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Abstract
Algorithms based on the enumeration of implicit
hitting sets find a growing number of applications,
which include maximum satisfiability and model
based diagnosis, among others. This paper exploits
enumeration of implicit hitting sets in the context
of Quantified Boolean Formulas (QBF). The paper
starts by developing a simple algorithm for QBF
with two levels of quantification, which is shown
to relate with existing work on enumeration of im-
plicit hitting sets, but also with recent work on QBF
based on abstraction refinement. The paper then
extends these ideas and develops a novel QBF al-
gorithm, which generalizes the concept of enumer-
ation of implicit hitting sets. Experimental results,
obtained on representative problem instances, show
that the novel algorithm is competitive with, and of-
ten outperforms, the state of the art in QBF solving.

1 Introduction
The enormous success of SAT enabled us to solve problems
that go beyond the NP complexity class. Among these, Quan-
tified Boolean Formulas (QBFs) represent an important for-
malism. Indeed, as deciding QBFs is PSPACE-complete, they
cover a wide range of problems. Namely from model check-
ing, planning, or two-player games [Papadimitriou, 1994;
Benedetti and Mangassarian, 2008; Rintanen, 2007; Narodyt-
ska et al., 2014].

In the recent years, a number of approaches were de-
veloped to solve QBF. Among the most representative are
conflict/solution driven learning [Cadoli et al., 1998; Rin-
tanen, 1999; Zhang and Malik, 2002; Giunchiglia et al.,
2001], which extends SAT clause learning, and a number
of approaches that expand the given QBF into a SAT prob-
lem [Biere, 2004; Benedetti, 2004; Janota et al., 2012]

This paper proposes a novel approach for QBF solving that
has two distinctive features: 1) it uses a SAT solver as an NP
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oracle, 2) it is anchored in the duality hitting set principle.
In the Boolean CNF world, the duality hitting set principle
lets us reason about minimally unsatisfiable sets (MUSes) by
traversing maximally satisfiable sets (MSSes). This has nu-
merous applications in MUS computation (cf. [Reiter, 1987;
Liffiton and Sakallah, 2008]) and more recently in MaxSAT
solving and other domains [Karp, 2010; Chandrasekaran et
al., 2011; Davies and Bacchus, 2011; Stern et al., 2012;
Moreno-Centeno and Karp, 2013; Davies and Bacchus,
2013a; Previti and Marques-Silva, 2013; Davies and Bacchus,
2013b; Slaney, 2014].

We first relate MUS computation to solving QBF with two
levels of quantification (∀∃). Then, we extend this idea for ar-
bitrary number of quantification levels. Hence, the proposed
approach is not only a novel approach to solving QBF but
it can also be seen as an extension of the duality hitting set
principle for PSPACE.

The proposed approach instantiates a SAT solver at each
quantification level, whose task is to select or deselect clauses
at that level. The fact that we are using a SAT solver as the
underlying reasoning engine in our algorithm is a big engi-
neering advantage. Indeed, if a better SAT solver appears, it
can simply substitute the old one in our implementation. The
main contributions of the paper are summarized as follows:

(1) A novel algorithm for solving QBF, called QESTO, is
developed. (2) A link is established to implicit hitting set al-
gorithms. (3) A link is established to the CEGAR-based QBF
solving. (4) A prototype was implemented and evaluated.

The paper begins by overviewing the concepts and nota-
tion used (Sec. 2) and continues by developing an algorithm
for two-level QBF (Sec. 3). Sec. 4 generalizes this approach
to general QBF and Sec. 4.2 relates to other concepts and al-
gorithms. Finally Sec. 5 describes experimental evaluation
and Sec. 6 concludes the paper.

2 Preliminaries
Throughout the paper we assume an infinite set of Boolean
variables, commonly denoted as x, u, e, etc. Boolean con-
nectives (∧,∨,¬) are used under the traditional semantics. An
assignment to a set of Boolean variables X is a mapping
from X to the Boolean constants {0, 1}. For an assignment
τ : X → {0, 1} and a formula φ we write φ|τ for the ap-
plication of τ to the formula φ. Hence φ|τ is obtained by
replacing all occurrences of each variable x ∈ X by the
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constant τ(x) and any trivial simplifications are performed
(y ∨ 1 ≡ 1, etc.). An assignment τ is a satisfying assignment
for a formula φ if φ|τ = 1. A formula is called satisfiable if
there exists a satisfying assignment for it and otherwise it is
unsatisfiable. A satisfying assignment of a formula φ is of-
ten referred to as a model of φ. For two formulas φ and ψ
we write φ |= ψ if any satisfying assignments of φ is also a
satisfying assignment of ψ.

A Boolean formula is called a literal if it is a Boolean vari-
able or its negation. For a literal l, we write var(l) for the
variable in l. A Boolean formula is called a clause if it is
a disjunction of literals. A Boolean formula is in Conjunc-
tive Normal Form (CNF) if it is a conjunction of clauses. As
common in literature, we often treat clauses as sets of literals
(implicitly disjoined) and formulas in CNF as sets of clauses
(implicitly conjoined). Observe that the empty set of clauses
is semantically true (as the empty conjunction is true) and the
empty clause is semantically equivalent to false (as the empty
disjunction is false).

Quantified Boolean formulas (QBFs) [Giunchiglia et al.,
2009] extend Boolean formulas by allowing to quantify over
variables using the existential or the universal quantifier
(∃, ∀). Any QBF can be rewritten to an equivalent Boolean
formula by rewriting any ∀x.Φ as Φ|{x7→0} ∧ Φ|{x7→1} and
∃x.Φ as Φ|{x7→0} ∨ Φ|{x7→1}.

A QBF is closed if all variables are bound by a quan-
tifier. A QBF is in prenex form if it can be written as
Q1x1 . . . Qnxk. φ where φ is a Boolean formula and Qi ∈
{∃,∀}. For formulas in prenex form, the quantifier part is
called the prefix and the Boolean part the matrix. Unless spec-
ified otherwise, in this paper we will be dealing with formulas
that are both prenex and closed and the matrix is in CNF. Any
adjacent variables with the same quantifier in the prefix are
merged into blocks. This enables us to write QBFs in the
form Q1X1 . . . QnXk. φ where Xi are sets of variables and
Qi 6= Qi+1 is assumed. We say that Xi is a block at the
quantification level i. We write lv(x) for the quantification
level of a variable x, i.e., lv(x) = i if x ∈ Xi. We extend
this notation to literals. If a variable lv(x) = i and Qi = ∀
than we say that x is universal and analogously for existential
variables. The class of closed QBF formulas in prenex form
with CNF matrix is referred to as PQCNF.

We model a SAT solver by the function SAT(ψ), which
returns a satisfying assignment if the given formula ψ is sat-
isfiable; otherwise it returns the constant ⊥.

An important fact about PQCNF formulas is that any vari-
ables universally quantified at the end of the prefix can be
removed. For instance, ∃e1e2∀u. (e1 ∨ u) ∧ (¬e2 ∨ ¬u) is
equivalent to ∃e1e2. e1 ∧ ¬e2.

3 Solving Two-level PQCNF
Consider a formula ∀X∃Y. φ, where φ is in CNF. To motivate
our discussion, let us investigate what must happen for the
formula to be false. There must be an assignment τ to the
variables X so that there is no corresponding value for the Y
variables that would make the matrix φ true. In other words,
the CNF φ|τ is unsatisfiable. In the opposite case, when the
formula is true, any assignment τ to X makes the CNF φ|τ

Algorithm 1: Two-level Selection QCNF Solving
input : ∀X∃Y. φ

1 output:truth value
C ← {(¬sC ∨ ¬l) | C ∈ φ, l ∈ C, l universal}

2 while true do
3 τ ← SAT(C ) // compute selection
4 if τ = ⊥ then return true
5 S ← {C ∈ φ | τ(sc) = 1}
6 φ′ ←

{∨
l∈C,var(l)∈Y l | C ∈ S

}
7 µ← SAT (φ′) // find a model
8 if µ = ⊥ then return false
9 S′ ← {C ∈ φ | there is l ∈ C s.t. µ(l) = 1}

10 C ← C ∧
∨
C∈φ,C /∈S′ sC

satisfiable. Hence, to decide whether a given 2-level PQCNF
formula is true or not, it is sufficient to decide whether there
exists such assignment to X or not. This is the approach we
will take from now on.

Now let us look more closely at the effect of the application
of τ to φ. Consider the simple example ∀u∃e. {(u ∨ e), (u ∨
¬e), (¬u ∨ e)}. If τ(u) = 1, the application of τ yields the
CNF {(e)} and τ(u) = 0 yields the CNF {(e), (¬e)}. We
can see that the application of τ acts as a selector on the
clauses comprising of existential variables. In this particu-
lar case, τ(u) = 0 selects an unsatisfiable set of clauses. This
resembles the way clauses are selected in recent approaches
for implicitly manipulating hitting sets [Chandrasekaran et
al., 2011; Davies and Bacchus, 2011; Stern et al., 2012;
Moreno-Centeno and Karp, 2013; Previti and Marques-Silva,
2013]. However, in QBF, clauses cannot be selected arbitrar-
ily. Consider another simple example ∀u∃e.{(u ∨ e), (¬u ∨
¬e)}. Here, regardless of the value of u, the clauses are never
selected at the same time, i.e., the result is always satisfiable.
This is because selecting a clause requires setting to false all
of its universal literals.

The above ideas give rise to a natural algorithm. First, se-
lect some set of clauses S and test for its satisfiability. If it
is unsatisfiable, stop. If it is satisfiable, block S and any of
its subsets to be selected in the future and then repeat. The
blocking step can be improved by looking at the satisfying
assignment µ of S. Such assignment satisfies some set S′ s.t.
S ⊆ S′. Hence, we can block any set that is a subset of S′.

This idea is made precise by Algorithm 1. We consider a
formula C , which captures the requirements on the consid-
ered sets of clauses. Sets of clauses are modeled by selection
variables sC , which have the traditional meaning that a clause
C ∈ φ is selected whenever sC is true. The formula C is ini-
tialized by the condition that a clause can be selected only if
it is possible to set all of its universal literals to false.

The algorithm iterates over the following sequence of
steps. First it chooses some set of clauses that is permitted
by C (ln. 3). If no such set exists, the algorithm terminates
and returns true (the formula is true because there is no set
of clauses yielding unsatisfiability). Next, the algorithm tests
whether the existential part of the selected clauses are satisfi-
able (ln. 7). If it is unsatisfiable, then we are done because τ is
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an assignment to the universal variables that selects an unsat-
isfiable set of clauses. If not, we block all subsets of clauses
satisfied by the model. This is done by calculating the set S′
of clauses satisfied by the assignment to the existential vari-
ables and then requiring that at least one clause from its com-
plement is selected.
Example 1. Consider the following matrix with the prefix
∀u1u2u3∃e1e2e3; the clauses are identified by a number on
the left and they are graphically split into the universal and
existential part:

1 u1 ∨ u2 ∨ e1 ∨ e2
2 u1 ∨ u3 ∨ ¬e1 ∨ e2
3 ¬u1 ∨ u2 ∨ e3
4 ¬u2 ∨ u3 ∨ ¬e1 ∨ e3

Let us begin by selecting the clauses 1 and 2 , i.e.,
s1 = s2 = 1. This is possible because it is possible to set
to false all the literals u1, u2, u3. The selected clauses cor-
respond to the existential part φ′ = {e1 ∨ e2,¬e1 ∨ e2},
which is satisfiable by the assignment µ = {e1 7→ 0, e2 7→
1, e3 7→ 0}, let’s say. The assignment µ satisfies the clauses
1 , 2 , and 4 . Hence, the clause 3 must be selected in any

further attempts, i.e., the condition C is strengthened by the
unit clause (s3). Due to this condition, in the next iteration
the algorithm cannot select the clause 1 nor 2 since they
contain the literal u1 but 3 contains the literal ¬u1. Let’s
say the algorithm selects 3 and 4 , which yields the existen-
tial part φ′ = {e3,¬e1 ∨ e3}, satisfiable by µ = {e1 7→
0, e2 7→ 0, e3 7→ 1}, which satisfies the clauses 2 , 3 , and
4 . This means that the clause 2 must be selected in any next

attempts, which is a contradiction with the previous condition
because 2 and 3 cannot be selected at the same time due to
the respective literals u1 and ¬u1. Hence the algorithm ter-
minates and responds that the formula is true.

4 Generalizing for Arbitrary Prefixes: QESTO
Now we look at how the ideas for solving PQCNF by se-
lection generalize to prefixes of arbitrary length. Hence,
we assume that we are given a formula of the form
Q1X1 . . . QnXn. φ, where Qi ∈ {∃,∀}, Qn = ∃, and φ is
a propositional formula in CNF. Recall that Qn = ∃ can be
assumed as any universal variable at the end of the prefix can
be removed.

For the sake of presentation, we adopt the game-theoretic
point of view on QBF (cf. [Goultiaeva et al., 2011]). Any
QBF in prenex closed form is seen as a game between the
universal and existential player. The universal player tries to
falsify the matrix while the existential tries to satisfy it. Under
this perspective, a QBF is true if and only if there is a winning
strategy for the existential player.

More precisely, a game consists of n rounds and in round i,
the player Qi assigns a value to all the variables Xi. At the
end of the game we evaluate the matrix φ by the accumu-
lated assignment. The game is won by the universal player
if the matrix evaluates to false, and it is won by the existen-
tial player if it evaluates to true. We say that there is a win-
ning strategy for the existential player if the player can play

so that he wins any game irregardless of how the universal
player plays. Analogously, we define a winning strategy for
the universal player. A formula is true if and only if there is
a winning strategy for the existential player. Conversely, for-
mula is false if and only if there is a winning strategy for the
universal player.
Example 2. Consider the formula ∀u∃e. {¬u ∨ e, u ∨ ¬e}.
The assignments {u 7→ 0},{e 7→ 1} represent a game where
the existential player loses. The assignments {u 7→ 1},{e 7→
1} represent a game where the existential player wins. There
exists a winning strategy for the existential player, which is
{e 7→ u}. Hence, the formula is true.
Example 3. Consider the formula ∃e1∀u∃e2. {e1 ∨ u ∨
e2, e1 ∨ u ∨ ¬e2,¬e1 ∨ ¬u ∨ e2,¬e1 ∨ ¬u ∨ ¬e2}. The
assignments {e1 7→ 0}, {u 7→ 0},{e2 7→ 1} represent a
game where the existential player loses. There exists a win-
ning strategy for the universal player, which is {u 7→ e1}.
Hence, the formula is false.

The game-theoretic perspective lets us look at the
selection-based solving symmetrically: the existential player
tries to deselect clauses—so that the matrix becomes true—
and the universal tries to select clauses—so that the matrix
becomes false.

The following concepts concretize this idea. For each
clause C ∈ φ and a quantification level k ∈ 1..n we intro-
duce a variable skC , which indicates that the clause C is se-
lected at the quantification level k. If skC is false, then we say
that C is deselected at the quantification level k. Selecting
and deselecting clauses is guided by the following rules:

1. A clause can be selected at level k if it was selected in
all the previous levels and all its literals at the level k are
set to false.

2. A clause can be deselected at level k if it was deselected
in one of the previous levels or at least one of the literals
at level k is set to true.

Observe that deselection behaves monotonically, i.e., once
a clause is deselected it cannot be selected back again. This
is unsurprising as once a clause is satisfied during the game,
it remains satisfied.

The next thing to consider is how to encode the rules of the
game. These are formulated as follows:

1. If all clauses C ∈ φ are deselected at some level k, the
universal player loses.

2. If a clause C ∈ φ does not contain any literal l with
lv(l) > k then the existential player loses if the clause is
selected at level k.

These constraints correspond to the rules discussed above
but they detect as soon as possible that a player has lost, i.e.,
once all clauses are satisfied, the universal player loses, and
once the empty clause is derived, the existential player loses.

In its workings, the proposed algorithm is similar to the
two-level one. Starting from the first level, the players select
and deselect clauses based on the rules of the game. At each
level i we maintain a condition C i, which blocks choices that
lead to a loss of player Qi. These conditions are strengthened
throughout the course of the algorithm. If a condition C i
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Algorithm 2: QESTO: Solving PQCNF
1 for i ∈ 1..n do C i ← InitCondition(i)
2 qlev← 1
3 S0 ← φ
4 while true do
5 if qlev = n+ 1 then
6 conflict← {snC 7→ 0 | C ∈ φ}
7 Goto 11

8 α←
∧
C∈Sqlev−1

sqlev−1
C ∧

∧
C/∈Sqlev−1

¬sqlev−1
C

9 (µ, conflict)← SAT(C qlev ∧α)
10 if µ = ⊥ then
11 (btlev, CL)← Analyze(qlev, conflict)
12 if btlev = −1 then return (Qqlev = ∀)
13 C btlev ← C btlev ∧CL
14 qlev← btlev
15 else
16 Sqlev =

{
C ∈ φ | µ(sqlev

C ) = 1
}

17 qlev← qlev + 1

Algorithm 3: Condition Initialization
1 Function InitCondition (k)

2 if k = 1 then C 1 ←
{
s1C ,

∧
l∈C,lv(l)=1 ¬l | C ∈ φ

}
3 else C k ←

{
skC , sk−1C ∧

∧
l∈C,lv(l)=k ¬l | C ∈ φ

}
4 if Qk = ∀ then C k ← C k ∧

∨
C∈φ sC

5 else
6 for C ∈ φ do
7 if there is no existential l ∈ C s.t. lv(l) > k then
8 C k ← C k ∧skC

9 return C k

becomes unsatisfiable, it means that player Qi has lost under
the current choices. Hence, we perform an analysis that tries
to rectify some of the previous choices of the losing player.
This consists in strengthening one of the conditions C k for
some k < i (we look more closely at the loss analysis later).

We name the algorithm QESTO (Qbf clausE SelecTion
sOlver), which is listed in Algorithm 2. The algorithm uses
the subroutine InitCondition (Algorithm 3) to initialize
the conditions C i, i ∈ 1..n. Then QESTO continues by iter-
ating the main loop (lns. 4–15) until the formula is solved. In
each iteration the algorithm operates at a quantification level
qlev. It is constructing sets Si, which consist of the clauses
currently selected at level i. To simplify the presentation, we
also introduce the set S0, which contains all the clauses in φ.
To construct the set Sqlev we search for a model of the con-
dition C qlev restricted by the selections made so far (ln. 9).
If this SAT call results in unsatisfiability, we backtrack to a
quantification level chosen by the function Analyze. If the
analysis fails, it returns the backtracking level −1 and the al-
gorithm terminates—the formula is true iff the losing player

Algorithm 4: Loss analysis for the existential player
1 Function Analyze (qlev,conflict)
2 begin
3 Sc ←

{
C ∈ φ | ¬sqlev−1

C ∈ conflict
}

4 E ← {l | l ∈ C,C ∈ Sc, l existential, lv(l) < qlev}
5 if E = ∅ then return (−1, ·)
6 btlev← max({lv(l) | l ∈ E}) // btrack lev
7 CL ←

∨
C∈Sc

¬sC // learned clause
8 return (btlev, CL)

is the universal player (ln. 12). One special case is treated at
the beginning of the loop and this is when the quantification
level is n + 1 (ln. 7). This means that the existential player
satisfied all the clauses (recall that Qn = ∃), in which case
we treat this situation as losing for the universal player.

4.1 Loss Analysis
Let us look more closely at how QESTO recovers from a loss
of either of the players (lns. 11–14). Hence, we consider the
situation where one of the conditions C i becomes unsatisfi-
able under the choices of selected clauses made by the play-
ers so far. This situation is analyzed and two outcomes are
computed: the quantification level btlev where the algorithm
returns to, and, a strengthening (a learned clause) for the con-
dition C btlev that will prevent the losing player from making
the same mistake again. This is somewhat analogous to how
SAT solvers perform conflict analysis.

To get the best out of the underlying SAT solver, we rely on
the ability of the SAT solver to provide us with a final conflict
clause for unsatisfiable calls. For a formula ψ and a conjunc-
tion of literals α—designated as assumptions—final conflict
clause conflict is a clause that contains only variables appear-
ing in the assumptions α and it holds that ψ |= conflict.
Which practically means that if ψ ∧ α is unsatisfiable, then
ψ∧¬conflict is also unsatisfiable and ¬conflict is a subset of
α that is sufficient to arrive to unsatisfiability.

In our scenario, at level qlev, the assumptions are made
up of the variables sqlev−1

C and these signal to the SAT
solver what choices were made so far. Hence, inspecting
the clause conflict lets us infer with more precision which
choices were responsible for the loss of the player at hand.1

Note that instead of the final conflict clause technique,
we could have analyzed the corresponding resolution refuta-
tion—if the solver produces one [Zhang and Malik, 2003] (in
fact only the leaves of the refutation are needed, similarly as
in the core extraction techniques, which appear in a number
of applications of SAT).

As the loss analysis is quite different for the two players,
we separate it into two respective procedures. The analysis
for the existential player is quite straightforward and is pre-
sented in Algorithm 4. The final conflict clause conflict gives
us a set of selected clauses Sc at level qlev−1 that lead to the

1This approach also enables us to use incremental SAT [Eén
and Sörensson, 2003b] so that only the assumptions need to change
when the same level is reached again.
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Algorithm 5: Loss analysis for the universal player
1 Function Analyze (qlev,conflict)
2 begin
3 Sc ←

{
C ∈ φ | sqlev−1

C ∈ conflict
}

4 S′c ← {C ∈ Sc | C not satisfied by an exist. lit}
5 if S′C = ∅ then return (−1, ·)
6 btlev← max(

{
k | skC = 0, C ∈ S′c, k universal

}
)

R← {C ∈ Sc | C sat. by an ex. lit at lev. > btlev}
7 return (btlev,

∨
C∈(ScrR) s

btlev
C )

unsatisfiability of C qlev. To rectify this, the existential player
must ensure that at least one of these clauses is deselected, the
next time we get to the level qlev. For the existential player
to deselect one of the clauses at a level l < qlev there must
be an existential literal at that level. Otherwise, the existen-
tial player cannot influence the state of the clause. Hence, the
backtrack level is calculated as the maximum over the levels
of existential literals in the clauses Sc that are at a lower level
than qlev. If there are no such literals, then the existential
player cannot rectify the loss and the formula is solved (it is
false). The learned clause is constructed so that it forces the
deselection of at least one clause from the problematic set Sc.

The analysis for the universal player is inverse (Algo-
rithm 5). At the time of a loss, there is some set of clauses Sc
that are deselected and are causing the universal player to lose
at the level qlev. If a clause is deselected by the existential
player, the universal player cannot do anything about it. So
we shift our attention to clauses S′l ⊆ Sc that are deselected
by the universal player, i.e., satisfied by a universal literal.
If there are no such clauses, the universal player cannot rec-
tify the loss and therefore the formula is true. Otherwise, the
backtrack level is computed as the maximum over the levels
where the clauses in S′c were deselected. Now we could de-
fine the learned clause as

∨
C∈Sc

sbtlev
C , but we can do better

if we realize that the existential player can always repeat any
choices that he has made after btlev. Hence, if the existential
player was able to deselect a clause after btlev, he can do so
again next time and therefore we remove these clauses from
the learned clause.

4.2 Comparison to Other Approaches
In the context of a CNF formula ψ, a maximal satisfiable
set (MSS) is a set of clauses ψ′ ⊆ ψ that is satisfiable and
adding any clause from ψ to it makes it unsatisfiable. A
complement ψ \ ψ′ of such set is called a minimal correc-
tion set (MCS). Conversely, minimal unsatisfiable set (MUS)
is a set ψ′ ⊆ ψ that is unsatisfiable and removing any of
its clauses makes it satisfiable. It is well known that the set
of all MUSes is the set of all minimal hitting sets of MC-
Ses (and also the other way around). This duality of hit-
ting sets is useful for calculating all MUSes or MUSes with
certain properties, which has been exploited in a number of
works [Liffiton and Sakallah, 2008; Previti and Marques-
Silva, 2013]. Moreover, algorithms based on iteratively ana-
lyzing implicitly represented hitting sets find a growing num-

ber of applications [Karp, 2010; Chandrasekaran et al., 2011;
Davies and Bacchus, 2011; Stern et al., 2012; Moreno-
Centeno and Karp, 2013; Davies and Bacchus, 2013a; 2013b;
Slaney, 2014]. The two-level approach we propose explicitly
links this paradigm to QBF solving. Indeed, solving a two-
level QBF (∀∃) can be phrased as a search for an MUS com-
prising of the clauses containing only the existential part. The
universal part, imposes “rules” on which clauses may appear
in an unsatisfiable set. Indeed, any clauses C1, C2 that con-
tain universal literals y ∈ C1, ¬y ∈ C2 are never considered
together. Algorithm 1 then iterates over satisfiable subsets
of the matrix φ and requires that a complement of the satis-
fiable set is selected next time, which is consistent with the
idea that MUSes are hitting sets of MCSes. Note that our al-
gorithm does not to go over maximally satisfiable sets but it
only requires satisfiable sets. Similarly, we do not require a
minimal unsatisfiable set, but simply any unsatisfiable set. In
our implementation, however, we make sure that the decision
polarities of the selection variables in the SAT solver are set
so that the SAT solver tends to find larger satisfiable sets.

The two-level approach can also be related to the
counterexample guided abstraction refinement algorithm
AReQS [Janota and Marques-Silva, 2011]. Indeed, the se-
lector variables in our approach (Algorithm 1) can be seen as
the Tseitin variables introduced in AReQS. We should stress,
however, that the generalization of AReQS–RAReQS [Jan-
ota et al., 2012]–is already completely different from our
generalization (Algorithm 2). In RAReQS the generalization
is done by recursion and the algorithm introduces a number
of fresh variables throughout its course. While QESTO and
RAReQS are similar for the two-quantification-level case,
they are vastly different in the general case. Unlike RAReQS,
QESTO does not introduce fresh variables as the algorithm
progresses—selector variables are introduced at the very be-
ginning and their number is bound. In this sense, our pro-
posed algorithm differentiates itself from other expansion-
based algorithms that convert the given formula into a SAT
problem [Benedetti, 2004; Biere, 2004]. Further, RAReQS
may create an exponential number of solvers due to the re-
cursive calls while in QESTO, the number of solvers is always
linear in the number of quantification levels (and it is fixed).

In its skeleton, our algorithm is similar to the
conflict/solution-driven learning algorithms [Giunchiglia et
al., 2001; Zhang and Malik, 2002]; in the sense that it starts
from the outermost quantification level, progresses to the in-
wards quantification level and backtracks whenever needed.
It is, however, very different in how the algorithm is con-
structed and how learning is performed. Indeed, the building
blocks of QESTO are a SAT solver and selection variables,
which let us navigate the search space. This approach lets
us devise a learning procedure anchored in the SAT solver’s
ability to analyze unsatisfiability (the final conflict clause),
rather than building a dedicated unit propagator and learner;
this gives us a strong engineering advantage.

5 Experimental Evaluation
We have implemented a prototype of Algorithm 2 named
Qesto. The prototype used for the evaluation was imple-
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Figure 1: QBFLIB Benchmarks with 60 s cutoff
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Figure 2: 2QBF Benchmarks

mented in C++ and the SAT solver minisat 2.2 [Eén and
Sörensson, 2003a] was used. The experimental results were
carried out on Linux machines with Intel Xeon 5160 3GHz
processors and 4GB of memory. The time limit was set to
800 s and the memory limit to 2GB.

For the evaluation we used the QBFLIB benchmark suite
used in the 2014 QBF Gallery2 and the benchmarks from the
2QBF track of the 2010 QBF Evaluation. All the instances
were preprocessed by the preprocessor bloqqer [Biere et
al., 2011] and instances solved by the preprocessor were
excluded from the evaluation. For comparison we have
chosen a set of representative state-of-the-art QBF solvers.
The conflict/solution-driven solver DepQBF [Lonsing and
Biere, 2010]; the CEGAR-based solver RAReQS and its
2QBF version AReQS [Janota and Marques-Silva, 2011;
Janota et al., 2012]; and the non-CNF solver GhostQ [Klieber
et al., 2010]. Since GhostQ is a non-CNF solver, it was run on
the unpreprocessed benchmarks as the solver’s reverse engi-
neering procedure benefits from their structure; it is also how
it was run in the competition.

Table 1 summarizes the number of solved instances for
the considered solvers. Figures 2 and 1 show cactus plots
for the respective benchmark sets (cactus plots consist of

2http://www.kr.tuwien.ac.at/events/qbfgallery2013/benchmarks/
eval2012r2.tar.7z

ghostq qesto depqbf (r)areqs
QBFLIB (276) 137 133 128 129
2QBF (65) 43 53 30 52

Table 1: Number of Solved Instances

points (x, y) meaning there are x instances solved in y sec).
Since the QBFLIB cactus plot has a rather a long tail, the plot
contains only those instances that were not solved within 60
seconds by all the solvers.

GhostQ clearly dominates in the QBFLIB suite and it
is followed by our prototype Qesto. There is a difference
of only one solved instance between the solvers DepQBF
and RAReQS. The success of the non-CNF solver GhostQ,
confirms the well-known fact that representing QBF prob-
lems as CNF is harmful for solving [Ansótegui et al., 2005;
Klieber et al., 2010; Goultiaeva and Bacchus, 2010] (we re-
turn to the topic in our future work discussion).

In the 2QBF suite our prototype Qesto solves the most
instances. However, AReQS solves just 1 instance less,
which comes as no surprise as the algorithms are closely re-
lated (see Section 4.2). Interestingly, GhostQ performs rather
poorly on this set of benchmarks, which suggests that our pro-
totype gives a higher degree of robustness when compared to
others. More detailed presentation of the results can be found
on the authors’ website3.

6 Summary and Future Work

This paper describes an algorithm QESTO to solve QBF in
prenex form with a matrix in CNF. The algorithm is first pre-
sented in its two-level form (∀∃), which is shown to have a
clear correspondence to implicit hitting sets, which appear
in a number of applications of artificial intelligence. This
two-level approach is also linked to the recent CEGAR-based
two-level QBF algorithm AReQS [Janota and Marques-Silva,
2011]. The second half of the paper generalizes the two-
level approach to QBFs with arbitrary number of quantifica-
tion levels, giving rise to the QESTO algorithm. QESTO is an
entirely novel approach to QBF solving and the experimental
evaluation suggests that it is quite robust. It should also be
noted that QESTO is quite advantageous from the engineer-
ing perspective since a SAT solver is utilized in a blackbox
fashion. QESTO is also quite interesting from the theoreti-
cal perspective as it can be seen as a generalization of duality
hitting set principle for PSPACE.

On the QBFLIB benchmarks QESTO was outperformed by
the non-CNF solver GhostQ [Klieber et al., 2010]. This sug-
gests that it would be worthwhile investigating how QESTO
could be applied to non-CNF formulas. We believe that this
should be possible as this was already successfully done for
conflicts/solution-driven learning algorithms [Zhang, 2006;
Goultiaeva et al., 2013]. Other improvements, such as pure
literals or variable dependencies, are also considered for fu-
ture work.

3http://sat.inesc-id.pt/%7Emikolas/sw/qesto/
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Sörensson. An extensible SAT-solver. In SAT, 2003.
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