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Abstract
We introduce one-way games, a framework moti-
vated by applications in large-scale power restora-
tion, humanitarian logistics, and integrated supply-
chains. The distinguishable feature of the games
is that the payoff of some player is determined
only by her own strategy and does not depend on
actions taken by other players. We show that the
equilibrium outcome in one-way games without
payments and the social cost of any ex-post effi-
cient mechanism, can be far from the optimum. We
also show that it is impossible to design a Bayes-
Nash incentive-compatible mechanism for one-way
games that is budget-balanced, individually ratio-
nal, and efficient. Finally, we propose a privacy-
preserving mechanism that is incentive-compatible
and budget-balanced, satisfies ex-post individual
rationality conditions, and produces an outcome
which is more efficient than the equilibrium with-
out payments.

1 Introduction
When modeling economic interactions between agents, it is
standard to adopt a general framework where payoffs of indi-
viduals are dependent on the actions of all other decision-
makers. However, some agents may have payoffs that de-
pend only on their own actions, not on actions taken by other
agents. In this paper, we explore the consequences of such
asymmetries among agents. Since these features lead to a re-
stricted version of the general model, the hope is that we can
identify mechanisms that produce efficient outcomes by ex-
ploiting the properties of this specific setting.

A classic application of this setting is Coase’s example of
a polluter and a single victim, e.g., a steel mill that affects
a laundry. The Coase theorem [Coase, 1960] is often inter-
preted as a demonstration of why private negotiations be-
tween polluters and victims can yield efficient levels of pol-
lution without government interference. However, in an influ-
ential article, Hahnel and Sheeran (2009) criticize the Coase
theorem by showing that, under more realistic conditions, it
is unlikely that an efficient outcome will be reached. They
emphasize that the solution is a negotiation, and not a market-
based transaction as described by Coase. As such, incomplete

information plays an important role and game theory and bar-
gaining games can explain inefficient outcomes.

Other real-life applications are found in large-scale restora-
tion of interdependent infrastructures after significant disrup-
tions [Cavdaroglu et al., 2013; Coffrin et al., 2012], human-
itarian logistics over multiple states or regions [Van Hen-
tenryck et al., 2010], supply chain coordination (see, e.g.,
Voigt (2011)), integrated logistics, and the joint planning and
the control of gas and electricity networks. Consider, for in-
stance, the restoration of the power system and the telecom-
munication network after a major disaster. As explained in
[Cavdaroglu et al., 2013], there are one-way dependencies
between the power system and the telecommunication net-
work. This means, for instance, that some power lines must
be restored before some parts of the telecommunication net-
work become available. It is possible to use centralized mech-
anisms for restoring the system as a whole. However, it is
often the case that these restorations are performed by differ-
ent agencies with independent objectives and selfish behavior
may have a strong impact on the social welfare. It is thus im-
portant to study whether it is possible to find high-quality out-
comes in decentralized settings when stakeholders proceed
independently and do not share complete information about
their utilities.

This paper aims at taking a first step in this direction by
proposing a class of two players one-way dependent deci-
sion settings which abstracts some of the salient features
of these applications and formalizes many of Hahnel and
Sheeran’s critiques. We present a number of negative and
positive results on one-way games. We first show that Nash
equilibria in one-way games, under no side payments, can
be arbitrarily far from the optimal social welfare. More-
over, in contrast to Coase theorem, we show that when side
payments are allowed in a Bayes-Nash incentive-compatible
setting, there is no ex-post efficient individually rational,
and budget-balanced mechanism for one-way games. To ad-
dress this negative result, we focus on mechanisms that are
budget-balanced, individually rational, incentive-compatible,
and have a small price of anarchy. Such mechanisms are par-
ticularly useful for rational agents who have incomplete in-
formation about other agents. Our main positive result is a
single-offer bargaining mechanism which under reasonable
assumptions on the players, increases the social welfare com-
pared to the setting where no side payments are allowed.
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2 One-Way Games
One-way games feature two players A and B. Each player
i ∈ A,B has a public action set Si and we write S = SA×SB
to denote the set of joint action profiles. As most commonly
done in mechanism design, we model private information by
associating each agent iwith a payoff function ui : S×Θi →
R+, where ui(s, θi) is the agent utility for strategy profile s
when the agent has type θi. We assume that the player types
are stochastically independent and drawn from a distribution
f that is common knowledge. We denote by Θi the possible
types of player i and write Θ = ΘA ×ΘB . If θ ∈ Θ, we use
θi to denote the type of player i in θ. Similar conventions are
used for strategies, utilities, and type distributions.

A key feature of one-way games is that the payoff
uA((sA, sB), θA) of player A is determined only by her own
strategy and does not depend on B’s actions, i.e.,

∀sA, sB , s′B , θA : uA((sA, sB), θA) = uA((sA, s
′
B), θA).

As a result, for ease of notation, we use uA(sA, θA) to denote
A’s payoff. Obviously, player B must act according to what
player A chooses to do and we use sB(sA, θB) to denote the
best response of player B given that A plays action sA and
player B has type θB , i.e.,

sB(sA, θB) = arg-max
sB∈SB

uB((sA, sB), θB)

where ties are broken arbitrarily. In this paper, we always as-
sume that ties are broken arbitrarily in arg-max expressions.

One-way games assumes that players simultaneously
choose their actions and players are risk-neutral agents.
Hence, if side payments are not allowed, player A will play
an action sNA that yields her a maximum payoff, i.e.,

sNA (θA) = arg-max
sA∈SA

uA(sA, θA),

Player B will pick sNB (θB) such that her expected payoff is
maximized, i.e.,

sNB (θB) ∈ arg-max
sB∈SB

EθA
[
uB(sB(sNA (θA), θB), θB)

]
.

The set of Nash equilibria (NE) is thus characterized by
sN (θ) = (sNA (θA), sNB (θB)) ⊆ S. The best response sNB (θB)
of player B may be a bad outcome for her even when B has a
much greater potential payoff. Player A achieves its optimal
payoff, but our motivating applications aim at optimizing a
global welfare function

SW ((sA, sB), θ) = uA(sA, θA) + uB((sA, sB), θB).

We quantify the quality of the Nash equilibrium outcome with
the price of anarchy (PoA).

Definition 1. The price of anarchy of sN (θ) ⊆ S given type
θ is defined as

PoA(θ) =
maxs∈S SW (s, θ)

mins∈sN (θ) SW (s, θ)
.

Throughout this paper, we use the following simple running
example to illustrate key concepts.

Example 1. Consider the instance where player A has two
possible actions s1A, s

2
A ∈ SA. Action s1A has a payoff dis-

tributed according to a uniform distribution between 0 and
100, while action s2A has a constant payoff of 100. The set
of dominant actions for player B corresponds to the set of
best responses, i.e., sB(s1A) and sB(s2A). We set payoffs to be
uB(sB(s1A)) = x and uB(sB(s2A)) = 0, where x is a pos-
itive constant. When no transfers are allowed, player A will
always play action s2A, yielding a social welfare of 100+0. If
player A plays s1A, her expected payoff is 50 and the expected
social welfare is 50 + x. Thus, the price of anarchy is 50+x

100
if x ≥ 50 and 1 otherwise. Notice that the PoA is unbounded
on x for the Nash equilibrium.
We now quantify the price of anarchy in one-way games.
Proposition 1. In one-way games, the price of anarchy when
no payments are allowed satisfies, for any type θ,

maxs∈S uB(s, θB)

SW (sN (θ), θ)
≤ PoA(θ) ≤ 1 +

maxs∈S uB(s, θB)

maxs∈S uA(s, θA)
.

Proof. Let ui(θi) = maxs∈S ui(s, θi), i ∈ {A,B}. Indepen-
dence of player A implies that, for all θ ∈ Θ, her payoff is
uA(sN (θ), θA) = uA(θA). It follows that

max{uA(θA), uB(θB)}
uA(θA) + uB(sN (θ), θB)

≤ PoA(θ)

≤ uA(θA) + uB(θB)

uA(θA) + uB(sN (θ), θB)
≤ uA(θA) + uB(θB)

uA(θA)

= 1 +
uB(θB)

uA(θA)
.

The price of anarchy can thus be arbitrarily large.
When it is large enough, Proposition 1 indicates that
maxs∈S uB(s, θB) ≥ maxs∈S uA(s, θA). In this case, player
B has bargaining power to incentivize playerAmonetarily so
that she moves from her equilibrium and cooperates to over-
come a bad social welfare. This paper explores this possibil-
ity by analyzing the social welfare when side payments are
allowed.

Related Work Before moving to the main results, it is
useful to discuss related games. One-way games may seem
to resemble Stackelberg games with their notions of leader
and follower. The key difference however is that, in one-way
games, the leader does not depend on the action taken by the
follower. In addition, in one-way games, players do not have
complete information and moves are simultaneous. Jackson
and Wilkie (2005) studied one-way instances derived from
their more general framework of endogenous games. How-
ever, they tackled the problem from a different perspective
and assumed complete information (i.e., the player utilities
are not private). Jackson and Wilkie gave a characterization
of the outcome when players make binding offers of side pay-
ments, deriving the conditions under which a new outcome
becomes a Nash equilibrium or remains one. They analyzed a
subclass, called ’one sided externality’, which is essentially a
one-way game but with complete information. They showed
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that the efficient outcome is an equilibrium in this setting,
supporting Coase’s claim that a polluter and his victim can
reach an efficient outcome. Under perfect information, the
victim can determine the minimal transfer necessary to sup-
port the efficient play. One of the key insights of this paper
is the recognition that this result does not hold under incom-
plete information. To remedy this negative result, we present
a bargaining mechanism.

3 Bayesian-Nash Mechanisms
In this section, we consider a Bayesian-Nash setting with
quasi-linear preferences. Both players A and B have private
utilities and beliefs about the utilities of the other players. By
the revelation principle, we can restrict our attention to di-
rect mechanisms which implement a social choice function.
A social choice function in quasi-linear environments takes
the form of f(θ) = (k(θ), t(θ)) where, for every θ ∈ Θ,
k(θ) ∈ S is the allocation function and ti(θ) ∈ R repre-
sents a monetary transfer to agent i. The main objective of
mechanism design is to implement a social choice function
that achieves near efficient allocations while respecting some
desirable properties. For completeness, we specify these key
properties.
Definition 2. A social choice function is ex-post efficient if,
for all θ ∈ Θ, we have k(θ) ∈ arg-maxs∈S

∑
i ui(s, θ).

Definition 3. A social choice function is budget-balanced
(BB) if, for all θ ∈ Θ, we have

∑
i ti(θ) = 0.

In other words, there are no net transfers out of the system
or into the system. Taken together, ex-post efficiency and
budget-balance imply Pareto optimality. An essential condi-
tion of any mechanism is to guarantee that agents report their
true types. The following property captures this notion when
agents have prior beliefs on the types of other agents.
Definition 4. A social choice function is Bayes-Nash incen-
tive compatible (IC) if for every player i:

Eθ−i|θi [ui(k(θi, θ−i), θi) + ti(θi, θ−i)] ≥

Eθ−i|θi

[
ui(k(θ̂i, θi), θi) + ti(θ̂i, θ−i)

]
where θi ∈ Θi is the type of player i, θ̂i is the type player i
reports, and Eθ−i|θi denotes player i’s expectation over prior
beliefs θ−i of the types of other agents given her own type θi.
The most natural definition of individual-rationality (IR) is in-
terim IR, which states that every agent type has non-negative
expected gains from participation.
Definition 5. A social choice function is interim individual-
rational if, for all types θ ∈ Θ, it satisfies

Eθ−i|θi [ui(k(θ), θi) + ti(θ)] ≥ ui(θi),

where ui(θi) is the expected utility for non-participation.
In the context of one-way games, both players have posi-
tive outside options that depend only in their types. In par-
ticular, the outside options are given by the Nash equilib-
rium outcome under no side payments. For players A and
B, the expected utilities for non-participation are uA(θA) =
uA(sNA (θA), θA) and uB(θB) = uB(sN (θ), θB) respectively.

3.1 Impossibility Result
This section shows that there exists no mechanism for one-
way games that is efficient and satisfies the traditional de-
sirable properties. The result is derived from the Myerson-
Satterthwaite (1983) theorem, a seminal impossibility result
in mechanism design. The Myerson-Satterthwaite theorem
considers a bargaining game with two-sided private informa-
tion and it states that, for a bilateral trade setting, there ex-
ists no Bayes-Nash incentive-compatible mechanism that is
budget balanced, ex-post efficient, and gives every agent type
non-negative expected gains from participation (i.e., ex in-
terim individual rationality).

Our contribution is twofold: we present an impossibility
result for one-way games and we relate them with bargaining
games, an idea that we will further explore on the following
sections. We now formalize the impossibility result for one-
way games.

Consider the Myerson-Satterthwaite bilateral bargaining
setting.

Myerson-Satterthwaite bargaining game:
1. A seller (player 1) owns an object for which

her valuation is v1 ∈ V1, and a buyer (player 2)
wants to buy the object at a valuation v2 ∈ V2.

2. Each player i knows her valuation vi at the time
of the bargaining and player 1 (resp. 2) has
a probability density distribution f2(v2) (resp.
f1(v1)) for the other player’s valuation.

3. Both distributions are assumed to be continu-
ous and positive on their domain, and the inter-
section of the domains is not empty.

By the revelation principle, we can restrict our attention to
incentive-compatible direct mechanisms. A direct mechanism
for bargaining games is characterized by two functions: (1) a
probability distribution σ : V1×V2 → [0, 1] that specifies the
probability that the object is transferred from the seller to the
buyer and (2) a monetary transfer scheme p : V1 × V2 → R2.
In this setting, ex-post efficiency is achieved if σ(v1, v2) = 1
when v1 < v2, and 0 otherwise.

Our result consists in showing that a mechanism M′ for
the Myerson-Satterthwaite setting can be constructed using a
mechanismM for a one-way game in such a way that, ifM is
efficient, individual-rational (IR), incentive compatible (IC),
and budget-balanced (BB), thenM′ is efficient, IR, IC, and
BB. The Myerson-Satterthwaite impossibility theorem states
that such a mechanism M′ cannot exist, which implies the
following impossibility result for one-way games.

Theorem 1. There is no ex-post efficient, individually ratio-
nal, incentive-compatible, and budget-balanced mechanism
for one-way games.

Proof. For any bargaining setting, consider the following
transformation into a one-way game instance:

SA = {s1A, s2A},SB = {sB},

∀v1 ∈ V1 : uA(s1A, v1) = v1, uA(s2A, v1) = 0,

∀v2 ∈ V2 : uB((s1A, sB), v2) = 0, uB((s2A, sB), v2) = v2,

442



where player types (v1, v2) ∈ V1 × V2 are drawn from distri-
bution f1 × f2. Two possible outcomes may occur, (s1A, sB)
or (s2A, sB), with social welfare v1 and v2 respectively.

Let us assume M = (k, t) is a direct mechanism for
one-way games and that M is ex-post efficient, IR, IC, and
BB. We now construct a mechanism M′ = (σ, p), where
σ(v1, v2) is the probability that the object is transferred from
the seller to the buyer and p(v1, v2) is the payment of each
player. We defineM′ such that

σ(v1, v2) =

{
0 if k(v1, v2) = (s1A, sB),

1 if k(v1, v2) = (s2A, sB),

and
p(v1, v2) = t(v1, v2).

It remains to show that M′ satisfies all the desired prop-
erties. An ex-post efficient mechanismM in the one-way in-
stance satisfies

k(v1, v2) =

{
(s1A, sB) if v1 ≥ v2,
(s2A, sB) if v1 < v2.

Therefore, σ(v1, v2) will assign the object to the buyer iff
v1 < v2. That is, the player with the highest valuation will
always get the object, meeting the restriction of ex-post ef-
ficiency. The budget-balanced constraint in M implies that
p1(v1, v2)+p2(v1, v2) = 0 for all possible valuations, soM′
is budget-balanced.

The individual rationality property for M′ comes from
noticing that the default strategy of player A when no pay-
ments are allowed is s1A and the corresponding payoff is v1.
Therefore, the seller utility is guaranteed to be at least her
valuation v1. Analogously, the buyer will not have a negative
utility given that uB((s1A, sB), v2) = 0.

Incentive-compatibility is straightforward from definition.
Assume that M′ is not incentive-compatible, then in mech-
anismM, at least one player could benefit from reporting a
false type.

Such a mechanism M′ cannot exist since it contradicts
Myerson-Satterthwaite impossibility result, which concludes
our proof.

An immediate consequence of this result is that Bayesian-
Nash mechanisms can only achieve at most two of the three
properties: ex-post efficiency, individual-rationality, and bud-
get balance. For instance, VCG and dAGVA [d’Aspremont
and Gérard-Varet, 1979; Arrow, 1979] are part of the Groves
family of mechanisms that truthfully implement social choice
functions that are ex-post efficient. VCG has no guarantee
of budget balance, while dAGVA is not guaranteed to meet
the individual-rationality constraints. We refer the reader to
Williams (1999) and Krishna and Perry (1998) for alterna-
tive derivations of the impossibility result for bilateral trading
under the Groves family of mechanisms.

4 Single-Offer Mechanism
In this section, we propose a simple bargaining mechanism
for player B to increase her payoff. The literature about bar-
gaining games is extensive and we refer readers to a broad
review by Kennan and Wilson (1993).

Given the nature of our applications, individual rationality
imposes a necessary constraint. Otherwise, player A can al-
ways defect from participating in the mechanism and achieve
her maximal payoff independently of the type of player B.
Additionally, we search for Bayesian-Nash mechanisms with-
out subsidies, i.e., budget-balanced mechanisms. The lack of
a subsidiary in this case gives rise to a decentralized mecha-
nism that does not require a third agent to perform the com-
putations needed by the mechanism. However, a third party is
needed to ensure compliance with the agreement reached by
both players.

An interesting starting point for one-way games is the
recognition that, whenever player B has a better payoff than
A, player A may let player B play her optimal strategy in ex-
change for money. The resulting outcome can be viewed as
swapping the roles of both players, i.e., player B chooses her
optimal strategy and A plays her best response to B’s strat-
egy. In this case, as in Proposition 1, the worst outcome would
be

1 +
maxs∈S uA(s, θA)

maxs∈S uB(s, θB)
.

This observation leads to the following lemma.

Lemma 1. Consider the social choice function that selects
the best strategy that maximizes the payoff of either player A
or player B, i.e., the strategy

s′(θ) = arg-max
s∈S

(max (uA(s, θA), uB(s, θB))) .

In the one-way game, strategy s′(θ) has a price of anarchy of
2 (i.e., ∀θ PoA(θ) = 2).

Unfortunately, this social choice function cannot be imple-
mented in dominant strategies without violating individual
rationality. Player A may have a smaller payoff by follow-
ing strategy s′ instead of the Nash equilibrium strategy sN .
Indeed, when SW (s′, θ) < SW (sN , θ), it must be that at
least one of the players will be worse than playing the Nash
equilibrium strategy sN . Lemma 1 however gives us hope for
designing a budget-balanced mechanism that has a constant
price of anarchy. Indeed, a simple and distributed implemen-
tation would ask player B to propose an action to be imple-
mented and playerAwould receive a monetary compensation
for deviating from her maximal strategy.

We now present such a distributed implementation based
on a bargaining mechanism. The mechanism is inspired by
the model of two-person bargaining under incomplete infor-
mation presented by Chatterjee and Samuelson (1983). In
their model, both the seller and the buyer submit sealed of-
fers and a trade occurs if there is a gap in the bids. The price
is then set to be a convex combination of the bids. Our single-
offer mechanism adapts this idea to one-way games. In par-
ticular, to counteract player A’s advantage, player B makes
the first and final offer. Moreover, the structure of our mech-
anism makes it possible to quantify the price of anarchy and
provide quality guarantee on the mechanism outcome. Our
single-offer mechanism is defined as follows:

443



Single-offer mechanism:
1. Player B selects an action sA ∈ SA to propose

to player A.
2. Player B also computes her expected outside

option uNB (θB) = EθA|θB
[
uB(sN (θ), θB)

]
.

3. Player B proposes a monetary value of
γ · ∆B(sA, θB) with ∆B(sA, θB) =
uB(sB(sA, θB), θB)− uNB (θB) and γ ∈ R[0,1]

to player A in the hope that she accepts to play
strategy sA instead of strategy sNA .

4. Player A decides whether to accept the offer.
5. If player A accepts the offer, the outcome of

the game is (sA, sB(sA, θB)); Otherwise the
outcome of the game is the Nash equilibrium(
sNA (θA), sNB (θB)

)
.

It is worth observing that a broker is required in this mecha-
nism to ensure that the outcome

(
sNA (θA), sNB (θB)

)
is imple-

mented if player A rejects the unique offer, and no counterof-
fers are made. A key feature of the single-offer mechanism is
that it requires a minimum amount of information from player
A (i.e., whether she accepts or rejects the offer).

Proposition 2. If playersA andB play the single-offer mech-
anism, player A accepts the offer whenever

uA(sA, θA) + γ ·∆B(sA, θB) ≥ uA(sNA (θA), θA).

We have designed a mechanism that satisfies individual ra-
tionality: Player B never offers more than ∆B(sA, θB) and
her payoff is never worse than her expected outside option.
By Proposition 2, player A is always better off playing the
single-offer mechanism.

Example 2. (Example 1 continued) The payoff of Player B
is higher if action s1A is played by player A. Hence, player
B has incentives to submit an offer c that triggers action s1A.
Player A accepts the offer if c + uA(s1A) ≥ uA(s2A) = 100.
Given that uA(s1A) follows a uniform distribution, the proba-
bility that player A accepts the offer is c

100 and such an offer
has an expected payoff of c

100 · (x− c) for player B. The op-
timal value for the offer is given by c∗ = x

2 . This leads to an
expected social welfare SW = c∗

100 ·(50+x)+(1− c∗

100 ) ·100
for the single-offer mechanism. Recall that the optimal social
welfare is 50 + x if x ≥ 50 and 100 otherwise. Therefore,
the mechanism has a price of anarchy of 50+x

SW ≤ 1.21 if
x ≥ 50 and 100

SW ≤ 1.04 otherwise. This contrasts with the
unbounded PoA obtained by the Nash equilibrium when no
side payments are allowed.

We now generalize the analysis done in Example 2. We
proceed by studying the utility-maximizing strategy (sA, γ)
for playerB and then derive the expected social welfare of the
outcome for the single-offer mechanism. Note that, in case
of agreement, the action of player B of type θB is solely
defined by sA as she has no incentives to defect from its
best response sB(sA, θB). By Proposition 2, player A ac-
cepts an offer whenever ∆A(sA, θA) ≤ γ∆B(sA, θB), where
∆A(sA, θA) = uA(sNA (θA), θA)− uA(sA, θA). Player B ob-
viously aims at choosing γ and sA to maximize her payoff
and we now study this optimization problem. In the case of

an agreement, player B is left with a profit of

uB(sB(sA, θB), θB)− γ ·∆B(sA, θB).

Otherwise, player B gets an expected payoff of uNB (θB).

Definition 6. The expected profit of playersA andB for pro-
posed action s = (sA, sB) and γ when player B has type θB
is given by

EθA [UB(sA, γ, θB)] = uNB (θB)+

P (sA, γ, θB) ((1− γ) ·∆B(sA, θB)) ,

EθA [UA(sA, γ, θB)] = EθA [uNA (θA)] + P (sA, γ, θB)·
(γ∆B(sA, θB)− EθA [∆A(sA, θA)]) ,

where the probability that player A accepts to play sA is de-
fined by

P (sA, γ, θB) = Pr [γ ·∆B(sA, θB) ≥ ∆A(sA, θA)] .

The optimal strategy of player B is specified in the following
lemma.

Lemma 2. On the single-offer mechanism, player B chooses
s∗A(θB) and γ∗(s∗A, θB) such that

s∗A(θB) = arg-max
sA

P (sA, γ
∗(sA, θB), θB) · (1− γ∗(sA, θB)) ·∆B(sA)

where

γ∗(sA, θB) = arg-max
γ

P (sA, γ, θB) · (1− γ).

4.1 Price of Anarchy
We now analyze the quality of the outcomes in the single-
offer mechanism.

The first step is the derivation of a lower bound for the
expected social welfare of the single offer mechanism. In-
spired by Lemma 1, instead of considering all pairs 〈sA, γ〉,
the analysis restricts attention to a single action s′A =
arg-maxsA∈SA uB(sB(sA, θB), θB). We prove that, when
offering to playerA action s′A and its associated optimal value
for γ, the expected social welfare is lower than the optimal
pair 〈s∗A, γ∗〉. As a result, we obtain an upper bound to the
price of anarchy of the single-offer mechanism.

To make the discussion precise, consider the strategy where
player B offers 〈s′A, γ∗(s′A, θB)〉, with γ∗(s′A, θB) being the
optimal choice of γ given s′A, following the notation used in
Lemma 2.

Lemma 3. The expected social welfare achieved by the sin-
gle offer mechanism is at least the expected social welfare
achieved by the strategy 〈s′A, γ∗(s′A, θB)〉.

Proof. Let γ∗ = γ∗(s∗A, θB) and γ′ = γ∗(s′A, θB). The opti-
mality condition of s∗ implies that

EθA [UB(s′, γ′, θB)] ≤ EθA [UB(s∗, γ∗, θB)] . (1)

Two cases can occur. The first case is

P (s′A, γ
′, θB) ≤ P (s∗A, γ

∗, θB),
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i.e., the probabilty of player A accepting offer (s∗A, γ
∗) is

greater than if offered (s′A, γ
′). Then, it must be that the ex-

pected payoff of player A is greater when offered (s∗A, γ
∗),

i.e.,

EθA [UA(s′A, γ
′, θB)] ≤ EθA [UA(s∗A, γ

∗, θB)] .

This, together with Inequality (1) results in the single-offer
mechanism having a greater expected social welfare.

The second case is

P (s′A, γ
′, θB) > P (s∗A, γ

∗, θB).

Consider γ′′ such that P (s′A, γ
′′, θB) = P (s∗A, γ

∗, θB). The
fact that the probabilities of acceptance are the same implies
that the expected payoff of PlayerA is the same in both cases,
i.e., EθA [UA(s′A, γ

′′, θB)] = EθA [UA(s∗A, γ
∗, θB)]. This, to-

gether with Equation (1) yields

EθA [SW (s∗, γ∗, θB)] ≥ EθA [SW (s′, γ′′, θB)].

This is equivalent to

uB(s∗, θB) + EθA [uA(s∗A, θA)] ≥
uB(s′, θB) + EθA [uA(s′A, θA)]. (2)

Similarly, consider γ∗∗ such that

P (s′A, γ
′, θB) = P (s∗A, γ

∗∗, θB),

which implies

EθA [UA(s′A, γ
′, θB)] = EθA [UA(s∗A, γ

∗∗, θB)] .

Existence of γ∗∗ is guaranteed by Inequality (2) which states
that, there is more money in expectation to transfer to player
A when choosing s∗ over s′. The fact that the acceptance
probabilities are the same, together with Inequality (2), im-
plies that

EθA [SW (s∗, γ∗∗, θB)] ≥ EθA [SW (s′, γ′, θB)].

Given that the expected payoff of playerA is the same in both
cases, it must be the case that the expected payoff of player
B is higher when using (s∗A, γ

∗∗).
Therefore, we have found an offer for the single-offer

mechanism with greater expected social welfare and a greater
payoff for player B compared with strategy 〈s′A, γ′〉.

We are ready to derive an upper bound for the induced price
of anarchy for the single-offer mechanism. We first derive the
price of anarchy of strategy 〈s′A, γ′〉 in case of agreement and
disagreement of player A.

Lemma 4. Consider action s′ = arg maxs∈S uB(s, θB) and
let PoAA(γ) and PoAR(γ) denote the induced price of anar-
chy if player A accepts and rejects the offer given a proposed
γ. Then,

PoAA(γ) = 1 + γ and PoAR(γ) = 1 +
1

γ
.

Proof. Define uNA = uA(sNA , θA), u′A = uA(s′, θA) and
u′B = uB(s′, θB). Two cases can occur.

Case u′A + γ∆B(s′A) ≥ uNA . Strategy (s′A, s
′
B) is played.

PoAA ≤ uNA + u′B
u′A + u′B

≤ u′A + u′B + γ · u′B
u′A + u′B

= 1 + γ
u′B

u′A + u′B
≤ 1 + γ.

Case u′A + γ∆B(s′A) < uNA . Player A plays sNA .
γ · uNB ≤ u′A + γ · uNB < u∗A + γ · uB ≤ u∗A + uB then,

PoAR ≤ uNA + u′B
uNA + uNB

≤ 1 +
u′B

uNA + uNB

≤ 1 +
u′B
γ · u′B

= 1 +
1

γ
.

When γ = 1, the price of anarchy is 2 but player B has no
incentive to choose such a value. If γ = 0.5, the price of an-
archy is 3. Of course, player B will choose γ′ = γ∗(s′A, θB).
Lemma 4 indicates that the worst-case outcome is (1 + γ′)
when player A accepts with a probability P (s′A, γ

′, θB) and
(1 + 1

γ′ ) otherwise. This yields the following result.

Theorem 2. The Bayesian price of anarchy for one-way
games is at most

γ′ + 1

γ′
(1− P (s′A, γ

′, θB)(1− γ′)) ,

where
γ′ = arg-max

γ
P (s′A, γ, θB)(1− γ).

To get a better idea of how the mechanism improves the so-
cial welfare, it is useful to quantify the price of anarchy in
Theorem 2 for a specific class of distributions.
Corollary 1. If ∆A(s′A, θA) has a cumulative distribution
function F (x) = (x/∆B)β between 0 and ∆B , with 0 <

β ≤ 1, then γ = β
β+1 and the price of anarchy is at most

(2 +
1

β
)(1− ββ(1 + β)−(β+1)).

For example, if β = 1, then F (x) is the uniform distribution,
γ = 1

2 , and the expected price of anarchy is at most 2.25.
This corollary, in conjunction with Lemma 1, gives us the
cost of enforcing individual rationality, moving from a price
of anarchy of 2 to a price of 2.25 in the case of a uniform
distribution.

The strategy 〈s′A, γ′〉 is of independent interest. It indicates
how a player with limited computational power can achieve
an outcome that satisfies individual rationality without opti-
mizing over all strategies.

5 Conclusion
In one-way games, the utility of one player does not depend
on the decisions of the other player. We showed that, in this
setting, the outcome of a Nash equilibrium can be arbitrar-
ily far from the social welfare solution. We also proved that
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it is impossible to design a Bayes-Nash incentive-compatible
mechanism for one-way games that is budget-balanced, in-
dividually rational, and efficient. To alleviate these negative
results, we proposed a privacy-preserving mechanism based
on a single-offer.

The single-offer mechanism is simple for both parties, as
well as for the broker who just makes sure that the players
follow the protocol. This mechanism also requires minimal
information from the agents who perform all the combina-
torial computations, while it incentivizes them to cooperate
towards the social welfare in a distributed setting. Moreover,
the mechanism has the following desirable properties: It is
budget-balanced and satisfies the individual rationality con-
straints and Bayesian incentive-compatibility conditions. Ad-
ditionally, we showed that, in a realistic setting, where agents
have limited computational resources, a simpler version of the
mechanism can be implemented without overly deteriorating
the social welfare.

It is an open question whether there exists another mecha-
nism (possibly more complex) that could lead to a better ef-
ficiency, while keeping the above properties. Indeed, in one-
way games, player A has a intrinsic advantage over player B,
which is not easy to overcome. There are also many other di-
rections for future research. It is important to generalize one-
way games to multiple players. Moreover, there are applica-
tions where the dependencies are in both directions, e.g., the
restoration of the power and the gas systems considered in
Coffrin et al. (2012). These applications typically have mul-
tiple components to restore and the dependencies form an
acyclic graph. Hence such a mechanism would likely need to
consider this internal structure to obtain efficient outcomes.
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