
Decomposition of the Factor Encoding for CSPs

Chavalit Likitvivatanavong, Wei Xia, and Roland H. C. Yap
School of Computing, National University of Singapore, Singapore

{chavalit,xiawei,ryap}@comp.nus.edu.sg

Abstract

Generalized arc consistency (GAC) is one of
the most fundamental properties for reducing the
search space when solving constraint satisfaction
problems (CSPs). Consistencies stronger than
GAC have also been shown useful, but the chal-
lenge is to develop efficient and simple filtering
algorithms. Several CSP transformations are pro-
posed recently so that the GAC algorithms can
be applied on the transformed CSP to enforce
stronger consistencies. Among them, the factor
encoding (FE) is shown to be promising with re-
spect to recent higher-order consistency algorithms.
Nonetheless, one potential drawback of the FE is
the fact that it enlarges the table relations as it in-
creases constraint arity. We propose a variation of
the FE that aims at reducing redundant columns in
the constraints of the FE while still preserving full
pairwise consistency. Experiments show that the
new approach is competitive over a variety of ran-
dom and structured benchmarks.

1 Introduction
In order to solve a constraint satisfaction problem (CSP),
local consistencies are commonly used to filter out incon-
sistent parts of the constraint network to reduce the search
space during the solving process. Generalized arc consis-
tency (GAC) is usually the local consistency of choice. With
so many algorithms having been developed, GAC is invari-
ably implemented in most solvers in one form or another.
Stronger consistencies can further reduce the search space
and may be more appropriate for hard problems, but imple-
menting such algorithms to be competitive with the state-of-
the-art solvers employing GAC may be a challenge. They
have been the subject of recent works [Bessière et al., 2008;
Karakashian et al., 2010; Schneider et al., 2014; Paparrizou
and Stergiou, 2012; Lecoutre et al., 2013], which propose
propagation algorithms for higher-order consistencies such as
relational consistency, max-restricted pairwise consistency,
and full pairwise consistency (FPWC). Some of the new al-
gorithms are based on well-established GAC algorithms, e.g.
the Simple Tabular Reduction algorithm [Ullmann, 2007;

Lecoutre, 2011] was extended to cover FPWC in [Lecoutre
et al., 2013].

Due to the practical challenges in implementing higher-
order consistency algorithms, an alternative approach for
some higher consistencies is to convert a CSP into another
CSP and apply existing GAC propagators on the result, so that
it is equivalent to enforcing the stronger consistencies on the
original CSP. The k-interleaved encoding (kIL) [Mairy et al.,
2014] is one such approach. Enforcing GAC on the kIL is the
same as enforcing k-wise consistency on the original prob-
lem. A recent transformation is the factor encoding (FE) [Lik-
itvivatanavong et al., 2014], which extracts commonly shared
variables between pairs of constraints and forms new vari-
ables called factor variables. The factor variables are then
augmented to the original constraints. Similar to the kIL, en-
forcing GAC on the FE is the same as enforcing FPWC on the
original problem. However, although the results for the FE
transformation [Likitvivatanavong et al., 2014] show that the
FE provides an efficient way of achieving FPWC, many new
factor variables can be added which can substantially increase
the total size of the transformed constraints and increase run-
time overheads.

In this paper, we address this shortcoming of the FE and
propose a new encoding based on the FE. The idea is to de-
compose constraints such that factor variables and their cor-
responding original variables are taken out to form new con-
straints. We show that this new variant preserves the main
property of the FE. We then perform an experimental study
on the FE and this new transformation using multiple search
heuristics. We show that the transformations can benefit dy-
namic search heuristics, e.g. dom/ddeg and dom/wdeg, due
to the change in constraint networks. This new encoding is
competitive with the FE on majority of problem instances and
can reduce the search space and speed up the solving on some
structured problems by several orders of magnitude.

2 Preliminaries
A constraint network P is a pair (X , C) where X is a set
of n variables {x1, . . . , xn} and C a set of e constraints
{c1, . . . , ce}. D(x) is the domain of x ∈ X . We use (x, a)
to denote the value a ∈ D(x) (or simply a when the con-
text is clear). Each c ∈ C involves two components: a
scope (scp(c)) which is an ordered subset of variables of
X ; and a relation over the scope (rel(c)). Given scp(c) =

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

353

{xi1 , . . . , xir}, rel(c) ⊆
∏r

j=1 D(xij) represents the set of
satisfying combinations of values for the variables in scp(c).
We may also refer to c by c(xi1 , . . . , xir). The dual graph
of P is a graph in which vertices represent the constraints
and edges connect two vertices whose constraints’ scopes
overlap. The arity of c is |scp(c)|. Given an ordered set
S ⊆ scp(c) and τ ∈ rel(c), the projection of τ on S (τ [S])
is the tuple consisting of only the components of τ that cor-
respond to the variables in S. A tuple τ = (aii , . . . , aik)
where aij ∈ D(xij) is said to be a tuple over {xi1 , . . . , xik}.
When elements in rel(c) are given explicitly, c is called a
(positive) table constraint. A tuple τ ∈ rel(c) is valid iff
τ [x] ∈ D(x) for each x ∈ scp(c). Otherwise τ is invalid. A
tuple τ ∈ rel(c) is a support of (x, a) in c iff τ [x] = a.

Definition 1 (GAC) A value (x, a) is generalized arc-
consistent (GAC) [Dechter, 2003] iff for any constraint c in-
volving x, there exists at least one valid support τ for (x, a)
in c. A variable x is GAC iff (x, a) is GAC for each a ∈ D(x).
A CSP P is GAC iff all variables are GAC.

A solution to P is a valid tuple over X such that every con-
straint is satisfied. P is satisfiable iff a solution exists.

A compound variable X is a cross-product composition
from {xi1 , . . . , xim} ⊆ X , called X’s signature (σ(X)),
where D(X) ⊆

∏m
j=1D(xij) and its values are referred to

as compound values. Given a constraint c and an ordered
set S = {xi1 , . . . , xim} ⊆ scp(c), we denote λc(S) to be
the compound variable on S with respect to c whose do-
main D(λc(S)) is {τ [S] | τ ∈ rel(c)}. It follows that
σ(λc(S)) = S. Note that compound variables and compound
values are logical concepts. In practice, they are represented
by the standard notion of variables and values (Example 2
will clarify this point.) We may drop the subscript and write
λ(S) if there is no ambiguity. Non-compound variables are
called ordinary variables. For uniformity, σ is defined for all
variables, i.e. σ(x) = {x} for an ordinary variable x.

Definition 2 (maxRPWC) A value (x, a) is max-restricted
pairwise consistent (maxRPWC) [Bessière et al., 2008] iff for
all ci ∈ C where x ∈ scp(ci), (x, a) has a valid support τi in
rel(ci) such that for any other cj ∈ C there exists a valid tuple
τj ∈ rel(cj) and τi[scp(ci)∩scp(cj)] = τj [scp(ci)∩scp(cj)].
A CSP P is maxRPWC iff all values are maxRPWC.

Definition 3 (PWC) A CSP P = (X , C) is pairwise consis-
tent (PWC) [Janssen et al., 1989] iff for any constraint ci
and any valid tuple τi ∈ rel(ci), for any other constraint cj ,
there exists at least one valid tuple τj ∈ rel(cj) such that
τi[scp(ci) ∩ scp(cj)] = τj [scp(ci) ∩ scp(cj)].
Definition 4 (FPWC) A CSP P is full pairwise consistency
(FPWC) [Lecoutre et al., 2013] iff it is GAC and PWC.

FPWC is also equivalent to PWC together with maxR-
PWC. The following example illustrates the filtering power
of GAC and FPWC.

Example 1 Consider the CSP P = (X , C) in Fig. 1(a),
where X = {x, y, u, v, w}, D(x) = D(y) = {0, 1}, D(u) =
D(v) = D(w) = {0}, and C = {c1, c2, c3}. It is trivial to
check that P is GAC. Let us consider FPWC. Only the first
tuple of each constraint can be extended to other constraints.

c1
x y u
0 0 0
0 1 0
1 1 0

c2
x y v
0 0 0
0 1 0
1 0 0

c3
x y w
0 0 0
1 0 0
1 1 0

(a) Original

c∗1
x y u f
0 0 0 0
0 1 0 1
1 1 0 2

c∗2
x y v f
0 0 0 0
0 1 0 1
1 0 0 3

c∗3
x y w f
0 0 0 0
1 0 0 3
1 1 0 2

(b) Factor encoding of (a)

Figure 1: Original network and its factor encoding.

The second and the third tuples of each constraint are thus in-
consistent with respect to FPWC. As a result (x, 1) and (y, 1)
are no longer FPWC and can be pruned fromD(x) andD(y).

3 The factor encoding
The factor encoding (FE) [Likitvivatanavong et al., 2014]
converts a constraint networkP into another networkP∗ such
that enforcing GAC on P∗ is equivalent to enforcing FPWC
on P . This section provides background on the FE.

Given P= (X , C) the factor encoding (FE) of P is the net-
work P∗ = (X ∪W∗, C∗) where,
W∗ = {λ(S) | D(λ(S)) =

⋃
kD(λck(S)) for all k

such that λck(S) ∈ W}, and
W = { λci(S), λcj (S) | S = scp(ci) ∩ scp(cj) for all i 6=

j ∧ |S| > 1}
and for each c∗i ∈ C∗, 1 ≤ i ≤ e,

• scp(c∗i) = scp(ci)∪{λ(S) | λ(S) ∈ W∗∧S ⊆ scp(ci)}
• for any τ ∈ rel(ci), let ext(c∗i , τ) be a tuple extended

from τ such that

– ext(c∗i , τ)[x] = τ [x] for any x ∈ scp(ci)
– for any λ(S) ∈ scp(c∗i), ext(c∗i , τ)[λ(S)] =
ext(c∗i , τ)[S](= τ [S])

then, rel(c∗i) = {ext(c∗i , τ) | τ ∈ rel(ci)}.
We call the compound variables in W∗ factor variables.
P∗ is also referred to as fe(P). A pair of constraints is fac-
torable if it generates a factor variable in the FE; a constraint
network is factorable if it contains at least one such pair.

Example 2 ConsiderP in Example 1. Fig. 1(b) shows fe(P),
which involves a factor variable f where σ(f) = {x, y} and
D(f) = {(0, 0), (0, 1), (1, 1), (1, 0)}. For simplicity, D(f) is
normalized to {0, 1, 2, 3}.

The factor encoding employs auxiliary variables to repre-
sent the intersection between constraints. These additional
variables are then grafted onto the constraints where they
originate from. The FE, therefore, achieves higher-order con-
sistency at a cost of enlarged tables.

Theorem 1 ([Likitvivatanavong et al., 2014]) fe(P) is
GAC if and only if P is FPWC.

Consider fe(P) in Fig. 1(b) for example. Enforcing GAC
on fe(P) reduces D(f) to {0}. This makes the second and
the third tuples of c∗1, c∗2, and c∗3 invalid and leaves (x, 1) and
(y, 1) with no valid support. The effect is the same as enforc-
ing FPWC on P .

354

c′1
u f
0 0
0 1
0 2

c′2
v f
0 0
0 1
0 3

c′3
w f
0 0
0 3
0 2

cf
f x y
0 0 0
1 0 1
2 1 1
3 1 0

Figure 2: Example for the factor decomposition encoding.

4 Factor-decomposition encoding
In this paper, we propose a new encoding that addresses the
FE’s disadvantage. It is basically a variation of the FE and the
idea behind it is to compress the FE by extracting factor vari-
ables and their signatures to form new constraints. The goal
is to reduce the arity of the factor-encoded constraints in the
FE where constraint arity can be much larger than the original
arity. Specifically, a constraint that is augmented with factor
variables by the FE is decomposed into multiple smaller con-
straints. A new constraint is created for each factor variable
such that the scope includes the factor variable itself and the
variables in its signature. The original constraint is then mod-
ified so that any ordinary variable that is a member of some
factor variable’s signature is removed. We call this new trans-
formation factor-decomposition encoding (FDE).

We explain the process as follows. Given network P ,

1. Construct fe(P)
2. (Decomposition) For each factor variable f ∈ scp(c∗),

(a) subtract σ(f) from scp(c∗).
(b) add a new constraint cf such that scp(cf) = {f}
∪ σ(f), and rel(cf) = {(t, ai1 , . . . , ai|σ(f)|) | t ∈
D(f) ∧ t = (ai1 , . . . , ai|σ(f)|)}.

The resulting constraint network is denoted by fde(P).
Example 3 GivenP in Example 1, fde(P) in shown in Fig. 2.
Constraints c1, c2, c3 in P are reduced to binary constraints
c′1, c′2, c′3 due to the removal of {x, y}. A new constraint
cf (f, x, y) that maintains the connection between f and x, y
is introduced. Note that the table relations of fde(P) (30 cells)
are smaller than those of fe(P) (36 cells).

Theorem 2 fde(P) is GAC iff fe(P) is GAC.

Sketch of Proof: Given variable x ∈ scp(c) removed by step
2(a), we will show that the FDE keeps the restriction between
c and any other constraint c′ in the FE whose scope includes
x. There are three cases.

(1) x ∈ σ(f) where f is a factor variable such that f ∈
scp(c) ∩ scp(c′). The new constraint cf added in step 2(b)
produces a cycle c–c′–cf in the dual graph that maintains the
effect of x between the pair (c, c′).

(2) x ∈ σ(f) for some factor variable f ∈ scp(c) and
there exists no factor variable f ′ ∈ scp(c′) such that x ∈
σ(f ′). The connection between c and c′ in the original dual
graph is provided by x. Removing x does not take away this
connection since it is replaced by the connection between c
and cf (through f) and between cf and c′ (through x).

(3) x ∈ σ(f) ∩ σ(f ′) where f and f ′ are factor variables
such that f ∈ scp(c) and f ′ ∈ scp(c′). Step 2(b) ensures that

xyuw xyuz
ooo

o f1f3
XXXXX

XXXX f1f2
mmm

f2f3
mmm

f1f3
XXXXXX

XXX f1f2
nnn

f2f3
nnn

xyzw f1xyu f2xyz f3xyw f1f4u PPP
f2f4z f3f4w

nnn
f4xy

Figure 3: The dual graph of a network P (left), fde(P) (mid-
dle), and fde(fde(P)) (right), where f1 = xyu, f2 = xyz,
f3 = xyw, and f4 = xy.

there are constraints cf and cf ′ such that scp(cf) ⊇ {f, x}
and scp(cf ′) ⊇ {f ′, x}. That means although x is removed,
the effect of x on the pair (c, c′) is replicated through the path
(c, cf), (cf , cf ′), (cf ′ , c′) in the dual graph. 2

The FDE retains the main property of the FE (Theorem 1
[Likitvivatanavong et al., 2014]). We have the following
corollary.

Corollary 1 fde(P) is GAC iff P is FPWC.

The FDE keeps all ordinary variables but remove some
columns from original table relations. In extreme cases, orig-
inal non-binary constraints are turned into binary constraints.
These happen when variables in the original constraint are
replaced with two factor variables, or when there is one or-
dinary and one factor variable. Note that although the new
constraint created by step 2(b) cannot have larger arity than
the original pair that produces the factor variable, it is possi-
ble for a group of large-arity constraints to generate a large
number of new constraints with only slightly smaller arity, so
that on the whole, the average arity increases.

Proposition 1 Compared to fe(P), the average constraint ar-
ity may increase in fde(P).

Although the average arity may increase, we expect the
FDE to reduce average arity. This is borne out in the experi-
ments which show that the average constraint arity is reduced
in practice. Also the maximum constraint arity of the FDE
and the original CSP is always smaller than that of the FE.
Since the speed of various GAC algorithms and implementa-
tions can depend strongly on the arity, the FDE can be faster
than the FE in many cases (experiments in Section 5 show
that the arity reduction allows special purpose binary AC al-
gorithms to replace GAC).

We remark that fde(P) may still be factorable even though
it includes the FE as part of the process. While it is true that
step 1 and 2(a) replace shared variables with factor variables,
only the original constraints are affected. For this reason, only
the scopes of the original constraints are guaranteed to inter-
sect on fewer than two variables. The new constraints created
in step 2(b), however, may contain a factorable pair. In this
case, we can re-apply the FDE possibly multiple times until
there are no more factorable pairs, a fixpoint.

Example 4 Fig. 3 shows an example of fde(fde(P)). The dia-
gram on the left is the dual graph for some constraint network
P , the middle shows the dual graph for one application of the
FDE, and the right shows two successive applications of the
FDE, reaching a fixpoint afterward.

355

The number of times for the FDE to reach a fixpoint is
dependent on the network. An example of a network that
needs arbitrary applications of the FDE to reach a fixpoint
follows.
Example 5 We will construct a network Pi such that it
takes i applications of the FDE to reach a fixpoint. A
recursive definition of Pi is given as follows. P0 =
({x, y}, {c(x, y)}) (P0 has a single constraint involving two
variables). Given Pi=(Xi, Ci) with Ci = {c1, . . . , cm}, then
Pi+1 := (Xi+1, Ci+1) where Ci+1 = {cj,k | 1 ≤ j ≤
m ∧ 1 ≤ k ≤ 2 ∧ scp(cj,k) = scp(cj) ∪ {zij,k}} and Xi+1 =
Xi ∪ {zij,k | 1 ≤ j ≤ m ∧ 1 ≤ k ≤ 2}.

Proposition 2 Let fdek(P) denote fde(fde(. . . fde(P) . . .))
(the FDE is applied k times in a row). An upperbound of
k is max {|σ(f)| − 1 | f is a factor variable of fe(P)}

Applying the FDE more than once may affect the structure
of the network in a positive way since more redundancy is
eliminated. In contrast, applying the FE more than once is
pointless since it only increases arity and redundancy. More-
over, similar to the FE, multiple applications of the FDE does
not affect the level consistency when GAC is enforced.

In the fixpoint of the FDE, no two constraints share more
than one variable. The same cannot be said for the FE or fdek
which has not reached fixpoint.
Proposition 3 fdek(P) is GAC iff fde(P) is GAC.
Corollary 2 fdek(P) is GAC iff P is FPWC.

5 Experiments
We present extensive experiments that evaluate the new FDE
encoding compared with the FE and the original network. All
extensional benchmarks from the CSP solver competition1

that are non-binary and factorable are used. We also con-
vert some intensional structure benchmarks to extensional. In
total, we use 633 problem instances from 22 problem series.
However, only some instances allow fdek for k > 1 (of all
structured problems tested, only fpga and ii-8 do). With insuf-
ficient benchmarks, experiments involve only one-pass FDE.
The experiments were run on a 3.20GHz Intel i7-960 with 64-
bit Linux. The converters take an input in the XCSP format
and output the result as another text file, also in XCSP. For
the FDE, the converter generates the encoding directly (the
description of the FDE process in Section 4 in which the FE
is generated as a first step is only an exposition). We used Ab-
sCon [Merchez et al., 2001] as the solver2 where the default

1Available at http://www.cril.univ-artois.fr/CSC09. We ex-
clude the bdd benchmarks which have very large extensional tables.
With the FE and the FDE, the tables are larger than 1GB which is
too big to solve with AbsCon.

2We focus on encodings and their relative effectiveness in the
experiments. The choice of solver is less important as long as it is
valid and robust. We chose AbsCon for its versatility as a black-
box solver: many algorithms and heuristics are implemented and
selectable. Compared to another solver such as Mistral, AbsCon
handles large tables better, (e.g. AbsCon is 20X faster than Mistral
on average to solve dagrand (arity=15, 150000 tuples/table), so it is
suitable for testing the FE which increases arities. We used the latest
version AbsCon1.41 (not publicly available).

GAC algorithm is STR2 [Lecoutre, 2011] and the default arc
consistency algorithm is the bitwise AC3 algorithm [Lecoutre
and Vion, 2008]. CPU time is limited to 1800 seconds while
memory is limited to 8GB.

The encodings alter the problem’s structure in a way that
may lead variable ordering heuristics to choose variables dif-
ferently compared with the original problem. Thus, even
though the consistency level is the same, the number of nodes
visited could be different. For the FE, new variables are added
to the network as well as constraint scopes, increasing con-
straint arity in the process. For the FDE, although the set of
variables is the same as the FE’s the topology of the network
is affected even more profoundly given that variables are ex-
tracted from one constraint to form an entirely new constraint.
Because structural features of a network are often taken into
account in search heuristics, the same heuristic could possibly
pick different variables for the original CSP, the FE and the
FDE. In order to test the performance of these encodings re-
alistically, it would be better to let the heuristics choose freely
rather than foisting the same ordering on all of them.3 For this
reason, we employed four well-known and commonly used
variable selection heuristics in our experiments, dom/ddeg,
dom/wdeg [Boussemart et al., 2004], impact [Refalo, 2004],
activity [Michel and Hentenryck, 2012], and test them on the
original problem as well as the FE and the FDE encodings.
We used lex value ordering in all cases.

Table 1 shows the mean results on unstructured problems,
calculated from instances that are solved within the time limit
by all the combinations of three constraint networks (one
original and two encodings) and four heuristics. The first col-
umn displays the name of the benchmarks while the num-
ber below indicates the number of instances. The second
column denotes the encodings, where “-” indicates no en-
coding (original P). The third column gives the mean con-
straint arity. The next four columns (eight sub-columns) dis-
play the mean number of nodes visited4 during search and
the mean CPU time (in seconds) for the four heuristics (un-
less too many instances are not solved within the time limit,
in which case, the number of time-out instances is reported
instead). Encoding times for the FE and the FDE are not in-
cluded in the CPU time and are not reported in the table due
to space restriction (we remark that for over 80% of all prob-
lem instances, the conversion time is negligible compared to
the solving time, taking only a fraction of a second to gener-
ate the XCSP XML). Numbers in bold indicate best results.
Graphs in Fig. 4 (in color) show overall performance of differ-
ent techniques when all random problem instances are taken
into account. Each point (x, y) indicates that the correspond-
ing technique is able to solve y instances within x seconds
(note that x represents the runtime of each of the y instances,
not the total runtime of all y instances).

The FDE shows significant improvement in runtime across
all heuristics for most of the series rand-3-*. The main rea-
son for the good performance is that the FDE converts most
ternary constraints into binary, so a GAC algorithm is not

3Using the same ordering simply gives the same search space.
4In AbsCon, instantiating a variable is counted as one search

node even if there is only a single value in the domain.

356

series enc arity dom/ddeg dom/wdeg impact activity
nodes time nodes time nodes time nodes time

rand-3-20-20 - 3.0 179540 85.66 152566 85.92 1376304 424.43 483720 179.42
(#50) fe 4.8 58710 52.54 75850 80.74 745742 318.18 165385 110.25

fde 2.6 69550 38.55 81524 51.85 745742 208.47 165385 70.96
rand-3-20-20- - 3.0 129563 57.88 96960 52.75 967188 287.24 282616 114.15
fcd (#50) fe 4.8 35404 30.17 43332 45.33 588075 228.30 101036 70.57

fde 2.6 35904 20.92 44754 28.78 588075 150.48 101036 44.30
rand-8-20-5 - 8.0 101301 18.28 85703 33.70 396528 117.66 214304 89.57
(#20) fe 23.3 4985 14.90 3540 21.93 3525 100.60 2917 38.90

fde 5.7 6449 16.88 2545 22.59 3525 109.56 2917 40.14
rand-10-20-10 - 10.0 830 0.56 1028 0.70 2639 1.05 1517 0.89
(#20) fe 14.0 0 0.63 0 0.77 0 0.71 0 0.73

fde 5.5 0 0.81 0 0.90 0 0.91 0 0.90
dagrand - 15.0 57969 21.54 74880 36.54 93786 54.77 97718 56.41
(#25) fe 30.0 0 12.18 0 11.54 0 11.52 0 11.50

fde 11.3 0 21.98 0 20.77 0 20.80 0 20.64
mddhalf - 7.0 (7 time-out) (15 time-out) (20 time-out) (11 time-out)
(#25) fe 34.1 (5 time-out) (12 time-out) (22 time-out) (11 time-out)

fde 6.0 (5 time-out) (11 time-out) (21 time-out) (12 time-out)
rand-3-24-24 - 3.0 (36 time-out) (36 time-out) (50 time-out) (44 time-out)
(#50) fe 4.6 (30 time-out) (34 time-out) (49 time-out) (42 time-out)

fde 2.6 (26 time-out) (29 time-out) (48 time-out) (37 time-out)
rand-3-24-24- - 3.0 (25 time-out) (27 time-out) (43 time-out) (35 time-out)
fcd (#50) fe 4.6 (25 time-out) (24 time-out) (46 time-out) (30 time-out)

fde 2.6 (13 time-out) (18 time-out) (39 time-out) (22 time-out)
rand-3-28-28 - 3.0 (49 time-out) (49 time-out) (50 time-out) (50 time-out)
(#50) fe 4.5 (48 time-out) (49 time-out) (50 time-out) (50 time-out)

fde 2.6 (48 time-out) (49 time-out) (50 time-out) (50 time-out)
rand-3-28-28- - 3.0 (48 time-out) (47 time-out) (50 time-out) (49 time-out)
fcd (#50) fe 4.5 (48 time-out) (48 time-out) (50 time-out) (49 time-out)

fde 2.6 (49 time-out) (48 time-out) (50 time-out) (49 time-out)

Table 1: Mean results for unstructured benchmarks.

needed and AbsCon employs a bitwise-based AC [Lecoutre
and Vion, 2008]. For the FDE of rand-3-20-20, on average
73.9% of original ternary constraints are transformed into bi-
nary where most have two factor variables; the FDE of rand-
3-20-20 has 41.6% binary constraints and 58.4% ternary con-
straints on average, which results in 46% runtime savings.
For dagrand and rand-10-20-10, FPWC proves the problems
unsatisfiable without search and that is why there is little dif-
ference across heuristics within the same encoding. Runtimes
are dominated by GAC processing which depends on table
size. Tables in the FDE can be larger than those in the FE,
as is the case with dagrand and rand-10-20-10. For dagrand,
there are 120 factor variables compared to 23 ordinary vari-
ables, which translates to 120 extra tables for the FDE. Over-
all, the graphs in Fig. 4 show that the FDE solves more prob-
lems within the specified time on all four heuristics.

Table 2 shows the mean results for structured problems.
Again, the conversion times for the FE and FDE are neg-
ligible for almost all instances and so are not reported for
space reason. As there are fewer structured benchmarks in ex-
tensional form, we have added some structured benchmarks
which are given in intensional form in the CSP solver com-
petition benchmarks (separated by double line in the table).
The series fpga, allInterval, Schur’s lemma, jnh, Chessboard
coloration, ii-8, and socialGolfers are converted5 from inten-
sional to extensional constraints. Graphs in Fig. 5 show over-
all performance of different techniques when all structured
problem instances are taken into account.

From the graphs, the FDE shows significant improvement
for dom/ddeg and dom/wdeg, some improvement for im-
pact, and on par with the FE for activity. In particular, the

5We focus on studying the FE on extensional constraints but also
tested the intensional benchmarks on AbsCon. Interestingly, we
found that table constraints with the FE variants can be faster than
intensional, e.g. allinterval can be 60% faster.

���

����

����

����

����

�� ��� ���� �����

�
�
�
�
�
��
�
��
��
�
��
�
�
�
�
��
�
��
�
�

��������������

������������������������������

���������
��

���

�� ��� ���� �����

��������������

������������������������������

���������
��

���

���

����

����

����

�� ��� ���� �����

�
�
�
�
�
��
�
��
��
�
��
�
�
�
�
��
�
��
�
�

��������������

����������������������������

���������
��

���

�� ��� ���� �����

��������������

������������������������������

���������
��

���

Figure 4: Runtime distribution for unstructured instances. In
all four graphs, the line near the top is the FDE, the next line
down is the FE, while the line near the bottom is Original.

FDE provides huge speedup for dom/ddeg and dom/wdeg
on allInterval and fpga. At the same time, it has an adverse
effect on ii-8. Detailed results for fpga are shown6 in Table 3.

One of the reasons for the striking results on allInterval
and fpga can be attributed to scope reduction by the FDE.
For allInterval, the original problems contain only binary and
ternary constraints. The FDE converts all original ternary
constraints into binary. The reduction in fpga is even more
notable. Take fpga-12-12 for example. In this instance there
are 180 constraints of arity 6, 7, and 12 — all in the same
proportion. The FDE of this instance has 192 constraints in
which 144 are binary. By contrast, the poor performance of
dom/ddeg and dom/wdeg on the FDE of ii-8 appears to be
idiosyncratic. We found that choosing variables randomly in-
stead always brings down the runtime to the same level as the
FE’s on the ii-8 instances. We also tried random heuristic on
the allInterval and fpga series but improvement is limited.

The FDE works well on unstructured benchmarks which
are generally harder, solving more than the FE and untrans-
formed CSPs. For structured problems, running impact on the
original CSPs is the best (213 instances solved), followed by
impact on the FDE (211). However, structured benchmarks
have many easy instances. Altogether, dom/wdeg on the FDE

6Conversion costs are given in this table. The converter is exter-
nal to the solver and reads and writes XCSP XML files, so there are
I/O costs for large files when the tables are large.

357

series enc arity dom/ddeg dom/wdeg impact activity
nodes time nodes time nodes time nodes time

aim-50 - 3.0 14105 0.52 130 0.27 319 0.29 167 0.27
(#24) fe 4.3 2665 0.42 2665 0.32 114 0.31 127 0.31

fde 2.5 6832 0.52 133 0.34 114 0.32 127 0.32
aim-100 - 3.0 16839983 191.35 749 0.36 1977 0.40 779 0.37
(#24) fe 4.3 56463 3.67 317 0.44 316 0.41 350 0.44

fde 2.5 60129 2.66 515 0.45 316 0.44 350 0.45
aim-200 - 3.0 656012 65.52 2161 0.73 15194 1.48 17133 1.52
(#24) fe 3.9 14786 4.07 660 0.70 1277 0.81 3669 1.04

fde 2.6 21110 5.27 676 0.69 1277 0.81 3669 1.11
dubois - 3.0 33030143 204.85 15626398 110.39 69682962 146.21 161463141 432.61
(#13) fe 3.1 5505023 27.67 6293592 47.06 12602606 36.52 56717155 177.75

fde 2.9 8257535 39.37 5031230 37.70 12602606 36.35 56717155 179.32
modR - 4.3 1248820 151.38 297 0.80 3056 1.03 309 0.77
(#50) fe 8.3 370.77 1.59 133 1.38 203 1.42 140 1.42

fde 4.2 324.68 1.49 137 1.37 203 1.38 140 1.40
fgpa - 8.0 (21 time-out) (18 time-out) (1 time-out) (1 time-out)
(#21) fe 8.8 (21 time-out) (18 time-out) (1 time-out) (13 time-out)

fde 3.9 (7 time-out) (1 time-out) (1 time-out) (13 time-out)
allInter - 2.1 219393 6.06 60122 2.50 527807 12.32 3599359 80.33
(#25) fe 2.2 179884 8.07 15428 1.30 390914 15.55 675806 22.60

fde 2.0 33 0.27 32 0.27 390914 15.12 675806 21.47
lemma - 3.0 143440 12.16 143240 12.98 156360 27.33 178022 15.82
(#10) fe 4.9 164467 65.99 125904 78.79 218771 68.80 316163 79.99

fde 2.6 164524 61.44 115739 67.74 218771 69.06 316163 78.48
jnh - 4.6 3022 2.38 385 0.80 1379 0.99 2595 1.26
(#16) fe 8.3 4596 7.48 1910 1.86 3494 3.68 6178 3.34

fde 3.7 6865 12.87 2046 2.66 3494 4.19 6178 4.16
chess - 4.0 94844 25.45 10406 1.57 26458 1.96 10249 1.17
(#16) fe 8.0 100312 94.65 10349 3.26 370491 16.47 6175 1.75

fde 3.7 100312 87.23 9568 3.03 370491 19.29 6175 1.87
ii-8 - 2.3 (4 time-out) 1266 0.90 2338 1.12 1858 1.02
(#14) fe 3.0 (5 time-out) 2491 1.57 3551 2.40 3705 2.00

fde 3.2 (13 time-out) (7 time-out) 3551 3.29 3705 2.85
socG - 3.2 (6 time-out) (6 time-out) (3 time-out) (5 time-out)
(#6) fe 5.1 (6 time-out) (6 time-out) (4 time-out) (5 time-out)

fde 3.1 (6 time-out) (6 time-out) (4 time-out) (5 time-out)

Table 2: Mean results for structured benchmarks. “modR”,
“allInter”, “lemma”, and “socG” stand for modRenault,
allInterval, Schur’s lemma, and socialGolfer.

solves the most number of instances (445).

6 Related work
Transformation of one CSP to another is well studied. The
early and most well-known work is the transformation of non-
binary constraints to binary, which includes the dual and the
hidden encoding [Bacchus et al., 2002; Samaras and Stergiou,
2005]. The k-interleaved encoding [Mairy et al., 2014] is an-
other way to incorporate k-wise consistency into the network
by adding extra k-ary constraints that are basically the index
of all feasible combination of tuples. It was shown in [Lik-
itvivatanavong et al., 2014] that the FE consistently outper-
forms the k-interleaved encoding when k is two. [Bessière
et al., 2008] gives an extensive coverage of filtering consis-
tencies for non-binary constraints. Other works on consis-
tency algorithms that are stronger than GAC are [Paparrizou
and Stergiou, 2012] (maxRPWC) and [Lecoutre et al., 2013;
Karakashian et al., 2010; Schneider et al., 2014; Woodward
et al., 2014] (FPWC and k-wise consistency). The FE has
proved to be faster than eSTR2 [Lecoutre et al., 2013], an al-
gorithm that enforces FPWC. In [Woodward et al., 2014], an
adaptive algorithm that is a compromise between GAC and
FPWC was studied, its speed ranging between GAC’s and
FPWC’s for the most part.

7 Conclusion
We have introduced a variation of the FE for non-binary con-
straint networks. Unlike the FE, which merely augments table

���

���

����

����

����

����

����

����

����

�� ��� ���� �����

�
�
�
�
�
��
�
��
��
�
��
�
�
�
�
��
�
��
�
�

��������������

����������������������������������

���������
��

���

�� ��� ���� �����

��������������

����������������������������������

���������
��

���

���

����

����

����

����

����

����

����

�� ��� ���� �����

�
�
�
�
�
��
�
��
��
�
��
�
�
�
�
��
�
��
�
�

��������������

��������������������������������

���������
��

���

�� ��� ���� �����

��������������

����������������������������������

���������
��

���

Figure 5: Runtime distribution for structured instances. For
dom/ddeg, line ordering from top to bottom is FDE, FE, and
Original. For dom/wdeg, the ordering is FDE, Original, and
FE. For activity, the top line is Original. Other lines are not
distinguishable.

constraints with factor variables, the FDE also takes further
advantage of the factor variables by extracting and replacing
original variables with new constraints. Experiments show
that the FDE has an edge over the FE on random problems
while it can vastly outperform the FE on structured problems
with the dom/ddeg and dom/wdeg heuristics.

The focus on network transformation in the literature has
been on concrete, theoretical properties associated with the
transformation, e.g. transforming non-binary constraints to
binary [Bacchus et al., 2002]. The FE encodes PWC while
the FDE decomposition changes the network. These tangible
properties are undoubtedly useful, but our experiments sug-
gest that coming up with transformations that can influence
variable heuristics down the right path can have a greater
effect. Such transformations may not have any identifiable
property associated with them, as their sole function is to steer
variable heuristics by exposing some hidden features of the
network, and would be designed together with the heuristic
to be used. The FDE provides a glimpse in this direction.

Acknowledgments
We thank Christophe Lecoutre for the permission to use Ab-
sCon in our experiment. This work has been supported by
grant MOE2012-T2-1-155.

358

#I converter dom/ddeg dom/wdeg impact activity
fe fde - fe fde - fe fde - fe fde - fe fde

time time nodes— time nodes time nodes time nodes time nodes time nodes time nodes time nodes time nodes time nodes time
10-8 0.00 0.00 x x 397811 6.75 5.31M 124.44 5.32M 162.04 1064 0.47 21529 0.78 3699 0.52 3699 0.75 1358 0.41 755317 7.62 755317 5.99
10-9 0.01 0.00 x x 145 0.30 446599 12.01 430086 15.60 145 0.34 135 0.32 145 0.38 145 0.33 135 0.33 4.74M 63.15 4.74M 41.06
10-10 0.01 0.00 x x 160 0.34 5.32M 157.78 5.36M 213.63 160 0.36 150 0.33 160 0.39 160 0.31 150 0.33 259724 5.46 259724 3.04
11-9 0.01 0.01 x x 3.15M 51.06 x x 5603 0.92 180123 3.87 20200 1.13 20200 0.95 7243 0.72 5.60M 79.71 5.60M 43.20
11-10 0.01 0.01 x x 25.97M 444.41 x x 5520 0.52 326837 6.96 25048 1.54 25048 0.75 7804 0.64 249987 5.65 249987 2.95
11-11 0.02 0.01 x x 193 0.34 x x 193 0.35 182 0.36 193 0.51 193 0.38 182 0.35 2.62M 65.78 2.62M 28.19
12-10 0.02 0.02 x x x x x 7671 0.70 384911 7.89 27666 1.61 27666 1.10 10272 0.78 x x
12-11 0.03 0.02 x x 210 0.37 x x 210 0.38 198 0.34 210 0.50 210 0.42 198 0.40 x x
12-12 0.03 0.02 x x 228 0.41 x x 228 0.46 216 0.54 228 0.45 228 0.41 216 0.42 27.76M 1043.05 27.76M 372.65
13-11 0.05 0.04 x x x x x 48823 1.82 2.93M 68.28 213263 12.06 213263 3.53 86660 2.85 x x
13-12 0.05 0.04 x x x x x 51164 2.03 2.44M 68.76 517874 17.45 517874 5.14 91543 3.25 27.79M 980.00 27.79M 368.82
13-13 0.07 0.04 x x 267 0.50 x x 267 0.49 254 0.51 267 0.65 267 0.49 254 0.53 x x
14-12 0.10 0.08 x x x x x 65417 2.28 2.18M 58.67 553929 18.97 553929 5.70 118746 4.22 x x
14-13 0.11 0.08 x x 287 0.59 x x 287 0.54 273 0.55 287 0.74 287 0.57 273 0.62 x x
14-14 0.13 0.08 x x 308 0.62 x x 308 0.61 294 0.58 308 0.80 308 0.58 294 0.70 x x
15-13 0.19 0.18 x x x x x 499483 13.53 19.95M 570.52 3.18M 216.39 3.18M 48.53 1.12M 40.14 x x
15-14 0.21 0.18 x x x x x 512317 15.25 29.38M 1481.88 29.25M 604.42 29.25M 164.66 1.16M 45.22 x x
15-15 0.25 0.19 x x 353 0.75 x x 353 0.77 338 0.60 353 0.94 353 0.74 338 0.71 x x
20-18 20.83 21.02 x x x x x x x x x x x x
20-19 21.33 21.02 x x 590 8.67 x x 590 6.31 570 6.03 590 6.86 590 7.85 570 7.28 x x
20-20 22.00 20.92 x x 620 6.53 x x 620 6.44 600 6.34 620 7.73 620 6.56 600 7.57 x x

Table 3: Runtime and the number of nodes for instances in the fpga benchmark. “x” denotes time-out. The second and the third
sub-columns show the time it takes to convert an instance.

References
[Bacchus et al., 2002] F. Bacchus, X. Chen, P. van Beek, and

T. Walsh. Binary vs. non-binary constraints. Artificial In-
telligence, 140(1–2):1–37, 2002.

[Bessière et al., 2008] C. Bessière, K. Stergiou, and
T. Walsh. Domain filtering consistencies for non-binary
constraints. Artificial Intelligence, 172(6–7):800–822,
2008.

[Boussemart et al., 2004] F. Boussemart, F. Hemery,
C. Lecoutre, and L. Sais. Boosting systematic search
by weighting constraints. In Proc. of ECAI-04, pages
146–150, 2004.

[Dechter, 2003] Rina Dechter. Constraint Processing. Mor-
gan Kaufmann, 2003.

[Janssen et al., 1989] P. Janssen, P. Jegou, B. Nouguier, and
M. C. Vilarem. A filtering process for general constraint-
satisfaction problems: Achieving pairwise consistency us-
ing an associated binary representation. In Proc. of IEEE
Workshop on Tools for Artificial Intelligence, pages 420–
427, 1989.

[Karakashian et al., 2010] S. Karakashian, R. Woodward,
C. Reeson, B. Y. Choueiry, and C. Bessiere. A first prac-
tical algorithm for high levels of relational consistency. In
Proc. of AAAI-10, pages 101–107, 2010.

[Lecoutre and Vion, 2008] C. Lecoutre and J. Vion. Enforc-
ing arc consistency using bitwise operations. Constraint
Programming Letters, 2:21–35, 2008.

[Lecoutre et al., 2013] C. Lecoutre, A. Paparrizou, and
K. Stergiou. Extending STR to a higher-order consistency.
In Proc. of AAAI-13, pages 576–582, 2013.

[Lecoutre, 2011] C. Lecoutre. STR2: Optimized sim-
ple tabular reduction for table constraints. Constraints,
16(4):341–371, 2011.

[Likitvivatanavong et al., 2014] C. Likitvivatanavong,
W. Xia, and R. H. C. Yap. Higher-order consistencies

through GAC on factor variables. In Proc. of CP-14,
pages 497–513, 2014.

[Mairy et al., 2014] J. Mairy, Y. Deville, and C. Lecoutre.
Domain k-wise consistency made as simple as generalized
arc consistency. In Proc. of CPAIOR-14, pages 235–250,
2014.

[Merchez et al., 2001] S. Merchez, C. Lecoutre, and
F. Boussemart. AbsCon: a prototype to solve CSPs with
abstraction. In Proc. of CP-01, pages 730–744, 2001.

[Michel and Hentenryck, 2012] L. Michel and P. Van Hen-
tenryck. Activity-based search for black-box constraint
programming solvers. In Proc. of CPAIOR-12, pages 228–
243, 2012.

[Paparrizou and Stergiou, 2012] A. Paparrizou and K. Ster-
giou. An efficient higher-order consistency algorithm for
table constraints. In Proc. of AAAI-12, pages 535–541,
2012.

[Refalo, 2004] P. Refalo. Impact-based search strategies for
constraint programming. In Proc. of CP-04, pages 557–
571, 2004.

[Samaras and Stergiou, 2005] N. Samaras and K. Stergiou.
Binary encoding of non-binary constraint satisfaction
problems: Algorithms and experimental results. JAIR,
24:641–684, 2005.

[Schneider et al., 2014] A. Schneider, R. J. Woodward, B. Y.
Choueiry, and C. Bessiere. Improving relational consis-
tency algorithms using dynamic relation partitioning. In
Proc. of CP-14, pages 688–704, 2014.

[Ullmann, 2007] J. R. Ullmann. Partition search for non-
binary constraint satisfaction. Information Science,
177(18):3639–3678, 2007.

[Woodward et al., 2014] R. J. Woodward, A. Schneider,
B. Y. Choueiry, and C. Bessiere. Adaptive parameterized
consistency for non-binary CSPs by counting support. In
Proc. of CP-14, pages 755–764, 2014.

359

