
ReACTR: Realtime Algorithm Configuration
through Tournament Rankings

Tadhg Fitzgerald
Insight Centre for Data Analytics
University College Cork, Ireland

tadhg.fitzgerald@insight-centre.org

Yuri Malitsky
IBM T.J. Watson Research
Centre, New York, USA

ymalits@us.ibm.com

Barry O’Sullivan
Insight Centre for Data Analytics
University College Cork, Ireland

barry.osullivan@insight-centre.org

Abstract
It is now readily accepted that automated algorithm
configuration is a necessity for ensuring optimized
performance of solvers on a particular problem do-
main. Even the best developers who have carefully
designed their solver are not always able to manu-
ally find the best parameter settings for it. Yet, the
opportunity for improving performance has been
repeatedly demonstrated by configuration tools like
ParamILS, SMAC, and GGA. However, all these
techniques currently assume a static environment,
where demonstrative instances are procured before-
hand, potentially unlimited time is provided to ad-
equately search the parameter space, and the solver
would never need to be retrained. This is not always
the case in practice. The ReACT system, proposed
in 2014, demonstrated that a solver could be con-
figured during runtime as new instances arrive in
a steady stream. This paper further develops that
approach and shows how a ranking scheme, like
TrueSkill, can further improve the configurator’s
performance, making it able to quickly find good
parameterizations without adding any overhead on
the time needed to solve any new instance, and then
continuously improve as new instances are evalu-
ated. The enhancements to ReACT that we present
enable us to even outperform existing static config-
urators like SMAC in a non-dynamic setting.

1 Introduction
Automated algorithm configuration is the task of automati-
cally finding parameter settings for a tunable algorithm which
improve its performance. It is an essential tool for anyone
wishing to maximize the performance of an existing algo-
rithm without modifying the underlying approach.

Modern work on algorithm portfolios [Malitsky et al.,
2013b; Xu et al., 2008; Malitsky and Sellmann, 2012] tells us
that there is often no single approach that will produce opti-
mal performance (solving time, solution quality etc.) in every
situation. This is why modern developers, not knowing all the
conditions and scenarios where their work will be employed,
leave many of the parameters of their algorithms open to the
user. As a side-effect of this, however, solvers might have

hundreds of parameters that can be changed to fine tune their
behavior to a specific benchmark. Even for solvers with a
handful of parameters, it is difficult to search through all the,
possibly non-linear, relations between parameters.

To alleviate the difficult and time consuming process of
manually fiddling with parameters, a number of tools have
been recently introduced. ParamILS [Hutter et al., 2009], for
example, employs an iterated local search to explore the pa-
rameter space, focussing on areas where it found improve-
ments in the past. Alternatively, SMAC [Hutter et al., 2011]
tries to build an internal model that predicts the performance
of a parameterization, trying the ones most probable to im-
prove upon the current behavior. Finally, GGA [Ansótegui
et al., 2009] utilizes a genetic approach, competing a number
of parameterizations in parallel and allowing the best ones to
pass on their parameter settings to the subsequent generation.
While there is no consensus on which of these approaches
is best, all of them have been repeatedly validated in practice,
sometimes leading to orders of magnitude improvements over
what was found by human experts [Hutter et al., 2011].

Despite their undeniable success, all existing configurators
take a static view of the problem. They assume a train-once
scenario, where a rich benchmark set of instances exists and
significant time can be spent offline searching for the best pa-
rameterizations. Furthermore, they assume that once a good
parameterization is found, it will be utilized without modi-
fication, forever. While applicable in many situations, there
are cases when these three assumptions do not hold. Imag-
ine, for example, the case of repeated combinatorial auctions
like those commonly utilized for placing ads on webpages.
New companies, ads, and keywords are constantly being in-
troduced, which means that the size and number of goods
are constantly in flux. Furthermore, new instances arrive in a
continuous stream. This means that the benchmark instances
are always changing, there is no time to train offline, and the
problems we are solving change, meaning that the parame-
ters need to be constantly updated. Existing configuration
approaches are ill-equipped to deal with this setting.

Some work exists on online learning in the closely related
area of algorithm portfolios. SUNNY: a Lazy Portfolio Ap-
proach for Constraint Solving [Amadini et al., 2014] builds
a schedule of CSP solvers in a portfolio online without any
prior training. SUNNY finds similar instances to the cur-
rent instance using k-Nearest Neighbours. It then selects a

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

304



minimum subset of solvers that could the solve the greatest
number of neighbouring instances and schedules them based
the number of neighbouring instances solved. Alternatively,
Evolving Instance-Specific Algorithm Configuration [Malit-
sky et al., 2013a] is a portfolio approach that performs some
offline learning but is able to evolve the portfolio it uses as it
processes a stream of instances in order to adapt to changing
instances. It does this by dynamically re-clustering incoming
instances and assigning a set of solvers to each cluster.

ReACT, Realtime Algorithm Configuration through Tour-
naments, provides a way to perform online algorithm config-
uration without prior learning [Fitzgerald et al., 2014]. The
idea was that once a new instance arrived, n parameteriza-
tions of a solver would attempt to solve it in parallel. Once
the instance was solved, all other solvers were terminated
and the winner’s score was upgraded. Because the current
best parameterization was always among the n versions eval-
uated, a continuously improving bound on performance could
be guaranteed without offline training. Furthermore, once
a parameterization failed to win a certain percentage of the
time, it was discarded, with a new random one taking its
place in the current pool. In this way ReACT was able to
also search the parameter space while it was solving new in-
stances. Although straightforward in its implementation, the
original work showed that ReACT could very quickly find
high quality parameterizations in realtime.

This paper, extends the ReACT approach by introducing
enhancements to every part of the original. Specifically, we
show which parameterizations should be evaluated once a
new instance arrives. We also show how and which instances
should be introduced into the pool of potentials to be evalu-
ated. Most importantly, we show how a ranking scheme com-
monly utilized to rank players in games, can be exploited to
more accurately measure the quality of the parameterizations
in the current pool. By introducing all of these changes, we
show how the resulting approach ReACTR, Realtime Algo-
rithm Configuration through Tournament Rankings, improves
over the original, and even surpasses existing static configu-
ration techniques when evaluated in a static setting.

2 Approach
Demonstrated as a powerful approach in practice, ReACT
showed that it was feasible to configure a solver in realtime as
new instances were being solved. At its core, the algorithm
can be abstracted to Algorithm 1, taking in four parameters:
number of available cores n, parameterized solver s, a stream
of instances I , and the size m of the parameter pool to keep
track of. Internally, a pool P of parameterizations is initial-
ized, where each has a corresponding score recorded in E.
Solving the stream of instances one at a time, a collection of
n competitors C is selected to tackle the instance and all are
evaluated in parallel. Here, as soon as any parameterization
finishes solving the instance, all are terminated, and the re-
sults are recorded in e. Finally, the scores are processed and
the pool of potential solvers is updated to replace any poorly
performing parameterizations with a new set.

Originally, the pool of parameterizations was initialized by
creating random assignments for all the parameters. To en-

Algorithm 1 Components of the ReACT algorithm
1: function REACT(n, s, I , m)
2: P ← INITIALIZEPARAMETERIZATIONS(s,m)
3: E ← 0n . an n vector initialized to 0
4: for i ∈ I do
5: C ← GETCOMPETITORS(P, n)
6: e← SOLVEINSTANCE(C, i)
7: E ← UPDATESCORES(e)
8: P,E ← UPDATEPARAMETERIZATIONS(P,E)

sure that the performance was always improving, the cur-
rent best parameterization was always among the evaluated
competitors, while all others were sampled uniformly at ran-
dom. This way, once one parameterization finished solving
the instance it was recorded as defeating all the other com-
petitors. An internal counter would subsequently keep track
of the number of times a configuration defeated another. Us-
ing this counter, a parameterization was removed as soon as
any other parameterization defeated it twice as many times
as the two competed, as long as there were at least a mini-
mum number of direct comparisons of the two. Finally, all
removed configurations were replaced by new randomly gen-
erated ones.

It follows that the main reason for ReACT’s success was
that it always ran the best parameterization, and had a very
aggressive removal policy, throwing out anything as soon as
it was even hinted to be subpar. The trouble with this strategy,
however, was that it failed to store a history of candidate con-
figuration successes. Due to this, a new configuration could
potentially remove a tried and tested candidate simply by get-
ting a few lucky runs when it was first added to the pool.

Therefore, it should be clear from Algorithm 1 that the
success of ReACT resides in the strategies used for each
of the steps. Particularly important is the consideration of
which configurations to evaluate next, which parameteriza-
tions should be discarded, and how new parameterizations
should be added to the pool. This paper targets each of these
questions, showing how the employment of a leaderboard of
the current pool facilitates all other decisions. The remain-
der of this section details the strategies employed to develop
ReACTR.

2.1 Ranking Parameterizations
In the world of competitive games, it is critical to have an un-
biased way to compare an individual’s performance to every-
one else. A trivial way to do this is to simply have everyone
play everyone else. Naturally, for popular games like chess,
Go, checkers, etc, there are a plethora of people playing at any
given time, with players coming and going from the rankings
on a whim. This is also the situation that ReACT faces inter-
nally. At any given time there are a predetermined number of
competitors in the pool, which can be removed and replaced
by new entrants. At the same time, ReACT needs a method
for quickly determining the comparative quality of each of
the contestants in the pool, to know the ones worth utilizing
and those that can be discarded. It therefore makes sense to
employ a leader-board ranking algorithm.

Historically, in order to improve the chess rating system at

305



the time, the Elo rating system [Elo, 1978] was introduced
with the idea that the point difference in two players’ ratings
should correspond to a probability predictor on the outcome
of a match. Specifically, and somewhat arbitrarily, the Elo
rating was designed so that a difference of 200 points corre-
sponded to an expected score of 0.75,1 with an average player
having 1500 points. After a tournament if it was found that
the actual score (SA) was higher (lower) than the expected
score (EA), it was assumed that the rank was too low (high)
and thus needed to be adjusted linearly as:

R′
A = RA +K(SA − EA)

where K was a constant limiting the rate of change.
An alternative version was later introduced in

Glicko-2 [Glickman, 2012], which has a built-in mea-
sure of the accuracy of a player’s rating, RD, as well as the
expected fluctuation in the rating, σ. Specifically, the method
was designed so that the more games a player is involved in,
the more confident Glicko-2 was about the ranking, and the
more consistently a player performs, the lower the volatility.
To represent this, a Glicko-2 rating is provided as a 95%
confidence range, with the lower (upper) value being the rank
minus (plus) twice the RD.

While both Elo and Glicko-2 are still in use to this day, they
are primarily designed for two player games. Therefore, for
games involving 3+ players, all combinations of pairs must
be created and updated independently in order for either of
these classic approaches to work. To solve this multi-player
problem for online games, the Bayesian ranking algorithm
TrueSkill [Herbrich et al., 2006] was invented. Like Glicko,
TrueSkill measures both a player’s average skill, µ, as well
as the degree of uncertainty (standard deviation), σ, assum-
ing a Gaussian distribution for a player’s skill. TrueSkill uses
Bayesian inference in order to rank players. After a tour-
nament, all competitors are ranked based on the result, with
the mean skill shifting based on the number of players be-
low a player’s rank and the number above, weighted by the
difference in initial average ratings. The result of this is that
a player that is expected to win (higher µ value) gains lit-
tle by beating a lower ranked opponent. However, if a lower
ranked player beats a higher ranked player, then the lower
ranked player will receive a large increase in their µ value.
As a player competes in more tournaments TrueSkill becomes
more confident in the µ that is assigned and so the uncertainty
value, σ is reduced after every tournament played.

For ReACTR, the confidence metric provided by Glicko-
2 and TrueSkill is a highly desirable feature that could help
determine whether it is worth continuing to evaluate a param-
eterization or whether it can be safely discarded. We imple-
mented and experimented with both ranking algorithms, with
Figure 1 showing a typical result. What the figure shows is the
cumulative time the ReACTR algorithm with the two ranking
methods needs to go through all instances from a particular
benchmark. While we will describe the benchmarks later in
the paper, what is important to note here, is that in a typical
situation, TrueSkill is able to help bring better parameteriza-
tions to the top, resulting in better overall performance in the

1Expected score is the probability of winning plus half the prob-
ability of a tie.

Figure 1: Cumulative solving time using Glicko and
TrueSkill for ranking.

long run. For this reason that in all subsequent parts of this
paper we only rely on the TrueSkill ranking methodology.
We use a highly-rated open source Python implementation of
TrueSkill for our experiments [Zongker, 2014] using all of
the default settings (µ = 25, σ=8.3’).

2.2 Choosing the Competitors
Using TrueSkill for ranking means that each member in our
current pool of thirty potential parameterizations has an asso-
ciated score declaring its quality, as well as confidence rating
of this score. To guarantee that the overall solver will never
produce bad performance, the best known configuration is al-
ways among those that is evaluated. But other than that, it
is not immediately clear exactly which other parameteriza-
tions should be evaluated in each tournament. We refer to
the method used to select the configurations to run from the
leader-board as the sampling strategy.

Restricting ourselves to only selecting six configurations,
the number of cores we typically use for parallel execu-
tion, we compare several strategies on an assortment of auc-
tion problems. Again, these problems and the parameterized
solver we use are described in detail in a later section. For
now, we treat this dataset and the thirty randomly generated
parameterizations as a black box. The objective is to choose
to run solvers such that the cumulative time necessary to go
through all the instances is minimized.

Utilizing this setup, and the TrueSkill approach to rank
the solvers in our pool we compare five sampling strategies.
Specifically we compare strategies that take the top n solvers
and the 6 − n solvers uniformly at random. The results are
shown in Figure 2.

What we observe in this figure is that running the top three
and a random set of three is the worst strategy, resulting the
solver spending the most time needing to go through all the
instances. Alternatively, running just the top single solver
and five random ones allows ReACTR to better find a good
parameterization in the pool, and thus lowering the total time.
Having said this, we also note that there is not much differ-
ence in which strategy is selected. Therefore, we hedge our

306



Figure 2: Cumulative solving time for ReACTR with differ-
ent sampling strategies.

bets by, in practice, running the top two known solvers and
the others chosen informally at random. We intuitively as-
sume that by running the top two solvers we would be in bet-
ter shape in knowing the quality of the best solvers.

2.3 Cleaning the Pool
Even with a high quality ranker, such as TrueSkill, if there are
no good parameterizations in our pool of contenders, we will
never be able to improve our overall performance. Therefore
it is imperative for ReACTR to constantly discard the ob-
viously inferior parameterizations and to replace them with
new contenders. This leaves the question as to which strat-
egy to adopt for removing parameterizations. A more aggres-
sive removal strategy allows us to evaluate more new param-
eters thus increasing the chances of finding better parame-
terizations, however, this comes with more risk of removing
good parameterizations prematurely. A more conservative re-
moval strategy allows us to evaluate each parameterization
more fully but because parameterizations are removed more
slowly less of the configuration space is explored. The ques-
tions we must answer are therefore how many configurations
should we keep and how confident should we be that a con-
figuration is poor before removing it.

Because the evaluation of ReACTR on real data requires
us to run a solver for non-trivial amount of time over a large
number of instances, finding the best strategy for removing
instances can be extremely expensive. To overcome this, we
simulate the process using synthetic data. Specifically, we
know that because our instances are relatively homogeneous
in practice, any parameterization of a solver would have a par-
ticular expected performance with some variance. We further
assume that there is a particular mean expected performance
and a mean variance. Therefore, each parameterization of a
solver is simulated by a normal distribution random number
generator with a fixed mean and standard deviation. Once this
simulated solver is removed, it is replaced by another one,
where the new mean and variance are assigned randomly ac-
cording to a global normal random number generator. What
this means is that most of our simulated solvers have a sim-

ilar performance, with those being significantly better than
others being increasingly unlikely. Because in practice we
introduce new parameterizations sampled uniformly at ran-
dom, this methodology of representing solvers is very close
to reality, as independent (not shown) tests revealed.

Given these simulated solvers, the objective of ReACTR
is to find a solver that leads to the shortest cumulative solv-
ing time for 500 instances. Of course since these solvers are
random we repeat the experiment several times. What we
observe is displayed in Figure 3. Specifically we observe
that the best strategy for removing parameterizations from the
pool of contenders is by keeping the top 15-20 solvers and
anything in which we have a greater than 5.0-5.5 uncertainty
rating.

Figure 3: Heat-map showing the combined effect of the num-
ber of kept parameterizations and TrueSkill’s confidence rat-
ing(lower values indicate higher confidence). The colorbar
shows the cumulative solving time in seconds.

2.4 Replenishing the Pool
Every parameterization which is removed from the leader-
board must be replaced by a newly generated configuration.
In order to balance exploration of new configurations and the
exploitation of the knowledge we have already gained, Re-
ACTR uses two different generation strategies. Diversity is
ensured by generating parameterizations where the value of
each parameter is set to a random value from the range of
allowed values for that parameter.

Additionally, ReACTR exploits the knowledge it has al-
ready gained through ranking by using a crossover operation
similar to that used in genetic algorithms. For this, two par-
ents are chosen from among the five highest ranked configu-
rations then with equal probability each parameter takes one
of the parents values. Additionally, like a standard genetic
algorithm, some small percentage of the parameters are al-
lowed to mutate. That is, rather than assuming one of the
parent values, a random valid value is assigned instead.

We allow for a variable to control the balance of exploita-
tion to exploration, or the percentage of generated vs random
parameterizations we introduce. Again for now treating the
specific collection of instances and parameterized solver as a
blackbox, Figure 4 shows the effect on cumulative time when
ReACTR varies the ratio of the amount of exploitation to do.

307



Figure 4: Cumulative solving time for ReACTR with differ-
ent exploitation ratio settings.

From this graph, we can see that, at least in the relation of
these two methodologies, it is much better to actively ex-
ploit existing knowledge, generating a greater proportion of
parameterizations using crossover.

3 Experimental Setup
We evaluate the ReACTR methodology on three datasets.
The first two are variations of combinatorial auction problems
which were used in the evaluation of the original ReACT con-
figurator. A combinatorial auction is a type of auction where
bids are placed on groups of goods rather than single items.
These instances are encoded as mixed-integer programming
(MIP) problems and solved using the state-of-the-art com-
mercial optimizer IBM CPLEX [IBM, 2014]. The problems
were generated using the Combinatorial Auction Test Suite
(CATS) [Leyton-Brown et al., 2000], which can generate in-
stances based on five different distributions aiming to match
real-world domains.

The two combinatorial auction datasets are generated
based on the regions and arbitrary domains. Regions sim-
ulates combinatorial auctions where the adjacency in space
of goods matters. In practice, this would be akin to selling
parcels of land or radio spectrum. Alternatively, the arbitrary
domain foregoes a clear connection between the goods being
auctioned, as may be the case with artwork or antiques. These
two domains generate instances which are dissimilar enough
to warrant different strategies for solving them and by exten-
sion different parameter configurations for the solver.

The regions dataset was generated with the number of
goods set to 250 (standard deviation 100) and the bid count to
2,000 (standard deviation 2,000). Similarly, 800 goods (stan-
dard deviation 400) and 400 bids (standard deviation 200)
were used for the arbitrary dataset. These particular val-
ues were chosen for generation as they produce diverse in-
stances that are neither too easy nor too hard for our solver.
Furthermore the dataset is cleaned by removing any instance
which is solvable in under 30 seconds using the CPLEX de-
fault settings. These are removed because they are quickly

solvable even by poor configurations and in practice usually
handled by a pre-solver. Similarly, instances that take more
than 900 seconds to solve using the CPLEX defaults were re-
moved as these are considered too hard and little information
is gained where all solvers time-out. After this filtering the
regions dataset contains 2,000 instances (split into a training
set of 200 and a test set of 1800) while the arbitrary dataset
has 1,422 instances (200 training and 1,222 test). The solver
time-out for both datasets is set to 500 seconds.

The third dataset comes from the Configurable SAT Solver
Competition (CSSC) 2013 [UBC, 2013]. This dataset was
independently generated using FuzzSAT [Brummayer et al.,
2010]. FuzzSAT first generates a boolean circuit and then
converts this to CNF. We solve these instances using the pop-
ular SAT solver Lingeling [Biere, 2010]. The circuits were
generated using the options -i 100 and -I 100. Similar
to what was done with the auction datasets, any instances that
could be solved in under 1 second were removed. The result-
ing dataset contained 884 instances which was split into 299
training and 585 test. We use a timeout of 300 seconds for
this dataset, the same as that used in the CSSC 2013.

It is important to note here, that ReACTR by its nature is
an online algorithm, and therefore does not require a sepa-
rate training dataset. However, in order to compare to exist-
ing methodologies, a training set is necessary for those ap-
proaches to work with.

All experiments were run on a system with 2 X Intel Xeon
E5430 processors(2.66Ghz) and 12 GB RAM. Though there
are 8 cores available on each machine we limit ourselves to 6
so as not to run out of memory or otherwise influence timings.

4 Results
We show two separate scenarios for ReACTR. First, we con-
sider a scenario where there is a collection of training data
available beforehand, or alternatively a training period is al-
lowed. We refer to this approach as “ReACTR Merged”,
where the configurator is allowed to make a single pass over
the training instances to warm-start its pool of configurations.
Secondly, we evaluate “ReACTR Test”, which assumes no
prior knowledge of the problem, and starts the configuration
process only when it observes the first test instance.

For comparison we evaluate both versions of ReACTR
against a state-of-the-art static configurator, SMAC. For com-
pleteness, we investigated SMAC when trained for 12, 24,
36 and 48 hours. This way we cover scenarios when a new
solver is configured each night, as well as the best config-
uration SMAC can find in general. We observed that on our
particular datasets performance improvements stagnated after
12 hours training, except in the case of the regions dataset (for
which we show the 24 hour training). Furthermore, because
ReACTR uses six cores, six versions of SMAC are trained
using the ’shared model mode’ option, which allows multiple
SMAC runs to share information. Upon evaluation, all six
configurations are run and the time of the fastest performing
SMAC tuning on each instance is logged. By doing this the
CPU time used by SMAC and ReACTR is comparable.

We also show the results for both the previous version of
ReACT (on the merged dataset described above), “ReACT

308



(a) Circuit fuzz using Lingeling. (b) Arbitrary CA dataset using CPLEX. (c) Regions CA using CPLEX.

Figure 5: Rolling average solving time on various dataset and solver combinations.

Table 1: Summary of training, testing and total time needed for the various configurations on the benchmark datasets.

Time taken (1000s)
Solver ReACTR SMAC (number of hours)
Default Test Merged 12 24 36 48

Regions
Train 0 0 24 43 86 130 173
Solve 363 109 88 185 141 110 102
Total 363 109 112 228 227 240 275

Arbitrary
Train 0 0 19 43 86 130 173
Solve 253 61 54 58 57 57 57
Total 253 61 72 101 143 186 230

Circuit Fuzz
Train 0 0 13 43 86 130 173
Solve 32 25 18 21 21 21 21
Total 32 25 31 64 107 150 194

Merged” and the default solver parameterizations.
Figure 5(a) shows the rolling average (total time to

date/instances processed) on the circuit fuzz dataset. We can
see that both versions of ReACTR easily outperform the Lin-
geling defaults. What is more interesting is that ReACTR is
able to outperform SMAC (trained for 12 hours) after a single
pass over the training set (taking under 4 hours). Even with-
out the warm-start, ReACTR is able to find parameters that
significantly better than the defaults and not too far off those
that were otherwise configured.

In Figure 5(b), we see that on the Arbitrary Combinatorial
Auction dataset, configuration is extremely important, and
that all configurators are able to find the good parameteri-
zations. In Figure 5(c), however, we once again see that both
versions of ReACTR find significantly better parameteriza-
tions than those that can be found after 12 hours of tuning
SMAC, and even the configuration found after 24 hours of
tuning SMAC.

Finally, Table 1 shows the amount of time each configura-
tion technique requires to go through the entire process. This
shows the amount of time needed to train the algorithm and
the amount of time needed to go through each of the test in-
stances. The times are presented in 1000s of seconds. Note
that in all cases, ReACTR Merged requires less time to train
and also finds better configurations than SMAC. However, if
training time is a concern, then ReACTR Test requires signif-
icantly less total time than any other approach.

5 Conclusion

It is clear from multitudes of past examples that whenever
one needs to use a solver on a collection of instances, it is
imperative to utilize an algorithm configurator to automati-
cally set the solver’s parameters. But while there are now a
number of existing high quality configurators readily avail-
able, unfortunately all assume a static view of the world. In
practice, training instances are not always available before-
hand, problems tend to change over time, and there are times
when there is no extra time to train an algorithm offline. It
is under these cases, that ReACT was shown to thrive, able
to achieve high quality parameterizations while tuning the
solver as it was solving new instances. This paper, showed
how the crucial components of the original ReACT method-
ology could be enhanced by incorporating the leader-board
ranking technique of TrueSkill. The resulting method, Real-
time Algorithm Configuration through Tournament Rankings
(ReACTR), was shown to surpass even a state-of-the-art con-
figurator SMAC across multiple domains.

Acknowledgments

This publication has emanated from research conducted with
the financial support of Science Foundation Ireland (SFI) un-
der Grant Number SFI/12/RC/2289.

309



References
[Amadini et al., 2014] Roberto Amadini, Maurizio Gab-

brielli, and Jacopo Mauro. Sunny: a lazy portfolio ap-
proach for constraint solving. Theory and Practice of
Logic Programming (TPLP), pages 509–524, 2014.

[Ansótegui et al., 2009] Carlos Ansótegui, Meinolf Sell-
mann, and Kevin Tierney. A gender-based genetic algo-
rithm for the automatic configuration of algorithms. In
Principles and Practice of Constraint Programming-CP
2009, pages 142–157. Springer, 2009.

[Biere, 2010] Armin Biere. Lingeling. SAT Race, 2010.
[Brummayer et al., 2010] Robert Brummayer, Florian Lons-

ing, and Armin Biere. Automated testing and debugging
of sat and qbf solvers. In Theory and Applications of Sat-
isfiability Testing–SAT 2010, pages 44–57. Springer, 2010.

[Elo, 1978] Arpad E Elo. The rating of chessplayers, past
and present, volume 3. Batsford London, 1978.

[Fitzgerald et al., 2014] Tadhg Fitzgerald, Yuri Malitsky,
Barry O’Sullivan, and Kevin Tierney. React: Real-time
algorithm configuration through tournaments. In Proceed-
ings of the Seventh Annual Symposium on Combinatorial
Search, SOCS 2014, Prague, Czech Republic, 15-17 Au-
gust 2014., 2014.

[Glickman, 2012] Mark E Glickman. Example of the glicko-
2 system. Boston University, 2012.

[Herbrich et al., 2006] Ralf Herbrich, Tom Minka, and
Thore Graepel. Trueskill: A bayesian skill rating system.
In Advances in Neural Information Processing Systems,
pages 569–576, 2006.

[Hutter et al., 2009] Frank Hutter, Holger H Hoos, Kevin
Leyton-Brown, and Thomas Stützle. Paramils: an auto-
matic algorithm configuration framework. Journal of Ar-
tificial Intelligence Research, 36(1):267–306, 2009.

[Hutter et al., 2011] Frank Hutter, Holger H Hoos, and
Kevin Leyton-Brown. Sequential model-based optimiza-
tion for general algorithm configuration. In Learning and
Intelligent Optimization, pages 507–523. Springer, 2011.

[IBM, 2014] IBM, 2014. IBM ILOG CPLEX Optimization
Studio 12.6.1.

[Leyton-Brown et al., 2000] Kevin Leyton-Brown, Mark
Pearson, and Yoav Shoham. Towards a universal test suite
for combinatorial auction algorithms. In Proceedings of
the 2nd ACM conference on Electronic commerce, pages
66–76. ACM, 2000.

[Malitsky and Sellmann, 2012] Yuri Malitsky and Meinolf
Sellmann. Instance-specific algorithm configuration as a
method for non-model-based portfolio generation. In Inte-
gration of AI and OR Techniques in Contraint Program-
ming for Combinatorial Optimzation Problems, pages
244–259. Springer, 2012.

[Malitsky et al., 2013a] Yuri Malitsky, Deepak Mehta, and
Barry O’Sullivan. Evolving instance specific algorithm
configuration. In Sixth Annual Symposium on Combina-
torial Search, 2013.

[Malitsky et al., 2013b] Yuri Malitsky, Ashish Sabharwal,
Horst Samulowitz, and Meinolf Sellmann. Algorithm port-
folios based on cost-sensitive hierarchical clustering. In
Proceedings of the Twenty-Third international joint con-
ference on Artificial Intelligence, pages 608–614. AAAI
Press, 2013.

[UBC, 2013] UBC, 2013. Configurable SAT Solver Compe-
tition.

[Xu et al., 2008] Lin Xu, Frank Hutter, Holger H Hoos, and
Kevin Leyton-Brown. Satzilla: portfolio-based algorithm
selection for sat. Journal of Artificial Intelligence Re-
search, pages 565–606, 2008.

[Zongker, 2014] Doug Zongker. trueskill.py, 2014.
https://github.com/dougz/trueskill.

310




