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Abstract
We study the adjustment and use of the Max-sum
algorithm for solving Asymmetric Distributed Con-
straint Optimization Problems (ADCOPs). First,
we formalize asymmetric factor-graphs and apply
the different versions of Max-sum to them. Appar-
ently, in contrast to local search algorithms, most
Max-sum versions perform similarly when solv-
ing symmetric and asymmetric problems and some
even perform better on asymmetric problems. Sec-
ond, we prove that the convergence properties of
Max-sum ADVP (an algorithm that was previously
found to outperform other Max-sum versions) and
the quality of the solutions it produces are depen-
dent on the order between nodes involved in each
constraint, i.e., the inner constraint order (ICO).
A standard ICO allows to reproduce the properties
achieved for symmetric problems, and outperform
previously proposed local search ADCOP algo-
rithms. Third, we demonstrate that a non-standard
ICO can be used to balance exploration and ex-
ploitation, resulting in the best performing Max-
sum version on both symmetric and asymmetric
standard benchmarks.

1 Introduction
Autonomous agents in a distributed environment may have
different valuations of states of the world (i.e., of constraints
they are involved in). Such scenarios, e.g., meeting schedul-
ing, where different agents have different valuations for meet-
ings they are participating in1, cannot be represented by
the standard Distributed Constraint Optimization Problems
(DCOP) model in which constraints are symmetric, thus, ex-
tensions of the DCOP model were proposed for representing
problems with asymmetric constraints [Maheswaran et al.,
2004; Petcu, 2007; Grinshpoun et al., 2013].

The first attempt to capture asymmetric valuations among
constrained agents was by duplicating variables involved in
an asymmetric constraint and using rigid constraints to en-
force equality of assignments with other agents. This scheme

1For additional examples, including supply chain and smart grid
applications, see [Grinshpoun et al., 2013].

was termed Private Events as Variables (PEAV) in [Mah-
eswaran et al., 2004]. The PEAV formulation allows the
use of complete algorithms designed for symmetric DCOPs.
In contrast, PEAV does not enable the use of standard local
search algorithms since every allocation that satisfies the hard
equality constraints in PEAV, is a local optimum, which can-
not be escaped by standard local search algorithms [Grinsh-
poun et al., 2013]. Previous studies have shown that nodes
representing hard equality constraints are redundant in factor-
graphs [Penya-Alba et al., 2012; Kschischang et al., 2001],
and thus, the PEAV representation is not compatible with al-
gorithms that operate on factor-graphs such as Max-sum.2

An alternative model for representing asymmetric DCOPs
(ADCOP) was proposed in [Grinshpoun et al., 2013]. Agents
in ADCOP hold their part of each constraint, similar to a nor-
mal form game. Standard local search algorithms that are
guaranteed to converge when solving symmetric problems,
are not guaranteed to converge when solving ADCOPs and
evidently produce poor results. Thus, local search algorithms
that guarantee convergence by exchanging constraint costs
among agents (and thus, violating privacy), were proposed
in [Grinshpoun et al., 2013].

Max-sum is an inference (GDL) incomplete algorithm that
has drawn much attention recently [Farinelli et al., 2008;
Rogers et al., 2011; Zivan and Peled, 2012]. Agents in Max-
sum calculate and propagate utilities (or costs) for each pos-
sible value assignment of their neighboring agents’ variables.

Previous studies have revealed that when Max-sum per-
forms on a cyclic constraint graph it does not always converge
and it traverses states with low quality [Farinelli et al., 2008;
Zivan and Peled, 2012]. A number of studies have proposed
versions of Max-sum that guarantee convergence. One re-
quired the elimination of some of the problem’s constraints
in order to reduce the DCOP to a tree structured problem
that can be solved optimally in polynomial time [Rogers et
al., 2011]. A different approach had Max-sum perform on
an alternating directed acyclic graph (DAG). This algorithm,
(Max-sum AD), converges after a linear number of iterations
without requiring the removal of edges from the constraint
graph. The alternation of the order on each edge of the

2We thank an anonymous reviewer of a previous version of
this paper that indicated that this redundancy can be derived
from [Penya-Alba et al., 2012; Kschischang et al., 2001] and al-
lowed us to omit our own redundancy proof.
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DAG after each convergence, ensures that constraints are not
ignored. Adding value propagation results in an algorithm
(Max-sum ADVP) that visits (weakly) monotonic improving
states after changing directions back and forth until conver-
gence [Zivan and Peled, 2012].

In this paper we contribute to the development of incom-
plete algorithms for solving Asymmetric DCOPs by:

1. Formalizing asymmetric factor-graphs, adjusting the dif-
ferent versions of Max-sum for solving them and analyz-
ing their performance. Each constraint in an asymmetric
factor-graph is represented by a number of nodes rela-
tive to the arity of the constraint. The order among them
(i.e., the inner constraint order, ICO) was found to af-
fect the performance of Max-sum versions in which an
order is used, e.g., Max-sum ADVP.

2. We prove that if all constraints are ordered according to
a standard inner order (SIO), the performance of Max-
sum ADVP on ADCOPs is equivalent to its performance
on standard DCOPs, thus, the convergence guarantees
and the quality of the produced solutions are the same.
Furthermore, it outperforms the local search algorithms
designed specifically for ADCOPs in [Grinshpoun et al.,
2013] while preserving a higher level of privacy.

3. We propose the use of a non-standard ICO for balancing
exploration and exploitation in Max-sum ADVP, result-
ing in the best performing version of Max-sum for both
asymmetric and standard symmetric DCOPs on a variety
of standard benchmarks.

2 Background
In this section we first present formal descriptions of DCOPs
and ADCOPs, then we present Max-sum and its extensions
that guarantee convergence.

2.1 Distributed Constraint Optimization
Without loss of generality, in the rest of this paper we will
assume that all problems are minimization problems. The in-
ference algorithm for minimization problems is actually Min-
sum. However, we will continue to refer to it as Max-sum
since this name is widely accepted. Our description of a
DCOP is consistent with the definitions in many DCOP stud-
ies, e.g., [Modi et al., 2005; Petcu and Faltings, 2005].

A DCOP is a tuple 〈A,X ,D,R〉. A is a finite set
of agents {A1, A2, ..., An}. X is a finite set of variables
{x1,x2,...,xm}. Each variable is held by a single agent. D
is a set of domains {D1, D2,...,Dm}. Each domain Di con-
tains the finite set of values that can be assigned to variable
xi. An assignment of value d ∈ Di to xi is denoted by an or-
dered pair 〈xi, d〉. R is a set of relations (constraints). Each
constraint C ∈ R defines a non-negative cost for every pos-
sible value combination of a set of variables, and is of the
form C : Di1 × Di2 × . . . × Dik → R+ ∪ {0}. A bi-
nary constraint refers to exactly two variables and is of the
form Cij : Di × Dj → R+ ∪ {0}.3 A binary DCOP is a

3We say that a variable is involved in a constraint if it is one of
the variables the constraint refers to.

DCOP in which all constraints are binary. A partial assign-
ment (PA) is a set of value assignments to variables, in which
each variable appears at most once. vars(PA) is the set of all
variables that appear in PA. A constraint C ∈ R of the form
C : Di1×Di2× . . .×Dik → R+∪{0} is applicable to PA if
xi1 , xi2 , . . . , xik ∈ vars(PA). The cost of a PA is the sum of
all applicable constraints to PA over the assignments in PA.
A complete assignment (or a solution) is a partial assignment
that includes all the DCOP’s variables (vars(PA) = X ). An
optimal solution is a complete assignment with minimal cost.

For simplicity we make the standard assumptions that all
DCOPs are binary DCOPs in which each agent holds exactly
one variable, its domain and all constraints that its variable
is involved in. These assumptions are commonly made in
DCOP studies, e.g., [Modi et al., 2005; Petcu and Faltings,
2005; Gershman et al., 2009]. Furthermore, the studies that
proposed the ADCOP model also focused on binary prob-
lems where each agent holds exactly one variable [Grubshtein
et al., 2010; Grinshpoun et al., 2013]. Thus, although we
present a general description of ADCOPs next, our focus in
this paper will be on binary ADCOPs.

2.2 Asymmetric DCOP
ADCOPs generalize DCOPs by explicitly defining for each
combination of assignments of constrained agents, the exact
cost for each participant in the constraint.

More formally, an ADCOP is defined by the following tu-
ple 〈A,X ,D,R〉, whereA, X and D are defined the same as
in DCOPs. Each constraint C ∈ R of an asymmetric DCOP
defines a set of non-negative costs for every possible value
combination of a set of variables, and takes the following
form: C : Di1 × Di2 × · · ·Dik → Rk

+. Notice that here
Rk

+ is a vector that includes for each agent 1 ≤ j ≤ k its
cost for each combination of value assignments, so in prac-
tice each agent 1 ≤ j ≤ k holds its part of the constraint Cj ,
Cj : Di1 ×Di2 × · · ·Dik → R+

We will make the following definition to maintain the rela-
tion between standard DCOPs and ADCOPs:

Definition 1 DCOP P is equivalent to ADCOP P ′ if their
sets of agents, variables and domains are equal, i.e., A = A′

, V = V ′ and D = D′, and a constraint C is included in R
if and only if there exists a constraint C ′ ∈ R′ such that both
refer to the same set of variables and C =

∑
0≤i≤k C

′
i.

It is easy to see that each asymmetric problem has a sin-
gle equivalent symmetric problem. However, there can be an
infinite number of asymmetric problems that have the single
same equivalent symmetric problem.

2.3 Max-sum
4Max-sum operates on a factor-graph, which is a bipar-
tite graph in which the nodes represent variables and con-
straints [Kschischang et al., 2001]. Each variable-node rep-
resenting a variable of the original DCOP is connected to all
function-nodes that represent constraints, which it is involved

4For lack of space we describe the algorithm and its extensions
briefly and refer the reader to more detailed descriptions in [Farinelli
et al., 2008; Rogers et al., 2011; Zivan and Peled, 2012].
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in. Similarly, a function-node is connected to all variable-
nodes that represent variables in the original DCOP that are
involved in the constraint it represents. Variable-nodes and
function-nodes are considered “agents” in Max-sum, i.e., they
can send and receive messages, and perform computation.

A message sent to or from variable-node x (for simplic-
ity, we use the same notation for a variable and the variable-
node representing it) is a vector of size |Dx| including a
cost for each value in Dx. In the first iteration all mes-
sages include vectors of zeros. A message sent from a
variable-node x to a function-node f is formalized as fol-
lows: Qi

x→f =
∑

f ′∈Fx,f ′ 6=f R
i−1
f ′→x − α, where Qi

x→f is
the message variable-node x intends to send to function-node
f in iteration i, Fx is the set of function-node neighbors of
variable-node x and Ri−1

f ′→x is the message sent to variable-
node x by function-node f ′ in iteration i− 1. α is a constant
that is reduced from all costs included in the message (i.e.,
for each d ∈ Dx) in order to prevent the costs carried by mes-
sages throughout the algorithm run from growing arbitrarily.

A message sent from a function-node f to a variable-
node x in iteration i includes for each value d ∈ Dx:
minPA−x

cost(〈x, d〉, PA−x), where PA−x is a possible
combination of value assignments to variables involved in
f not including x. The term cost(〈x, d〉, PA−x) represents
the cost of a partial assignment a = {〈x, d〉, PA−x}, which
is: f(a) +

∑
x′∈Xf ,x′ 6=x,〈x′,d′〉∈aQ

i−1
x′→f .d

′, where f(a) is
the original cost in the constraint represented by f for the
partial assignment a, Xf is the set of variable-node neigh-
bors of f , and Qi−1

x′→f .d
′ is the cost that was received in

the message sent from variable-node x′ in iteration i − 1,
for the value d′ that is assigned to x′ in a. x selects its
value assignment d̂ ∈ Dx following iteration k as follows:
d̂ = argmind∈Dx

∑
f∈Fx

Rk
f→x.d.

Since Max-sum is not guaranteed to converge when solv-
ing cyclic factor-graphs, versions of the algorithm that guar-
antee convergence were proposed. Bounded Max-sum elim-
inates edges of a cyclic factor-graph until it transforms to a
tree structured factor-graph [Rogers et al., 2011]. Then, stan-
dard Max-sum is used to find the optimal solution for the tree
structured factor-graph. The aggregated maximal costs of the
edges removed, bound the distance of the solution cost from
the optimum. Recent studies proposed methods for select-
ing the removed edges, which tighten the bound [Rollon and
Larrosa, 2012; 2014].

An alternative method for guaranteeing convergence was
proposed in [Zivan and Peled, 2012]. In order to avoid cycles,
the algorithm is performed on a DAG, determined by an order
on all nodes in the factor-graph (e.g., according to agents’ in-
dices). Each node sends messages only to neighboring nodes
that follow it in the selected order. After a linear number of
iterations in which the algorithm is guaranteed to converge,
the order is reversed and messages are sent in the opposite
direction. The order is alternated following each convergence
(the end of each phase) until termination.

Selecting an order includes a decision on where to place
each (binary) function-node, with respect to its neighbor-
ing variable-nodes, i.e., determine the inner constraint order

X1 

f21 

f12 

X2 X1 f12 X2 

Figure 1: A factor-graph with a DCOP constraint (on the left)
and one with an ADCOP constraint (on the right)

(ICO). We refer to an ICO that has the function-node ordered
after one neighboring variable-node and before the other as a
standard inner order (SIO). A standard order on all nodes of
the factor-graph is an order in which all ICOs are standard.

In [Zivan and Peled, 2012] only standard orders were
used, since any other alternative,i.e., placing the function-
node before or after its two neighboring variable-nodes, re-
sults in a redundant execution where either the function-node
or the variable nodes do not receive messages.5 Therefore,
we assume that all orders used by Max-sum AD and Max-
sum ADVP, when solving symmetric DCOPs, are standard.

While Max-sum AD guarantees convergence in each
phase, agents may propagate inconsistent costs, calculated
while assuming different value assignments for the same vari-
able [Zivan and Peled, 2012]. This can be overcome by us-
ing value propagation, as used in complete inference algo-
rithms for avoiding ties [Petcu and Faltings, 2005; Vinyals
et al., 2011]. In the resulting algorithm, Max-sum AD with
value propagation (Max-sum ADVP), variable-nodes include
in their messages their selected value assignments. Function-
nodes select costs while considering only the value assign-
ments received from their variable-node neighbors.

For value propagation to be most effective, it is started only
after two phases of Max-sum AD, after all the problem’s con-
straints were considered [Zivan and Peled, 2012].

3 Asymmetric Factor Graphs
An asymmetric factor-graph has each (binary) constraint rep-
resented by two function-nodes, one for each part of the con-
straint held by one of the involved agents. Each function-node
is connected to both variable-nodes representing the variables
involved in the constraint.

Figure 1 presents two factor-graphs including a single con-
straint between variables x1 and x2. On the left, the factor-
graph represents a symmetric DCOP, therefore it includes a
single function-node. The factor-graph on the right represents
an ADCOP, hence, it includes two function-nodes, one held
by each agent representing its part of the constraint.

Thus, a factor-graph representing a binary ADCOP has
four nodes involved in each constraint, two function-nodes
and two variable-nodes. Therefore, for Max-sum versions
that order the nodes in the factor-graph, e.g., Max-sum AD,
these four nodes need to be ordered. Figure 2 presents three
options to order the four nodes involved in a binary con-
straint.6 All orders are considered from left to right. The
top left order is the standard inner order (SIO), similar to
the standard order used for symmetric DCOPs, in which both

5For asymmetric problems, other alternatives will be discussed.
6Again, we ignore orders where both variable-nodes come before

or after both function-nodes (as discussed for symmetric problems).
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Figure 2: Different ICOs for a binary constraint.

function-nodes come after one variable-node and before the
other. The top right ICO has the two variable-nodes ordered
after one function-node and before the other. We call it a di-
verse inner order (DIO). The last order on the bottom has one
of the variable-nodes ordered first, a function-node following
it, then another variable-node and finally the second function-
node. This ICO is termed partial inner order (PIO). Notice,
that when a PIO is reversed we have the function-node first,
then a variable-node, another function-node and finally the
second variable-node. Since orders are reversed in alternat-
ing phases, we will refer to both as PIOs. We will demon-
strate that the selection of the ICOs has a major effect on the
performance of the algorithms using them.

4 Properties
Definition 2 An algorithm execution on a problem is a list of
sets of messages M1,M2, ...,Mk, where k is the number of
iterations the algorithm is executed for and for each 1 ≤ i ≤
k the set Mi includes all messages sent in iteration i.7

Let E and E′ be executions of algorithms solving equivalent
problems.

Definition 3 E in iteration i is equivalent to E′ in itera-
tion j if and only if there exists a set of n constant scalars
{β1, ..., βn} such that for every variable-node xv , 1 ≤ v ≤ n,
cv = c′v + βv , where cv is a vector that includes the sum of
messages sent to xv in iteration i of E and c′v is a vector
including the sum of messages sent to xv in iteration j of E′.

The following lemma will help us establish the equivalence
in the execution of Max-sum ADVP on symmetric and asym-
metric problems when SIO is used in both.
Let C ∈ R be a binary constraint between variables x and x′
in DCOP P and Cx and Cx′ the two parts of C in the equiva-
lent ADCOP P ′. Let f , fx and fx′ be the function-nodes rep-
resentingC,Cx andCx′ in the two factor-graphs respectively.
Consider two executions E and E′ of Max-sum ADVP, E
solving P and E′ solving P ′, both using SIO for constraint
C and both running for k iterations.

Lemma 1 If in some iteration i < k of E and in some iter-
ation j < k of E′, x′ is ordered after x and the same value
d is selected for x, then there exists a constant scalar β such
that: Ri+1

f→x′ + β = Rj+1
fx→x′ +Rj+1

fx′→x′ .

Proof: Let cost(d) be the cost for d sent by x to function-
node f in iteration i of E and cost(d)′ be the cost for d sent

7All algorithms we consider are deterministic, thus, executions
of the same algorithm on the same problem are identical.

by x to function-nodes fx and fx′ in iteration j ofE′. In each
of the messages sent in iterations i + 1 and j + 1 in E and
E′ repectively, from each of the function-nodes f , fx and fx′
to x′, the costs for each d′ ∈ Dx′ include the sum of cost(d)
(or cost(d)′ respectively) and the cost of the constraint for the
assignment {〈x, d〉, 〈x′, d′〉}. By definition, the cost in C is
equal to the sum of costs in Cx and Cx′ for this assignment.
Thus, for each value d′ ∈ Dx′ :
[Rj+1

fx→x′ .d
′+Rj+1

fx′→x′ .d
′]−Ri+1

f→x′ .d
′ = 2cost(d)′−cost(d).

Notice that since d was selected in the previous iterations in
both executions (i in E and j in E′), cost(d) and cost(d)′
are constants in iterations i + 1 in E and j + 1 in E′, i.e.,
β = 2cost(d)′ − cost(d). �

The above lemma allows us to generalize the equiva-
lence of the executions of Max-sum ADVP on symmetric
and asymmetric problems. Let DCOP P and ADCOP P ′ be
equivalent and let o be an order on all variables in P . Let E
and E′ be executions of Max-sum ADVP on P and P ′ re-
spectively, both using o to order variable-nodes and SIO on
all constraints, both running for k iterations.

Lemma 2 If in some iteration i < k of E and in some itera-
tion j < k in E′, both executions are using order o (and not
its reverse) and in both executions, for each variable x, the
same value d ∈ Dx is selected, then iteration i+ 1 in E and
iteration j + 1 in E′ are equivalent.

Proof: Immediate from Lemma 1. Since each variable in it-
erations i + 1 in E and j + 1 in E′ receives messages from
function-nodes representing the same constraints, it is clear
that there exists a set of constant scalars {β1, ..., βn} such that
for each variable-node xv , 1 ≤ v ≤ n, the sum of messages it
receives in iteration i+ 1 of E from its function-node neigh-
bors plus βv is equal to the sum of messages that xv receives
in iteration j+1 ofE′ from its function-node neighbors (βv is
the sum of differences between costs received from function-
nodes of each constraint as described in Lemma 1).8 �

Let E and E′ be executions running Max-sum ADVP on
DCOP P and an equivalent ADCOP P ′ respectively. Assume
both are using the same order o on all variable-nodes in P
(and P ′) and SIO on all constraints. Furthermore, assume
they both have the same phase length and start VP after the
same number of iterations.

Proposition 1 If in the first iteration of both E and E′ in
which VP is used, the same value assignments are selected by
all variable-nodes, then all following iterations of E and E′
are equivalent.

Proof: Immediate from Lemma 2. According to the lemma,
in the second iteration the sum of costs the variable-nodes
receive are equal in both executions, hence, the value assign-
ments selected in the second VP iteration will be the same in
both executions. Obviously, this will be true in all the follow-
ing iterations as well. �

The importance of the proposition is that, in contrast to
other algorithms, Max-sum ADVP can maintain its conver-
gence properties and quality of solutions in the ADCOP

8By sum of messages we mean the vector of costs and not the
value selection added for VP of course.
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model, as long as we apply the ordering restrictions and
start from the same initial assignment. We demonstrate
empirically that even if we do not impose the selection
of the same value assignments, the performance of Max-
sum ADVP when solving DCOPs and its performance when
solving ADCOPs are similar. We note that Proposition 1 ap-
plies for standard Max-sum with value propagation (without
ordering restrictions of course) as well. For lack of space
we chose to focus on the proof for Max-sum ADVP because
of its convergence properties and because it produces results
with much higher quality (see Section 5).

On the other hand, execution of Max-sum ADVP solving
an ADCOP that is not using SIO, is not guaranteed to (and
probably will not) be equivalent to its execution when solv-
ing an equivalent DCOP. For example, consider the setup de-
scribed above in Lemma 1. Assume DIO is used and both
variable-nodes x and x′ are ordered after fx and before fx′ .
x and x′ do not receive messages from fx′ throughout the
phase and therefore it is unlikely that the messages the vari-
ables receive from f in E will be equal to the messages they
receive from fx in E′.

If PIO is used then one variable-node receives messages
only from one function-node. Obviously, the messages it
receives will be different from the messages sent by the
function-node in the symmetric case since only part of the
constraint is considered in each phase.

Privacy
A basic motivation for solving ADCOPs is to maintain con-
straint privacy [Grinshpoun et al., 2013]. For lack of space
we omit most of the details of the formal analysis and empir-
ical evaluation we performed, which revealed that all Max-
sum versions we applied to ADCOP, preserve a higher level
of privacy than the ADCOP local search algorithms proposed
in [Grinshpoun et al., 2013],9 and provide only an intuitive
explanation for this and the highlights of the comparison.

Let Ci,j
j be the part of the constraint between Ai and Aj

held by Aj and represented by function-node fj,i. Ci,j
j is

a table that includes a cost for each combination of value
assignments to xi and xj . The entropy for each such con-
straint is calculated by the ratio between the number of pos-
sible tables considering revealed information and the total
number of possible tables [Greenstadt et al., 2006; Grinsh-
poun et al., 2013]. The local search ADCOP algorithms ex-
change entries of these tables. In Max-sum on the other hand,
only in the first two iterations, the costs sent from function-
nodes to variable-nodes are equal to entries in constraint ta-
bles and not to sums of multiple entries (as in complete in-
ference algorithms [Greenstadt et al., 2007]). Moreover, the
cost R1

fj,i→xi
.d reveals some entry in a row of table Ci,j

j and
not a specific entry. Thus, a single entry exchanged in local
search, reduces the entropy approximately as much as Max-
sum reduces the entropy in its entire run. Our experiments10

indicate that the average number of entries that each agent re-
vealed to at least one of its neighbors, when performing the

9Since we start VP only after a large number of iterations, the
additional privacy loss in versions that include VP is negligible.

10Experiments setup details are specified in Section 5.
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Figure 3: Solution cost for low density uniform random prob-
lems (p1 = 0.2)

most private ADCOP local search algorithm, was 3.3 in uni-
form random problems, 4.74 in scale free networks and 12.4
in meeting scheduling problems, where privacy matters most.

5 Experimental Evaluation
We compared the performance of Max-sum versions when
solving ADCOPs in comparison to their performance when
solving symmetric DCOPs and to the most successful local
search algorithms, previously proposed for ADCOPs. More-
over, we demonstrate the advantage of using a non-standard
ICO (PIO) when solving ADCOPs with Max-sum ADVP.

The first set of experiments was performed on different
benchmarks that are commonly used for evaluating DCOP
algorithms: uniform random, scale free networks and meet-
ing scheduling. In each of these we first generated ADCOP
instances and then, their equivalent DCOPs.

The experiments on uniform problems included ADCOPs
with 50 agents, each agent holding exactly one variable with
ten values in its domain. Constraints were generated ran-
domly in each experiment by selecting the probability p1 for
a constraint among any pair of agents/variables. Each cost
held by an agent for a pair of assignments of values to a con-
strained pair of variables (its own variable and another) was
selected uniformly between 1 and 10. The equivalent DCOPs
were generated by summing the two parts of each binary con-
straint into a single symmetric constraint.

We compared the different versions of Max-sum:
Bounded Max-sum, standard Max-sum, Max-sum AD, Max-
sum VP11 and Max-sum ADVP. Each algorithm solved the
same 50 ADCOPs and their equivalent DCOPs. The results
presented are an average over these 50 runs. We also ran sta-
tistical significance tests between all results produced. Max-
sum AD and Max-sum ADVP used a lexicographic order on
the variable-nodes and SIO on all constraints. The phase
lengths in each of them was 100 iterations (the longest pos-
sible path in the DAG, in case the graph has a chain struc-
ture). In all the versions of Max-sum we used random per-
sonal preferences for breaking ties as suggested in [Farinelli
et al., 2008]. For each of the algorithms we averaged over
the sum of costs of constraints included in the assignment it
would have selected, in each iteration.

11This version adds value propagation to standard Max-sum after
200 iterations (just like Max-sum ADVP).
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Figure 3 presents the costs of the solutions found by the five
algorithms when solving problems of relatively low density
(p1 = 0.2). The results presented roughly divide the Max-
sum versions to three sets that produced results with small
differences between them. The standard Max-sum versions,
with and without value propagation and Bounded Max-sum
produce similar results with high costs.12 The only exception
is Bounded Max-sum solving ADCOPs that produces results
with significantly higher costs. The Max-sum VP version
seems to repeatedly shift between alternating solutions, both
when solving symmetric and asymmetric problems. While
the differences between its results and the results of standard
Max-sum are small, they were found to be significantly better.
The Max-sum AD algorithm, when solving both symmetric
and asymmetric problems, performs significantly better than
standard Max-sum and Max-sum VP. Max-sum ADVP for
both types of problems performs best and converges after a
small number of phases. These results are consistent with the
results presented in [Zivan and Peled, 2012] for symmetric
problems. It is apparent that most versions of the algorithm
perform similarly on DCOPs and ADCOPs. The exceptions
are Bounded Max-sum and Max-sum AD. Bounded Max-
sum produces better results when solving symmetric prob-
lems, since the asymmetric problem includes more edges that
need to be removed, thus, more information is lost. The
surprising results are produced by Max-sum AD where in
most phases the algorithm converges to significantly better
results when solving asymmetric problems. The small differ-
ences between the performance of value propagating versions
on symmetric and asymmetric problems are caused since
in the first 200 iterations (two phases in the case of Max-
sum ADVP) values are not propagated.

In order to give a perspective on how the Max-sum ver-
sions perform compared to algorithms that were previously
proposed for ADCOPs we included in the graph the results
of MCS-MGM and GCA-MGM. The first is the incomplete
algorithm that was found to perform best in [Grinshpoun et
al., 2013] and the second is a slightly different version that
guarantees convergence. We also demonstrate how a general
DCOP algorithm (DSA [Zhang et al., 2005]) performs when
solving ADCOPs. Obviously Max-sum ADVP has a signifi-
cant advantage over these algorithms.

Similar results were obtained for uniform problems with
higher density (p1 = 0.6), scale free networks and meeting
scheduling problems (omitted for lack of space). Next, we
investigated the effect of the selection of ICOs on the perfor-
mance of the algorithms that use alternating DAGs.

Figure 4 presents the results when solving random DCOPs
with low density. We ran the algorithms for 5000 itera-
tions each, to allow all algorithms to converge (if possi-
ble). The DIO version of both algorithms failed to con-
verge and produced identical poor results (thus, only one
line is visible). This is probably because in DIO each func-
tion node either does not receive messages or does not send
messages throughout an entire phase. Max-sum AD solving

12In order to avoid density we omitted the DCOP results of Max-
sum and Max-sum VP, which are similar to the ADCOP results pro-
duced by these algorithms.

 

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100

2200

1
2

0
1

4
0

1
6

0
1

8
0

1
1

0
0

1
1

2
0

1
1

4
0

1
1

6
0

1
1

8
0

1
2

0
0

1
2

2
0

1
2

4
0

1
2

6
0

1
2

8
0

1
3

0
0

1
3

2
0

1
3

4
0

1
3

6
0

1
3

8
0

1
4

0
0

1
4

2
0

1
4

4
0

1
4

6
0

1
4

8
0

1
5

0
0

1

C
o

st
 

Iterations 

MaSumADVP SIO

MaxSumADVP PIO

MaxSumADVP DIO

MaxSumADVP DCOP

MaxSumAD SIO

MaxSumAD PIO

MaxSumAD DIO

MaxSumAD DCOP

Figure 4: Solution cost of Max-sum versions using different
ICOs when solving problems with low density (p1 = 0.2)
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Figure 5: Solution cost of Max-sum versions using different
ICOs when solving scale free networks

ADCOPs with SIO performs significantly better than Max-
sum AD solving the equivalent DCOPs. In the case of Max-
sum ADVP, as analyzed in Section 3, the ADCOP version
with SIO performs similar to the DCOP version. On the other
hand, the version using PIO converges to better solutions.
We note that when using PIO, Max-sum ADVP converges
slower, so in case time is critical, SIO is the preferred option.
However, if the algorithm is run for more than 1500 itera-
tions, Max-sum ADVP solving an ADCOP finds better solu-
tions than its DCOP version.13 Similar results were obtained
for denser random problems (omitted for lack of space).

The results for scale free nets [Barabási, 2003] are pre-
sented in Figure 5. The results are similar, but the advantages
of the ADCOP versions that were successful in the uniform
random benchmarks over the DCOP versions are less appar-
ent. Experiments on meeting scheduling problems produced
similar results and were omitted for lack of space.

We note that the communication cost in the ADCOP ver-
sions of Max-sum is exactly two times the cost in the DCOP
versions, i.e., the size of messages remains linear.

6 Conclusion
We adjusted different versions of Max-sum to asymmetric
problems by formulating asymmetric factor-graphs. Our em-
pirical results demonstrate that, in contrast to standard lo-
cal search algorithms, which are not effective for asym-
metric problems, most versions of Max-sum, when solving

13If time is indeed critical, the exact diameter of the graph can be
calculated using a BFS algorithm and the phases can be shorten.
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ADCOPs, produce similar results to the results they pro-
duce when solving standard DCOPs. In fact, versions of
Max-sum with value propagation (as we proved for Max-
sum ADVP) are guaranteed under some restrictions when
solving asymmetric problems, to produce the same results
as when they solve symmetric problems, e.g., in the case of
Max-sum ADVP, to converge to qualitative solutions. The
Max-sum versions were compared to a standard local search
algorithm (DSA) and to local search algorithms that were de-
signed for ADCOPs and overcome the weaknesses of stan-
dard local search by allowing agents to exchange constraints.
Max-sum ADVP was found to have a significant advantage
over these algorithms when solving ADCOPs.

We further demonstrated that the results of versions of
Max-sum that use an order on the nodes of the factor-graph,
are dependent on the selection of the ICOs. While the use
of a standard ICO guarantees for Max-sum ADVP the same
properties it has when solving symmetric problems, by using
a non-standard ICO, a balance between exploration and ex-
ploitation is achieved such that on the benchmarks tested, the
results it produces are even better than the results it produces
when solving symmetric problems.
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