible weights (2 is restricted by linear constraints
and thus is a convex polyhedron. This will be useful for per-
forming optimization with imprecise parameters w.

Robust recommendations with minimax regrets

As w is imprecisely known, a solution which remains 1) -
optimal for all w € §2 may not exist. We face a decision prob-
lem under uncertainty where (2 is the set of states of nature
and any cost vector x is associated with an act (according to
the definition of Savage [Savage, 1954]) characterized by the
set of consequences {¢"(x),w € Q}. In this context, we are
concerned with the determination of a robust solution, i.e. a
flexible solution preserving nice perspectives with respect to
the possible future evolutions of the uncertainty set ). More
precisely, the robust solutions can be defined as those mini-
mizing the max-regret criterion [Wang and Boutilier, 2003].
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They are characterized by the following definitions, for all
T,y € X:

Pairwise Max Regret: PMR(xz,y, Q)= meaéc{z/}f, ()= (y)}
w
Max Regret: MR (z, X,Q) = ax PMR(z,y, Q)
ye
Minimax Regret: MMR(X, Q) = Il’li}(l MR(z, X, Q)
zE

MR(z, X, Q) is the worst-case regret of choosing x instead
of any y € A&. Robust solutions are those minimizing
MR values over X. However, given the set {2, the worst-
case loss measured by MMR might be too large for certi-
fying the quality of the solution. In this case we are go-
ing to collect new preference information so as to reduce
the uncertainty set (2 and therefore the MMR. Note that
x <p y implies that PMR(z,z,Q) > PMR(z,y,?) and
PMR(z, z,2) < PMR(y, z,) for any solution z € X.
Hence, Pareto-dominated solutions can be omitted during the
search since MMR(X, Q) = MMR(ND(X), 2).

3 Search with Imprecise Parameters

We introduce now a general interactive elicitation procedure
alternating preference elicitation steps and search steps. The
search steps of the procedure are based on recent variants
of MOA* [Mandow and de la Cruz, 2005] and U* [Das-
gupta et al., 1995; Perny and Spanjaard, 2003], adapted to
minimize regrets under utility uncertainty. Let us recall now
the standard concepts and formalism for multiobjective state-
space search. In vector-valued graphs, there possibly exists
several optimal paths with different cost vectors to reach a
given node. Therefore, the basic graph exploration procedure
consists in iteratively expanding labels attached to subpaths
rather than nodes. Labels are of the form ¢ = [ng, ps, ge]
where py denotes a path from s to ny and g, = g(p¢) denotes
its cost. At any iteration of the algorithm, a label is selected
for expansion. The expansion of a label £* generates the set
of its successors {[n, pg= o n, g(pe=on)] : n € S(ng~)}. The
set of generated labels is divided into two disjoint sets: a set
C of closed labels (yet expanded) and a set O of open labels
(candidate to expansion). The set C (resp. O) restricted to
labels ¢ such that p, € P(s,n) is denoted C(n) (resp. O(n)).
Moreover, the expanded labels corresponding to the current
possibly optimal solution paths are stored in a set denoted S
and the corresponding set of cost vectors is denoted gs. An-
other feature imported from MOA* is that, for each generated
label ¢, a set F'(¢) = {ge + h : h € H(ng)} of cost vectors
is computed to estimate the cost vectors of the solution paths
extending py, where H (ny) is a set of heuristic costs estimat-
ing the set {g(p) : p € P(n,, 1)}

We consider now the problem of finding an optimal solu-
tion path for the minimax regret decision criterion such that
the gap to optimality, quantified by the minimax regret MMR,
is bounded above by threshold J. First, we propose a pruning
rule that enables, given a set of feasible weights €2, to detect
subpaths that necessarily lead to solutions with a max regret
MR strictly greater than . This rule is based on the following
dominance relation.

Definition 1 (<i},-dominance). Forall X,Y C R%:
XY & VyeY,YVweQ, Iz e X, (y)—vi(z) > 6



Then, the following property holds.
Proposition 1. Forall X, Y C RY:

) : v R
X <Y & vyeYmin max [¢;(y) — ¢ @) >0

Proof. Consider X,Y C R% such that X < Y and let
y € Y. Then for all w € €, there exists x € X such
that 2 (y) — ¥ (z) > 0. Therefore, for all w € Q, we
have max,cx[¥2(y) — ¢¥2(x)] > 0, and in particular we
have min,cq maxgzex [¥5(y) — Y2 (x)] > d. Consider now
X, Y CRY such that mingeq, maxzex (V8 (y) =5 (x)] > 6
for all y € Y. In that case, forall y € Y and all w € €, we
have maxge x [ (y)—¥2(x)] > ¢ and so there exists x € X
such that ¥% (y) — ¥2 () > §. Hence we have X <9, Y. O

Thus, since {2 is a convex polyhedron and 7 (x) is linear in
w for any fixed » € R%, <% -dominance tests can efficiently
be performed using linear programming. Hence, we propose
a pruning rule based on the following proposition:

Proposition 2. For any ¢'c O, if gs <9, F({'), then path py
cannot be part of a solution path with a MR, below §.

Proof. Let ¢' € O be such that gs <1, F(¢'). For any path
p € P(ng,T') and any O C Q, we want to prove that
MR(g(per o p'), X,Q') > §. Since H is admissible, there
exists h’ € H(ny) such that h’ Pareto-dominates g(p’), and
so ge + h' Pareto-dominates g + g(p’) g(pe o D).
Since 97, is increasing with Pareto-dominance, then we have
Y (ge+h") < YU (g(peop’)) for all w e . Moreover, since
we have gs <19, F'(¢) = {ge + h : h€ H(ny)}, then for all
we Y, there exists £ €S such that Y2 (g + h') — Y% (ge) >,
and so we have 2 (g(pe o p')) — 92 (g9¢) > J. Hence, for
all w € ', we have maxyes (¥ (g(peo p')) — 2 (ge)] > 4.
Then, we have maxpe p(s,r) (V5 (9(per 0 p')) — ¥ (9(p)] > 6
for all we Y’ since {p¢:£ €S} C P(s,T'). Therefore, we have
maxyeq MaXy,ec p(s,I) ["/Jg; (g(pf’ © p/)) - (g(p))] >0, ie.
MR(g(perop’), X, Q") > 4. O

Thus, if there exists a label ¢/ € O such that we have gs <%,
F(¢") at some point of the search procedure, then Proposition
2 ensures that path p, cannot be completed into a solution
path with a max regret MR below § (even if we further restrict
the set of feasible weights ) by asking preference queries to
the DM). This result can be used to insert a pruning rule in
the search so as to detect faster a solution path with a MR
below 4, if it exists. However, for a given set €2, it may be the
case that no such path exists. We introduce now a sufficient
condition on MMR(gs, () to guarantee the existence of a
path with MR below §:

Proposition 3. If MMR(gs, ) < ¢ at the end of the search
procedure, then MR(g(p*),ND(X), Q) < 6, for any solution
path p* € arg min MR(g¢, gs, Q).

Pe:

Proof. Let p* € arg miny,.ccs MR(ge, gs,§2). We want to
prove that PMR(g(p*), g(p’), 2) <4 for any solution path p’
such that g(p’) € ND(X'). Two cases may occur:

Case 1: There exists £ € S such that p’ = p,. In that case, we
can directly infer the result because PMR(g(p*), g(p'), ?) <
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MR(g(p*), 9s,9) = MMR(gs,§2) < 0.

Case 2: There exists no £ € S such that p’ = py. In that
case, there exists S’ C S and a generated label ¢’ such that
path pys is a subpath of p’ and gs: <, F(¢'). Thus, for all
h € H(ny) and all w € €, there exists a path p € {p,: £ €
S’} such that ¥?(ger + h) — 98 (g(pl)) > 8. Then, since
H is admissible, there exists i’ € H(ng ) such that gy +
h’ Pareto-dominates g(p’), and since 2, is increasing with
Pareto-dominance, then we have 2, (go + h') < 92 (g(p")).
Therefore, we have /2 (g(p')) — 1% (g(p!)) > &, which can
be rewritten %, (g(p/ ) — ¥4 (g(p')) < —4. Moreover, we
necessarily have 1% (g(p*)) — ¥4 (g(pl!)) < 6 since ' C S
and MR(g(p*),gs,2) < 4. Finally, we have /3, (g(p*)) —
¥Y(g(p')) < 0 < § by summing the two previous inequalities
and therefore PMR(g(p*), g(p’), ) <4. O

Therefore, if we ensure that MMR(gs,?) is smaller
than threshold & at the end of the procedure, then
any solution p* € argminy,.ccs MR(gr,gs,€?) satisfies
MR(g(p*),ND(X),Q) < §. In order to decrease the min-
imax regret MMR(gs, 2), we can, at any step of the search
procedure, ask preference queries to reduce the set of feasible
parameters Q. Indeed, it can easily be checked that Q' C Q
implies MMR(gs, ') < MMR(gs,2). For example, we
may use a query selection strategy proposed in [Boutilier er
al., 2006] that consits of asking the DM to compare z* and
y* where x* is the current MR optimal vector in gs and y*
is the worse adversary choice (i.e. the vector maximizing
PMR(z*,y,Q) for y € gs). The answer to this query in-
duces a linear constraint that can be used to restrict €2.

We have implemented this first procedure on state space
graphs (numerical results are reported in Section 5). When
¢ is small, the guarantee on regrets is good but the number
of queries is quite important. As § increases, the number of
queries diminishes but the procedure becomes significantly
slower due to the size of the uncertainty set €2 that makes
the pruning rule less efficient. For this reason, we propose
in the next section a sophistication of our procedure using
an approximation algorithm, that will be much more efficient
while still providing guarantees on MMR values.

4 Combining Approximation and Elicitation

In order to obtain a faster search algorithm, we are going to
work on near optimal cost vectors with respect to functions

o, w € €. For this reason we introduce the following domi-
nance relation:

Definition 2 (3§,-dominance). VX,Y C RY, Ve > 0:
XZ5Y eVyeY VweQ,Fze X, (14 ). (y) >y (z)
Similarly to <i%- dominance tests, <5,-dominance tests can
be performed using linear programming due to the following:

Proposition 4. Forall X,Y C R%:

XZ20Y & Wwey, min, max [(T+e)yd(y) =y (x)] >0

The proof is deliberately omitted because it is very similar to
that of Proposition 1. Let us show now that 3§, is a relaxation
to the <1, dominance introduced in Definition 1.



Proposition 5. Forall X,Y CR%: X<)V = X35V

Proof. Consider X,Y C RY suchthat X<} Y. Lety € Y
and w € . Since X <1§52 Y, then there exists + € X such
that ¥ (y) — 2 (x) > 6 > 0, i.e. such that 92 (y) > ¥ (x).
Moreover, we have (1 + €)92(y) > 92 (y) since € > 0 and
Y2 (y) > 0, and therefore (1 + )Y (y) > 2 (z). Hence we
have X 35 Y. O

As a consequence, using =

dominance to prune open labels in MOA* may reduce the
number of generated labels (and probably solution times).
However, when using this sharper pruning rule, we loose the
guarantee obtained for MR values in Proposition 3. In order
to restore a guarantee when using the pruning rule based on
the <§,-dominance we propose to work with the following
definition of regrets.

Definition 3. Forall x,y € X:

PMR.(z,y,Q) = maxueo{(1 +e)vj(z) — ¢
MR, (z, X, Q) = maxyex PMR.(z,, Q)
MMR, (X, Q) = minge y MR (z, X, Q)

These regrets are obviously an extension of the initial no-
tions of regrets introduced in Section 3. When € = 0, they
are identical to the initial definition of regrets. When ¢ > 0

their definition enables to establish the following counterpart
of Proposition 3:

Theorem 1. If MMR.(gs,Q) < (1 + €)0 at the end of the
search procedure, then MR(g(p*),ND(X), Q) < 4, for any
solution path p* € arg mein‘S MR(ge, gs, ).

peibE

=¢,-dominance instead of <12-

(v)}

Proof. Let p* € argmin,,..cs MR:(ge, gs,2). We want to
prove that PMR(g(p*), g(p), ©2) < ¢ for any solution p’ such
that g(p") e ND(X). Let A= (1 + £)d. Two cases may occur:

Case 1: There exists £ € S such that p’ = p,. In that case, we
have PMR. (g(p*), g(p’), ) < A since MMR,(gs,2) < A,
ie. (L+e)yv2(gp*)) —¥¥(g(p)) < Aforall w € Q. Then,
we have (1+ )0t (g(p™)) — (1 + <)t (g(p/)) < A since

€ > 0, and so ¥ (g(p*)) — Y5 (g(p')) < A(1+¢€) = .
Hence we have PMR(g(p*), g(p'), Q) <.

Case 2: There exists no £ € S such that p’ = py. In that case,
there exists S’ C S and a generated label ¢’ such that py is a
subpath of p’ and {g,: £ € S’} 5§ F(¢'). Therefore, for all
w € Qand all h € H(ng), there exists p € {p,: £ € S’}
such that (1 + €)v2(ger + h) > ¥2(g(p")). Moreover,
since H is admissible, there exists h’ € H(ny ) such that
ge + h' Pareto-dominates g(p’), and since 9%, is compatible
with Pareto-dominance, we have ¥%,(g¢ + h') < ¥ (g(p')).
Therefore, we have (1 + ¢)v2(g(p")) > ¥2(g(ph)). More-
over, since 8’ C § and MMR,(gs,Q) < A, then we have
(1 + e)vs(9(p*)) — ¥5(g(p)) < A. Finally, we obtain
1+ (g(p*)) — (1+2)02 (9() <  from the two previ-

ous inequalities, i.e. Y7 (g(p*))—v2(g9(p")) < A/(1+e) = 4.
Hence, we have PMR(g(p*), g(p’),2) <46 O
Therefore, if we obtain MMR.(gs,2) < (1 + €)é

at the end of the search procedure, then any solu-
tion path p* in argminy,..cs MR(gr, gs,€2) is such that
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MR(g(p*),ND(X),Q) < 6. 1In order to decrease
MMRc.(gs,2), we can, here also, ask preference queries
to reduce the set of admissible parameters 2. This is less
straightforward than in Section 3 due to the use of MMR, in-
stead of standard MMR. However the query selection strat-
egy used in Section 3 can be adapted as shown by the follow-
ing proposition:

Proposition 6. If ¢ < ¢&/(1 — &), then there exists a
questionnaire that enables to reduce ) in such way that
MMR-(gs, ) < (1 + ¢)d.

Proof. Let G = (V, ) be the directed graph defined as fol-
lows: V is a set of nodes, one node denoted v, per label £€ S,
and £ is a set of arcs where node vy is linked to node vy if
and only if ¢ (ge) < ¥¥ (ger) for all w € Q. Note that for ev-
ery cycle of type (vg, , . . ., Ve, , V¢, ) in G, we necessarily have
2 (ge,)= ... =v2(gq,) for all w € Q). Hence, each maximal
cycle can be reduced to a single node. Let G = (V, £) be the
directed acyclic graph obtained after these reductions. Then,
consider the following elicitation procedure.

While graph G have more than one source:

e Determine x{; as one solution minimizing MR(z, gs, )
and y; a solution that maximizes PMR(z§, v, ). Let
x* and y* be respectively an ancestor of x(j and y; that
have no predecessor. If 2 has no ancestor, then z* =
(the same applies to ).

Ask the DM to compare the two solutions associated
with z* and y*.

Update graph G by inserting new arcs induced by the
new preference information obtained and G accordingly.

At the end, we obtain a connected digraph, the source of
which is denoted vy«. By construction, for all / € S, we
have 92 (ge~) < 9% (ge) for all w € Q. Therefore, we have
PMR.(ge+, ge, Q) = maxpea{ (1 + )Y (ger) — ¥ (90)} <
maxg,eo{(1+e)vg(ger) =1 (ger ) } =€ X maxeq ¢35 (g¢+)-
Then, since ¥Y(ge<) < 1 for all w € £, we have
PMRc(ge+, ge, ) <e. Hence PMR.(gp+, g¢, ) < (1 +¢)d
directly follows frome < ¢/(1—4¢). Thus MR, (ge+, gs, ) <
(14 ¢€)d and MMR,(gs,2) <(1 + ¢€)é. O

5 Numerical Tests

We have evaluated the performance of the two algorithms re-
spectively presented in Section 3 and 4 in terms of compu-
tation times (in seconds) and number of queries. Results are
obtained by averaging over 30 runs and linear optimizations
are performed using the Gurobi library of Java. The algorithm
based on MR minimization is denoted R* hereafter whereas
the one based on MR, minimization is denoted R}.

In a series of experiments, we consider instances of graphs
G = (N, A) where all nodes in N are uniformly drawn in
the two dimension grid {1,...,1000} x {1,...,1000}, but
source node s and goal node ~ are respectively located in
(1,500) and (1000, 500). Each node is linked to 30 ran-
domly chosen nodes and the associated cost vectors are ran-
domly drawn using Gaussian distributions parametrized ac-
cording to Euclidean distances. For each node n € N, we set



H(n) = {I(n)} where I(n)=(I1(n),...,I;(n)) is the ideal
point defined by I;(n) = min,ecpn ) gi(p) for all i € Q.
We consider S-shaped disutility functions v;, ¢ € @, of the

form:
1

vi(®s) = T e
where z; is the %" component of cost vector x; a; and b; are
parameters enabling respectively to control the amplitude of
the S’ and the position of the ’S’ along the i-th criterion.

To evaluate the impact of the model complexity (in terms
of number of parameters), we consider additive utilities (U}))
and Choquet integrals (C?) of type:

Co(x) =Y mivi(w)+ > mijminfvi(;), v(x;)}

1€Q 4, €EQ:<]

This is indeed a Choquet expected utility associated with the
capacity w(X) = >,y mi + Zi,jeX:i<j m;,; for X C Q.
This specific subclass of capacity is said to be 2-additive
because it only involves a number of parameters which is
quadratic in the number of criteria.

For algorithm R?, we have estimated the value of ¢ that en-
ables a balanced trade-off between the computation time and
the number of queries. Table 1 shows that the larger parame-
ter €, the smaller the number of queries and the computation
time. Hence, the best option is definitely to set € to its max-
imum feasible value, i.e. € = §/(1 — §). Therefore, in the
following experiments, we only consider this value for ¢.

€ 0 0/3(1—9) 20/3(1—9) d/(1-9)
time 6.50 5.66 4.99 4.38
queries  13.80 12.53 11.63 10.43

Table 1: Performance of R} (6=0.2,¢=10,|N|=1000,C?).

Then, we have compared R* and R} algorithms. In Ta-
ble 2, we can see that computation times drastically increase
with respect to § for the R* algorithm. In other words,
when lowering 0 (the required guarantee of quality), algo-
rithm R* reduces the number of queries but increases signifi-
cantly computation times, a drawback that does not appear for
R%. Moreover, R} is much faster than R*, e.g. 3000 times
faster for ¢ = 2 and 6 = 0.1. The time difference between
the two algorithms increases with ¢, the number of criteria.

Finally, we have investigated the impact of the number
of parameters, on the performance of R}. As it could be
expected, the number of queries and the computation times
needed for elicitating the 2-additive Choquet model are more
important than for elicitating the additive utility model (the
former model involves ¢(q + 1)/2 parameters, the latter only
q). This is the price to pay for higher descriptive and prescrip-
tive possibilities but in any case the overall number of queries
remains quite admissible as the number of criteria increases.

6 Conclusion

We have introduced a new approach combining near-
admissible state-space search and incremental elicitation pro-
cedures to solve search problems in vector-valued graphs. It
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6 =0.01 6 =0.05 6=0.1
q method time queries time queries time queries
2 R* 0.6 30 79 1.9  309.7 1.0
2 R 0.4 32 02 2.0 0.1 1.4
4 R* 3.6 12.1  68.7 74 15370 44
4 R 1.9 12.5 1.0 8.1 0.6 5.1

Table 2: Comparison of R* and R (| N|=500, C2).

0 =0.05 6=0.1
g  model |N| time queries time queries
2 UGy 500 0.2 1.8 0.1 1.1
2 UG 1000 0.2 2.0 0.1 1.4
5 U} 500 1.1 8.1 0.7 5.6
5 cy 500 29 13.5 1.5 8.9
5 U;g 1000 1.4 8.3 0.9 5.6
5 c? 1000 3.7 134 2.0 8.1
10 U} 500 7.8 223 3.4 13.7
10 cy 500 66.9 475 18.1 27.2
10 U;g 1000 10.0 26.9 4.3 16.0
10 c? 1000 138.2 533 43.0 30.5

Table 3: Elicitating U, versus elicitating C').

makes it possible to elicit the weighting parameters of non-
linear models such as the additive utility model and the Cho-
quet expected utility. Our approach is based on a sophistica-
tion of MOA* search and U* search involving new pruning
rules implemented with an LP solver. The search procedure is
interweaved with an incremental elicitation procedure allow-
ing to approximate, more and more accurately, the preference
parameters controlling the importance of criteria, or sets of
criteria, and thus the value system of the decision maker.

The numerical tests reported show the efficiency of this ap-
proach both in terms of number of queries and in terms of
solution times. The elicitation procedure based on MR, re-
grets minimization is shown to provide robust solutions, i.e.
solutions with a gap to optimality guaranteed to fall below a
desired threshold 4.

A natural extension of this work would be to integrate the
elicitation of one dimensional utility functions in the whole
regret minimization process, instead of eliciting them in a
preliminary stage. This seems to be a challenging question
because in this case, regret minimization will require to solve
quadratic optimization problems at every step of the search
procedure.
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