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Abstract

The exploitation of dominance relations in con-
straint optimization problems can lead to dramatic
reductions in search space. We propose an auto-
matic method to detect some of the dominance re-
lations manually identified by Chu and Stuckey for
optimization problems, and to construct the associ-
ated dominance breaking constraints. Experimental
results show that the method is able to find several
dominance relations and to generate effective dom-
inance breaking constraints.

1

Dominance relations can be seen as a generalization of the
well-known symmetry relations for optimization problems.
Thus, dominance breaking offers similar or even greater
search reduction opportunities than symmetry breaking. In-
terestingly, while there are well-known methods to iden-
tify and exploit most kinds of symmetry relations, the iden-
tification and exploitation of dominance relations has fol-
lowed a problem-specific treatment (e.g. [Getoor et al., 1997;
Prestwich and Beck, 2004; Proll and Smith, 1997]) with little
insight into possible generalizations.

Recently, [Chu and Stuckey, 2012] proposed a generic
method for manually identifying a large class of dominance
relations and exploiting them by manually generating and
adding appropriate dominance breaking constraints. Intu-
itively, their dominance relations are mappings o that, under
a certain condition cond, are known to map solutions to bet-
ter solutions. That is, if cond holds, o () maps solution 6 to
another solution, whose objective function value f(o(0)) is
better (smaller/greater) than that of f (). For such mappings,
the negation of cond can be used as a dominance breaking
constraint. Chu and Stuckey noted that a dominance map-
ping is good if its associated dominance breaking constraint
—cond is simple, as simpler constraints will propagate faster
and prune more. Since symmetries always map solutions to
solutions, their associated cond is relatively simple: it must
only ensure that f(c(0)) is better.
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*This research was sponsored by the Australian Research Coun-
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We increase the usefulness of Chu and Stuckey’s work by
automating it, that is, by developing a method to (a) auto-
matically identify symmetries for a given problem, and (b)
automatically construct the associated dominance breaking
constraints. Note that these dominance breaking constraints
are not symmetry breaking constraints, as the key element
is for f(co(#)) to be better. Further, the symmetries need to
be detected for the inherent satisfaction problem — that is,
the problem without the objective function — or, otherwise,
f(o(6)) will be equal to f(6), not better.

Section 3 presents an automatic method focused on ensur-
ing symmetry inference is done very efficiently, as it needs to
be done every time we search for a solution to the problem.
While the experiments show clear speedups, such efficient in-
ference methods are often unable to infer useful symmetries.
Thus, Section 4 extends this approach to use accurate sym-
metry inference methods for the problem model, that is, for
a parameterized version of the problem specification that can
later be instantiated with particular input data for the param-
eters. While model-based methods can take more time, they
are scalable and, once applied, the dominance breaking con-
straints generated can be used for all instances of the model,
thus compensating for their extra time.

Examining the examples by Chu and Stuckey, we deter-
mined that some of their manually identified mappings corre-
spond to almost symmetries [Martin, 2005], that is, to map-
pings that are symmetries of the problem only if a few con-
straints are ignored. To take advantage of this insight, Sec-
tion 4 further extends the automatic detection process of Sec-
tion 3 to infer dominance constraints derived from almost
symmetries. In particular, and given the importance of ob-
taining simple dominance constraints, Section 3 focuses on
the class of almost symmetries obtained from eliminating a
single constraint from the problem. Our experiments show
that the generated dominance breaking constraints can yield
significant improvements in search performance.

2 Background

This section provides the necessary background following
mainly [Chu and Stuckey, 2012]. Let = denote syntactical
identity. A variable v is a mathematical quantity capable of
assuming any value from its domain. Given a set of variables
V, let ©y denote the set of valuations over V' where each
variable in V' is assigned to a value in its domain. A con-



straint ¢ over V is defined by a set of satisfying valuations
sols(c) € Oy. Given a valuation 6 over V' D V, we say
0 satisfies c if the restriction of  to V is in sols(c). A do-
main D over V is a set of unary constraints, one for each
variable in V. In an abuse of notation, if A refers to a set
of constraints {c1,...c,}, we will also use A to refer to the
constraint ¢ A ... A ¢,

A Constraint Satisfaction Problem (CSP) is a tuple P =
(V,D,C), where V is a set of variables, D is a domain over
V', and C is a set of constraints, each ¢ € C defined over a
subset of V. A valuation § over V is a solution of P if it satis-
fies every constraint in D and C. A Constraint Optimization
Problem (COP) P = (V, D, C, f) extends a CSP by adding
an objective function f mapping valuations to an ordered set,
e.g., Z or R, with the aim of finding a solution to the CSP that
minimises/maximises f. As for [Chu and Stuckey, 2012], we
deal with finite domain problems only, where the initial do-
main D constrains each variable to take values from a finite
set of values. Further, for brevity, all objective functions are
assumed to be minimised, and we consider CSPs as COPs
where f(6) = 0 for any valuation 6.

In our examples we represent CSPs and COPs using the
MiniZinc [Nethercote et al., 2007] modelling language and
follow [Mears et al., 2008] in distinguishing between a CSP
(or COP) model and its instance. A model is any specifi-
cation that can be expressed as a MiniZinc program with at
least one unspecified parameter. An instance of a model (the
actual CSP or COP) is then defined as the result of extending
the model by providing values to all its parameters. While an
instance corresponds to a MiniZinc program without unspeci-
fied parameters, instances are usually compiled into FlatZinc,
a lower level description language with a very restricted con-
straint format (see Section 3.2).

Dominance relations are defined as follows.

Definition 1. (from [Chu and Stuckey, 2012]) A dominance
relation < for a COP P = (X, D,C, f) is a transitive and
irreflexive binary relation on © x such that if §; < 6, then
either: 1) 0; is a solution and 65 is a non-solution, or 2) they
are both solutions or both non-solutions and f(61) < f(62).

If 61 < 05, then 6 is said to dominate 65. Chu and Stuckey
show that any dominated valuation can be safely discarded.
Since this can be extended to search nodes in the obvious
way, we can also discard dominated search nodes.

Definition 2. (from [Chu and Stuckey, 2012]) Let D; and
Dy, be the domains from two different search nodes. We say
Dy < Dy if VO, € SOZS(DQ), 30, € SOZS(Dl) s.t. 61 < 6.

Chu and Stuckey provide a manual method for identifying
dominance relations in a COP and adding constraints to ex-
ploit them. Their method has four steps:

1. Find mappings o : ©x — ©Ox that are likely to map so-
lutions to better solutions, that is, o(6) < 6 often holds.

For each o, find a constraint scond(o) s.t. if 8 €
s0ls(C AN D A scond(c)), then o(0) € sols(C AD), i.e.,
a constraint under which ¢ maps solutions to solutions.

For each o, find a constraint ocond(o) s.t. if 8 €
s0ls(C N D A ocond(o)), then f(o(0)) < f(0), ie.,
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a constraint under which o maps solutions to better val-
uations.

For each such o, post the dominance breaking constraint
—(scond(c) A ocond(o)).

A solution symmetry (or simply symmetry) of CSP P =
(V,D,C) is a permutation of the variable/value pairs in
V' x D that maps solutions of P to solutions of P and
non-solutions to non-solutions [Cohen et al., 2006]. A spe-
cial case of solution symmetry, called a valuation symmetry
in [Martin, 2005] (and syntactic symmetry in [Meseguer and
Torras, 2001]), occurs when o maps all the variable/value
pairs of each variable to the variable/value pairs of another
variable. Importantly, such symmetries always map a valua-
tion to another valuation and, thus, can easily be extended to
map constraints to constraints, since the mapping on variables
is uniform. This is critical for us, as our method will need to
apply symmetries to constraints to obtain other constraints.
Many common symmetries (such as variable symmetries) are
valuation symmetries.

A permutation group is a set of permutations that is closed
under composition and inverse. The solution (and valuation)
symmetries of a CSP P form a permutation group, where
each element is a permutation on the set of variable/value
pairs of P. Given permutations {g1, g2, . . . , gn } for P, if the
their closure under composition and inverse is equal to per-
mutation group G, we say that {g1, g, .. ., gn} generates G,
and {g1, g2, . - ., gn } 18 a generating set of G.

3 Automatic generation for instances

Given a COP instance I, our method takes the following steps
to generate dominance breaking constraints:

1. Extract from [ its CSP core ISat by eliminating its ob-
jective function f and any variables and constraints that
only appear in I to define f,

2.
3.

Find the symmetries of [Sat,

For each symmetry o, generate constraint f < o(f).

The remainder of this section details each of these steps.

3.1 Extracting a CSP from a COP instance

To be useful in dominance breaking, a symmetry ¢ must ap-
ply to the “satisfaction core” of the COP instance, rather than
to the COP instance itself. Otherwise, f(o(6)) will be known
to be equal to — rather than better than — f(#) for any so-
lution 6. Chu and Stuckey assumed a specification of their
COP problem P = (X, D, C, f) where everything regarding
the objective function is tucked away in f, since it is then
easy to obtain the satisfaction part: (X, D,C). In practice,
however, this is often not the case.

Example 1. Consider the following COP model of the photo
placement problem from the MiniZinc distribution, where
each person’s name is assigned a different position in such
a way that their combined positional preferences (who they
would like to be next to) are maximized (equivalently, their
negation minimized):



1 int: names; int: n_prefs;

2 array[l..n_prefs,0..1] of int: prefs;

3 array[0..names-1] of var 0..names-1:pos;
4

5 constraint alldifferent (pos);

6

7 wvar 0..n_prefs: satisfies;

8§ array(l..n_prefs] of var bool: ful;

9 constraint forall (i in 1..n_prefs) (

10 let { int: pa = prefs[i, 0],

11 int: pb = prefs[i,1] }

12 in ful[i] = (pos[pb]-pos[pal == 1 xor

13 pos[pal-pos[pb] == 1) );

14 constraint satisfies =

15 sum(i in 1..n_prefs) (bool2int (ful[i]));
16

17 solve minimize -satisfies;

Lines 1 and 2 show the model parameters (number of
names and of preference pairs, and the array of preferences).
Line 3 shows the array of decision variables assigning each
position to the person’s name. Line 5 shows the only true
constraint: an alldifferent forcing the names assigned
to each position to be different. The variables and constraints
introduced from lines 7 to 15 serve only to define the ob-
jective variable satisfies, since they do not exclude any
assignments to the decision variables in array pos. When in-
ferring the symmetries of the satisfaction problem, we do not
want to use these constraints, as they can eliminate some of
the symmetries available, particularly if these symmetries are
likely to find better solutions.[]

Our method obtains the satisfaction part ISat of a COP in-
stance I equivalent to (X, D, C, f), by removing constraints
that serve only to define f without reducing the number of
solutions in /. To achieve this our method first removes the
objective function from the instance. Then, it iteratively re-
moves variables and constraints as follows: If variable y is
used in only one constraint ¢, and c describes y, remove c and
Y.

Definition 3. A constraint ¢ over variables {z1,...,2z,,y}
describes variable y if the set of solutions sols(c) projected
over {z1,...,zp}is D(z1) X ... X D(x,).

Intuitively, this occurs whenever the solutions to ¢ place no
restriction on the values of x1,...,x,. In practice, this of-
ten corresponds to the case where y functionally depends on
Z1,...,Ty. Clearly, whether a constraint describes a variable
or not depends on the domains of its variables.

Example 2. Consider the constraint x +y = z, with D(z) =
D(y) = {0,1} and D(z) = {0,1,2}. This constraint only
describes variable z. However, if the domains were instead
D(z) = {0,1,2}, D(y) = {0,1} and D(z) = {1,2}, then
the constraint would describe variable x instead. [J

The MiniZinc-to-FlatZinc compiler detects many cases
where a constraint describes a variable. For the remaining
constraints, we examine the domains of their variables.

Example 3. Consider again the model introduced in Exam-
ple 1, instantiated with a data file. After our method elimi-
nates the objective from the associated FlatZinc instance file
and iteratively removes variables and constraints as described
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above, the ISat contains only the decision variables in array
pos and the alldifferent constraint. [

In the worst case, the CSP extraction traverses [V times the
instance I, where N is the number of constraints in /. As
each traversal is linear in the size of I, the overall complexity
is quadratic in the size of I.

3.2 Instance-based Symmetry Detection

Once we have ISat, we need to find its symmetries. Crucially,
the symmetry inference method used must be fast, as it will
add to the solving time for the original COP. Complete meth-
ods (e.g. [Cohen et al., 2006]) tend to be computationally ex-
pensive, even for small instances. Incomplete methods (e.g.,
[Puget, 2005; Ramani and Markov, 2004; Cohen ef al., 2006;
Mears et al., 2009]) can be very accurate but slow, as the
more accurate ones build a graph G with a vertex per vari-
able/value pair in the instance, such that each automorphism
of G corresponds to a solution symmetry.

We formalise and implement the method by [Puget, 20051,
obtaining a fast and reasonably accurate method for detecting
variable symmetries in a FlatZinc instance file. Space limi-
tations prevent us from describing the method in full; briefly,
it constructs a coloured graph (V, E, ¢) with nodes for every
variable, constant and constraint in the problem, in such a
way that its automorphisms are symmetries of the instance.

3.3 Automatically Generating Dominance
Breaking Constraints

Each of the symmetries found in the previous step is a map-
ping o that can be used for dominance breaking. As men-
tioned before, the general form of a dominance breaking con-
straint is scond (o) — —ocond(c). For the case of the map-
ping o being a (valuation) symmetry, scond (o) is trivially
true and ocond(c) is o(f) < f.

Given a COP instance [ represented by (X, D, C, f) with
satisfaction core ISat, our method to automatically gener-
ate the dominance breaking constraints from a mapping o
induced from a variable symmetry of ISat, is as follows.
We first create a renaming p that maps every variable x in
I to a new fresh variable z’, and we extend o to map ev-
ery variable not already in o to itself. Then, we add every
new fresh variable =’ to I with the same domain as z, we
add a constraint equating every variable x in the satisfaction
part ISat to p(o(x)), and for every constraint ¢ in I, we also
add p(c) unless it is known to be equivalent to a constraint
already in I and, thus, redundant. Some constraints can be
easily detected as redundant, e.g., if ¢ only constrains vari-
ables from the satisfaction part and none in the domain of
o, then p(c) is known to be redundant (as it simply copies
c using fresh new variables to which the original ones are
now equated). Even if ¢ contains variables in o, the map-
ping might not affect the semantics of the constraints, e.g., in
constraint alldifferent (pos), any mapping that per-
mutes the variables in array pos will result in a copy that is
equivalent and thus redundant. Finally, we add the dominance
breaking constraint, which is simply f < p(f).

Example 4. Consider an instance I of the model intro-
duced in Example 1, where parameter names is set to



4. The FlatZinc compiler renames the variables in ar-
ray pos to X_.0, X_1, X2 and X_3. These are the
only variables in the satisfaction part ISat of the prob-
lem. Any permutation of variables X_0, X_1, X_2 and
X_3 is a valuation symmetry of ISat. Consider the map-
ping o that swaps X_1 and X_2. Our transformation cre-
ates a renaming p that maps every variable (such as X_0 and
satisfies) to fresh new variables (such as X_0_prime
and satisfies_prime). It then adds to I all new prime
variables with the same domain as their original ones (e.g.,
X_0_prime, X_.1 prime, X2 prime, and X_3 prime
are all added with domain 0.3 and satisfies_prime
with domain 0..n_prefs). Also, it adds equations
X_0=X_0_prime, X_1=X_2 prime, X _2=X_1 _prime and
X_3=X_3_prime. Then, for every constraint c, it com-
putes p(c) and adds it to I unless it knows it is redun-
dant. Finally, it adds the dominance breaking constraint:
constraint satisfies >= satisfies_prime;

For this problem our method is able to automatically
detect most constraint copies as redundant, as they only
involve satisfaction variables not affected by the symmetry
(like X_0, X_3 here), or permute the order of satisfaction
variables in such a way it does not affect the meaning of
the constraint due to its commutative nature: a sum in a
linear constraint or an array in the alldifferent. For
example, alldifferent ([X.0, X.1, X2, X.3])
becomes alldifferent ([X_-O_prime, X_1 prime,
X_ 2 prime, X_3 prime]). While the equations added
to I do not make these two constraints identical (since X_1 is
equated to X_2_prime rather than to X_1_prime, and the
same for X_2) they are known to be equivalent. []

Constructing the additional variables and constraints is lin-
ear in the size of the instance, while detecting redundancies
is quadratic, giving a total complexity of O(N?M), where N
is the size of the instance and M is the number of mappings.
While this construction can lead to a significant growth in the
model, our method is often able to automatically detect many
redundancies.

Importantly, we cannot simply add a dominance breaking
constraint for every element of the variable symmetry group
inferred by our method. The reasons are twofold: first, the
typical size of symmetry groups is so large that to do so would
incur an enormous overhead which the reduction in search
space would not recoup; second, even if the group is small,
some of the associated dominance breaking constraints might
by themselves already add significant overheads. We would
like to add only those dominance breaking constraints that
will propagate efficiently and give good search space reduc-
tion. We currently use the generating set of symmetries pro-
duced by the symmetry detection method. More work needs
to be done to better select the symmetries.

3.4 Evaluation: Knapsack

The knapsack optimization problem selects a subset of ob-
jects such that the sum of their weights is within a fixed limit
and the sum of their profits is maximised (or their negation
minimised). The ISat of the original problem I only contains
the weight limit, as the profit only contributes to the objective
function. The automatic symmetry detection for ISat finds
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Instance Without With
(size-id) Dominance Dominance
knap-50-1 307.3 134.0
knap-50-2 544.9 205.6
knap-50-3 366.8 186.7
knap-50-4 595.0 334.8
knap-50-5 >1800.0 1782.9
knap-50-6 122.2 83.3
knap-50-7 144.9 36.2
knap-50-8 544.3 62.3
knap-50-9 140.5 120.4
knap-50-10 797.9 328.5

Table 1: Knapsack experimental results (in seconds).

that any two objects with the same weight can be swapped.
Concretely, it finds a set of pairwise swaps of objects as a
generating set of the symmetry group for the instance. Using
each swap as a mapping, we generate dominance breaking
constraints and add them to /.

Table 1 shows the time in seconds to solve instances with
50 objects, with and without automatically generated dom-
inance breaking constraints (instances are from [Chu and
Stuckey, 2012]). These and all other experiments use the
MiniZinc 2.0 compiler and Gecode 4.3.3. While the dom-
inance breaking constraints automatically obtained by our
method are not as strong as those manually identified by [Chu
and Stuckey, 2012] (as their mappings are not derived from
symmetries), they achieve a large reduction in the search
which clearly pays off in execution time, particularly for the
larger instances. Although the speed-up obtained here is not
as good as that in [Chu and Stuckey, 2012], this is to be
expected since their method is manual and problem-specific
while ours is automatic and generic.

4 Using models and almost symmetries

The method described in the previous section is simple, pow-
erful, and can lead to good speed-ups. However, in general it
adds a significant overhead, as the three steps (extraction of
the CSP, symmetry inference, and generation of dominance
constraint per symmetry) are performed for every instance.
Further, the need for efficiency requires a relatively simple
(and thus inaccurate) symmetry inference method. Finally,
as mentioned before, we have discovered that some of the
mappings manually identified in [Chu and Stuckey, 2012] are
almost symmetries, rather than symmetries.

We thus extend the previous method with two fundamental
changes. First, we directly work with the model, since this al-
lows us to use more resource-intensive methods whose results
can be used for all instances of the model, thus compensating
for the extra time required. Second, we infer not only symme-
tries but also almost symmetries. Intuitively, this new method
starts with a COP model M and proceeds as follows:

1. Generate relaxed models M, - - -, M,, of M by remov-
ing some of its constraints (see Section 4.1).

2. Find the symmetries of M and of its relaxed versions —
which are almost symmetries of M (see Section 4.2).



3. For a selection of the symmetries found in each of these
models, generate a (implicative) dominance breaking
constraint, as already described in Section 3.3.

4. Create new models by adding to M the constraints gen-
erated in the previous step for each symmetry.

To select symmetries in step 3, we map each of the model
symmetry patterns [Mears et al., 2008] to the set of symme-
tries that will be used as mappings for generating dominance
breaking constraints. We are currently automating this task,
which is the only manual task left in the method.

4.1 Generating relaxed versions of a COP model

We automatically generate relaxed models of any MiniZ-
inc model M by using its structure, that is, its constraint
“items”, which typically correspond to the high-level con-
straints of the problem. In particular, assuming A has m con-
straint items ¢y, - - -, ¢y, We generate a set of relaxed models
{M,..., My}, where M; is obtained by simply removing
constraint item ¢; from M.

Example 5. The model for the blackhole solitaire (see Sec-
tion 4.4) has 4 constraints, denoted A, B, C and D. Four re-
laxed models can thus be derived from it: a model with only
constraints A,B,C; one with A,B,D; one with A,C,D; and one
with B,C,D.[J

Since any symmetry o of M; is an almost symmetry of M,
such o can be used to generate the usual dominance breaking
constraint of M: scond(c) — —ocond(c). The main differ-
ence is that, while for a symmetry of M the left hand side
would be true, for ¢ it is o(c), where c is the conjunction of
constraints removed from M to obtain M;. This is why we re-
move a single constraint item (i.e., ¢ = ¢;), to keep constraint
o(c) simple.

4.2 Finding the symmetries of the model

Several methods are available to obtain the symmetries of a
model, e.g. [Van Hentenryck et al., 2005; Roy and Pachet,
1998; Mancini and Cadoli, 2005; Mears et al., 2008]. We
decided to adapt the method of [Mears er al., 2008], since it
has been shown to have good accuracy for a wide range of
benchmarks. Given a model M (relaxed or not) and n input
data sets d1, . . ., d,, we proceed as follows. First, we instan-
tiate M with each input data set to obtain the COP instances
L, ..., I,. Second, for each I;, we extract the CSP instance
ISat; as described in Section 3.1. Third, we use [Mears et al.,
2009] to accurately detect a generating set .S; for the symme-
tries of each ISat;. Finally, we use the method of [Mears et
al., 2008] to infer the generating set of symmetries S of (the
satisfaction part of) M from the generating set of symmetries
S1, ...,y previously inferred for every instance.

4.3 Evaluation: Photo Placement

Let us use the Photo Placement problem to show how our
method applies to a model rather than to an instance (next
section shows the usefulness of almost symmetries). We have
considered two models referred to as photol and photo2, re-
spectively: the one shown in Example 1 and the one given by
Chu and Stuckey [2012]. After the CSP extraction, both mod-
els contain only the position variables and the all-different

constraint. Therefore, any permutation of the position vari-
ables is a (full) symmetry. For such permutation groups we
consider two sets of dominance mappings: (a) for all pairs
of positions ¢ and j, swaps ¢ and j, and (b) for all pairs of
positions ¢ and j, reverse the subsequence between ¢ and j.
For both mappings, the dominance constraint automatically
generated for photo?2 is:

constraint sum(i in 1..n-1)
(pl[x_prime[i],x prime[i+l]])
- sum(i in 1..n-1)
(pIx[i], =x=[i+1]])
<= 0; O

where the x array corresponds to the pos array in the photol
model. The main difference between the models obtained
with these two mappings is the extra constraint equating the
variables to their primes. For example, the equating con-
straint for the reversal mappings is:

array [l..n] of var 1..n

[ x [ if 1 <=1 /\ i <= 2
then 2 - i + 1

else i endif ] |

X_prime =

i in 1..n ];

The resulting dominance breaking constraint is the one man-
ually identified by Chu and Stuckey [2012] for this problem.

Table 2 shows the effect on the search in terms of the total
number of search nodes obtained when solving different in-
stances of each of the two models without dominance break-
ing (column None), and with dominance breaking using swap
mappings (Swaps) and reversal mappings (Reversals). The
instances are again from [Chu and Stuckey, 2012], where
the size represents the number of people in the photo. The
two models are tested on different instances because photol
does not scale well to instances with more than about 10
people. Note that in a branch-and-bound search, extra con-
straints can increase the search if they divert it from finding
early solutions that would have imposed constraints on the
objective. Clearly, the reversal mappings consistently give a
smaller search than the swap mappings for both models. In
the first model, the dominance breaking constraints increase
the node count, while in the second model they decrease it. A
likely explanation for the poor performance in the first model
is that the dominance breaking constraints propagate poorly
and, thus, the lack of pruning due to the exclusion of early
solutions is not compensated by later reductions in the search
tree size. We are exploring ways to automatically detect and
transform the constraints to improve pruning.

Instance (size-id) None Swaps Reversals
photo1-9-1 35,774 44,537 37,132
photol-11-2 480,109 809,282 506,268
photo2-12-1 4,015,993 1,199,867 798,781
photo2-12-2 6,405,713 1,574,469 1,102,183
photo2-14-2 227,036,415 35,153,627 17,583,257

Table 2: Node counts for photo placement.

Table 3 shows the effect on running time from the rever-
sal mappings and the considerable reduction in time achieved
by automatically excluding redundant constraints. For those
instances where the dominance breaking constraints cause a



Instance Revs. incl.

(size-id) None redundant Reversals
photo1-9-1 0.147 1.472 1.103
photo1-11-2 1.140 31.220 23.332
photo2-12-1 20.881 43.022 22.140
photo2-12-2 31.126 57.753 28.287
photo2-14-2 1445.584 1394.694 649.471

Table 3: Effect of removing redundant constraints.

Instance

(size-id) None Reversals
photo2-14-1 1357.6 836.2
photo2-14-2 1445.6 649.5
photo2-14-3 87.7 123.2
photo2-14-4 679.8 395.0
photo2-14-5 1352.6 770.8
photo2-14-6 1359.7 613.2
photo2-14-7 413.5 407.8
photo2-14-8 5104 445.5
photo2-14-9 1127.0 637.3
photo2-14-10 >1800.0 1139.8

Table 4: Running time for photo placement.

large reduction in search (all instances of photo2), there is
also a big reduction in running time. Table 4 shows the re-
duction in running time over the full set of size 14 instances;
in almost all cases the dominance breaking constraints reduce
the running time, and often the reduction is significant.

4.4 Evaluation: Blackhole Solitaire

Let us now consider the effect of almost symmetries. The
blackhole solitaire problem is a satisfaction problem where a
standard deck of playing cards — minus the ace of spades —
is dealt into 17 piles of three cards. These cards are played
one-by-one into a discard pile, which begins with only the
ace of spades. Each card played must be one higher or one
lower than the current top of the discard pile, and only the top
card of each pile is playable. The task is to find a sequence
of plays that ends with all cards on the discard pile. A model
for this problem is:

-3

% Card at position

array[l..52] of var 1..52: cardAt;
% Position of card
array[l..52] of var 1..52: position;

% Constraint A: Ace of Spades played first
constraint cardAt[l] == 1;
% Constraint B: Consecutive cards match
constraint forall(i in 1..51)
( table([cardAt[i], cardAt[i+1]],
neighbours) );
% Constraint C: Link card-at and position
constraint inverse (cardAt, position);
% Constraint D: cards on top played first
constraint forall(i in 1..17, j in 1..2)
( position[layout[i,j]] <

position[layout[i, j+1]] );

and is included in the MiniZinc distribution with (a) one
variable for each card representing the position in the se-
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quence it is played, and (b) one variable for each position
in the sequence representing the card played at that position.
These variables are linked by an inverse constraint (con-
straint C in the model). The other two significant constraints
state that cards played in succession must match, i.e., their
face values differ by exactly one (B), and that each card must
be played before any card underneath it in its pile (D).

The model has an almost symmetry o: cards with the same
face value are symmetric, except for constraint D which states
that for each pile i, the jth card is played before the one
underneath (the j+1th). Relaxing the problem by removing
D leads to the automatic detection of o, that is, finding 37
pairs of cards that can be swapped and thus used as domi-
nance mappings. The scond for the dominance breaking con-
straint associated to o, is simply o(D). Since this is a satisfac-
tion problem, the ocond imposes an arbitrary ordering on the
variables to break o. This leads to the following dominance
breaking constraint:

constraint
(forall(i in 1..17, 3 in 1..2)
(position_prime[layout[i, j]] <
position_prime[layout[i, j+1]11))
-> lex_lesseq(position,position_prime) ;

This constraint has two problems. First, it requires the
solver to support a reified version of the lexicographical or-
dering constraint. We automatically fix this by observing
that the position variables are constrained to be all dif-
ferent (by the inverse constraint) and, therefore, the lex-
icographical constraint can be reduced to position[a]
< position[b], where a and b are the two cards being
swapped by the mapping. Second, the left hand side of the
implication is too strong, causing very weak propagation. A
single mapping affects at most two of the piles; the other piles
are unchanged and so that part of the condition is known to
be true and could be eliminated from the forall. We repair
this automatically by omitting from the forall any part which
is left syntactically identical by the symmetry. Additionally,
after canonicalization the dominance breaking constraints do
not refer to any variables introduced by the duplication pro-
cess. Therefore, all of the duplicated variables and constraints
are omitted. The resulting dominance constraints are similar
to the ones manually identified by Chu and Stuckey[2012] for
this problem.

Table 5 shows the effect on search reduction and running
time for many instances of the model (again taken from [Chu
and Stuckey, 2012]). Clearly, the dominance breaking con-
straints cause a large reduction in search space and running
time. The automatic simplification of the dominance break-
ing constraint as described above is crucial — without it, the
dominance breaking constraint does not reduce the search
space.

5 Conclusion

We have presented an approach to automatically generate
some dominance constraints by (a) automatically finding
symmetries and almost symmetries for the satisfaction core
of the problem, and (b) automatically generating dominance
breaking constraints for these symmetries. While we have



Instance Nodes Time (s)

(id) None Dom None Dom
blackhole-1 893 512 0.0 0.0
blackhole-2 >47,407,775 8,465,614 >1800.0 380.5
blackhole-3 2,114 662 0.1 0.0
blackhole-4 >54,421,468 1,162,184 >1800.0 56.7
blackhole-5 15,516 6,869 0.4 0.2
blackhole-6 0 0 0.0 0.0
blackhole-7 4,938 761 0.1 0.0
blackhole-8 0 0 0.0 0.0
blackhole-9 346,973 8,221 13.7 0.4
blackhole-10 0 0 0.0 0.0
blackhole-11 >66,299,020 >42,571,844 >1800.0 >1800.0
blackhole-12 14,031 2,897 0.5 0.2
blackhole-13 6,714 624 0.1 0.0
blackhole-14 >75,766,660 11,054,241 >1800.0 230.8
blackhole-15 >69,476,701 >40,358,616 >1800.0 >1800.0
blackhole-16 >81,184,247 4,015,958 >1800.0 138.4
blackhole-17 0 0 0.0 0.0
blackhole-18 312,905 30,560 9.7 1.2
blackhole-19 >61,435,110 48,829,969 >1800.0 1475.8
blackhole-20 916,488 62,131 18.0 1.8

Table 5: Node counts for blackhole solitaire.

shown that these constraints can significantly reduce the
search effort and solving time, adding them is not always ben-
eficial. In some cases they can add overhead without benefit
and even enlarge the search tree. The experiments demon-
strate the importance of removing redundant variables and
constraints. This is an avenue for future work: more re-
dundant parts should be automatically eliminated, perhaps
by improving the canonicalization of the constraints so that
common subexpression elimination [Rendl, 2010] can merge
them.
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