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Abstract

The Adjusted Winner procedure is an important
mechanism proposed by Brams and Taylor for
fairly allocating goods between two agents. It
has been used in practice for divorce settlements
and analyzing political disputes. Assuming truthful
declaration of the valuations, it computes an allo-
cation that is envy-free, equitable and Pareto opti-
mal. We show that Adjusted Winner admits several
elegant characterizations, which further shed light
on the outcomes reached with strategic agents. We
find that the procedure may not admit pure Nash
equilibria in either the discrete or continuous vari-
ants, but is guaranteed to have e-Nash equilibria
for each ¢ > 0. Moreover, under informed tie-
breaking, exact pure Nash equilibria always exist,
are Pareto optimal, and their social welfare is at
least 3/4 of the optimal.

1

How should one fairly allocate resources among multiple eco-
nomic agents? The question of fair division is as old as
civil society itself [Moulin, 2003], with recorded instances
of the problem dating back to thousands of years ago'. Fair
division has been studied in an extensive body of literature
in economics, mathematics, political science [Moulin, 2003;
Robertson and Webb, 1998; Brams and Taylor, 1996a; Young,
1994], and more recently, computer science, as the fair allo-
cation of resources is arguably relevant to the design of mul-
tiagent systems [Chevaleyre er al., 2006; Procaccia, 2013].
For example, in shared computing environments, resources
such as CPU and memory get multiplexed such that each user
can use their computing unit at their own pace and without
concern for the activity of others accessing the system?.

Introduction

"For example, Hesiod informally describes in The Theogonia
(circa 700 B.C.) a fair division protocol known today as “Cut-and-
Choose”.

This problem was stated by Fernando Corbato (1962) in the
context of developing time-sharing operating systems.

454

Simina Branzei
Aarhus University, Denmark
simina@cs.au.dk

Seren Kristoffer Stiil Frederiksen

Aarhus University, Denmark
ssf@cs.au.dk

The Adjusted Winner procedure was introduced by Brams
and Taylor (1996b) as a highly desirable mechanism for allo-
cating multiple divisible resources among two parties. The
procedure requires the participants to declare their prefer-
ences over the items and the outcome satisfies strong fairness
and efficiency properties. Adjusted Winner has been advo-
cated as a fair division rule for divorce settlements [Brams
and Taylor, 1996b], international border conflicts [Taylor and
Pacelli, 2008], political issues [Denoon and Brams, 1997,
Massoud, 2000], real estate disputes [Levy, 1999], water dis-
putes [Madani, 2010], deciding debate formats [Lax, 1999]
and various negotiation settings [Brams and Taylor, 2000;
Raith, 2000]. For example, it has been shown that the agree-
ment reached during Jimmy Carter’s presidency between Is-
rael and Egypt is very close to what Adjusted Winner would
have predicted [Brams and Togman, 1996]. Adjusted Winner
has been patented by New York University and licensed to the
law firm Fair Outcomes, Inc [Karp et al., 2014].

Although the merits of Adjusted Winner have been dis-
cussed in a large body of literature, the procedure is still not
fully understood theoretically. We provide two novel char-
acterizations, together with an alternative interpretation that
turns out to be very useful for analyzing the procedure.

In addition, as observed already in [Brams and Taylor,
1996a], the procedure is susceptible to manipulation. How-
ever, fairness and efficiency are only guaranteed when the
participants declare their preferences honestly. In a review of
a well-known book on Adjusted Winner by Brams and Taylor
[2000], Nalebuff [2001] highlights the need for research in
this direction:

..thus we have to hypothesize how they (the players)
would have played the game and where they would
have ended up.

In this paper, we answer these questions by studying the ex-
istence, structure, and properties of pure Nash equilibria of
the procedure. Until now, our understanding of the strate-
gic aspects has been limited to the case of two items [Brams
and Taylor, 1996a] and experimental predictions [Daniel and
Parco, 2005]; our work identifies conditions under which
Nash equilibria exist and provides theoretical guarantees for
the performance of the procedure in equilibrium.



Continuous || Lexicographic Informed
Procedure tie-breaking tie-breaking
| pure Nash || X \ v ‘
| e-Nash H v [ v ‘
Discrete || Lexicographic Informed
Procedure tie-breaking tie-breaking
| pure Nash || X [ v |
[Nk | /O | 7

Table 1: Existence of pure Nash equilibria in Adjusted Win-
ner. The (*) result holds when the number of points is chosen
appropriately.

1.1 Our contributions

We start by presenting the first characterizations of Adjusted
Winner. We show that among all protocols that split at most
one item, it is the only one that satisfies Pareto-efficiency and
equitability. Under the same condition, we further show that
it is equivalent to the protocol that always outputs a maxmin
allocation.

Next, we obtain a complete picture for the existence of pure
Nash equilibria in Adjusted Winner. We find the following:
neither the discrete nor the continuous variants of the proce-
dure are guaranteed to have pure Nash equilibria, but they do
have e-Nash equilibria, for every ¢ > 0. Additionally, under
informed tie-breaking, pure Nash equilibria always exist for
both variants of the procedure.

Finally, we prove that the pure Nash equilibria of Adjusted
Winner are envy-free and Pareto optimal with respect to the
true valuations and that their social welfare is at least 3/4 of
the optimal.

Our results concerning the existence or non-existence of
pure Nash equilibria are summarized in Table 1.

2 Background

We begin by introducing the classical fair division model for
which the Adjusted Winner procedure was developed [Brams
and Taylor, 1996a]. Let there be two agents, Alice and Bob,
that are trying to split a set M = {1,...,m} of divisible
items. The agents have preferences over the items given by
numerical values that express their level of satisfaction. For-
mally, leta = (a1, a2,...,a,,)and b = (by, ..., b,,) denote
their valuation vectors, where a; and b; are the values as-
signed by Alice and Bob to item j, respectively.

An allocation W = (W4, Wp) is an assignment of frac-
tions of items (or bundles) to the agents, where W4 =
(wh,...,wq) € [0,1]™ and Wg (wh,...,wy) €
[0, 1]™ are the allocations of Alice and Bob, respectively.

The agents have additive utility over the items. Alice’s
utility for a bundle W4, given that her valuation is a, is:
ua(Wa) = > cp @j - w)y. Bob’s utility is defined similarly.
The agents are weighted equally, such that their utility for re-
ceiving all the resources is the same: » ;.\, a; = > iy bi

There are two main settings studied in this context: discrete
and continuous valuations. In the discrete setting, valuations
are positive natural numbers that add up to some integer P
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and can be interpreted as points (or coins of equal size) that
the agents use to acquire the items. For ease of notation, we
will consider the equivalent interpretation of valuations as ra-
tionals with common denominator P, where the valuations
sum to 1. In the continuous setting, the valuations are positive
real numbers, which are without loss of generality normalized
to sum to 1. These normalizations make procedures invariant
to any rescaling of the bids [Karp et al., 2014; Brams et al.,
2012].

2.1 The Adjusted Winner Procedure

The Adjusted Winner procedure works as follows. Alice and
Bob are asked by a mediator to state their valuations a and b,
after which the next two phases are executed.

Phase 1: For every item 1, if a; > b; then give
the item to Alice; otherwise give it to Bob. The
resulting allocation is (W4, Wg) and without loss
of generality, ua(Wy4) > up(Wp).

Phase 2: Order the items won by Alice increas-

ingly by the ratio a;/b;: a;—l <...< ‘Z:T From

brey N
left to right, continuously transfer fractions of items
from Alice to Bob, until an allocation (W, W)
where both agents have the same utility is pro-

duced: ua(W) = up(Wpg).

Let AW (a, b) denote the allocation produced by Adjusted
Winner on inputs (a, b), where AW 4(a,b) and AWg(a,b)
are the bundles received by Alice and Bob. Note that the
procedure is defined for strictly positive valuations, so the ra-
tios are finite and strictly positive numbers. Examples can be
found on the Adjusted Winner website® as well as in [Brams
and Taylor, 1996a].

Adjusted Winner produces allocations that are envy-free,
equitable, Pareto optimal, and minimally fractional. An al-
location W is said to be Pareto optimal if there is no other
allocation that strictly improves one agent’s utility without
degrading the other agent. Allocation W is equitable if the
utilities of the agents are equal: ua(Wa) = up(Wp), envy-
free if no agent would prefer the other agent’s bundle, and
minimally fractional if at most one item is split.

Envy-freeness of the procedure implies proportionality,
where an allocation is proportional if each agent receives a
bundle worth at least half of its utility for all the items. A
procedure is called envy-free if it always outputs an envy-free
allocation (similarly for the other properties).

3 Characterizations

In this section, we provide two characterizations of Adjusted
Winner* for both the discrete and continuous variants. We
begin with a different interpretation of the procedure that is
useful for analyzing its properties.

An allocation is ordered if it can be produced by sorting
the items in decreasing order of the valuation ratios a;/b;

3http://www.nyu.edu/projects/adjustedwinnery.

“The results here refer to the case when the agents report their
true valuations to the mediator. We discuss the strategic aspects of
the procedure in Section 4.



and placing a boundary line somewhere (possibly splitting an
item), such that Alice gets the entire bundle to the left of the
line and Bob gets the remainder:
a.

> >
b

ak.l akQ
bkz - ka -

Alice’s allocation Bob’s allocation

The placement of the boundary line could lead either to an
integral or a minimally fractional allocation. Note that the
allocation that gives all the items to Alice is also ordered (but
admittedly unfair).

It is clear to see that Adjusted Winner produces an ordered
allocation (using some tie-breaking rule for items with equal
ratios) with the property that the boundary line is appropri-
ately placed to guarantee equitability. This is the way we will
be interpreting the procedure for the remainder of the paper.
We start by characterizing Pareto optimal allocations.

Lemma 1 For any valuations (a,b) and any tie-breaking
rule, an allocation W is not Pareto optimal if and only if there
exist items i and j such that Alice gets a non-zero fraction
(possibly whole) of j, Bob gets a non-zero fraction (possibly
whole) of i, and a;b; > a;b;.

Proof: ( <= ) If such items 4, j exist, then consider the ex-
change in which Bob gives A; > 0 of item ¢ to Alice and
Alice gives A; > 0 of item j to Bob, where

b;

bj

A< A< S

aj

Since a;/a; > b;/b;, such \; and A; do exist. Then Alice’s
net change in utility is:

;
— aj—)\l- = 0,

aiN; — aj)\j > a; )\ Py
J

while Bob’s net change is:

b;

b,

Thus the allocation is not Pareto optimal.

( = ) If the allocation W is not Pareto optimal, then
Alice and Bob can exchange positive fractions of items to get
a Pareto improvement.

Consider such an exchange and let S 4 be the set of items
for which positive fractions are given by Alice to Bob. Let Sp
be defined similarly for Bob. Without loss of generality, S
and Sp are disjoint; otherwise we could just consider the net
transfer of any items that are in both S4 and Sp. Let j € S4
be the item with the lowest ratio a; / bj, and i € Sp with the
highest ratio a; /b;.

If a;b; > a;b; then we are done. Otherwise, assume by
contradiction that for each item k € S, and [ € Spg it holds
arb; > a;by. Then ay /by > a;/b;; but then any Pareto im-
proving exchange involving the transfer of items from S4 and
Sp is only possible if at least one agent gets a larger fraction
of items without the other agent getting a smaller fraction,
which is impossible. O

bj)\j — b\ > bj)\j — bz()\ ) > bj)\j — bj/\j =0.
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By Lemma 1, a Pareto optimal allocation can be obtained
by sorting the items by the ratios of the valuations and draw-
ing a boundary line somewhere. No matter where the bound-
ary line is, the allocation is Pareto optimal (even if not equi-
table); thus an allocation is Pareto optimal and splits at most
one item if and only if it is ordered. From this we obtain our
first characterization.

Theorem 1 Adjusted Winner is the only Pareto optimal, eq-
uitable, and minimally fractional procedure. Any ordered eq-
uitable allocation can be produced by Adjusted Winner under
some tie-breaking rule.

Note that both Pareto optimality and equitability are nec-
essary for the characterization. By restricting to Pareto op-
timal allocations only, then even the allocation that gives all
the items to one agent is Pareto optimal, while by restricting
to equitable allocations only, even an allocation that throws
away all the items is equitable. Similarly when the agents
have identical utilities for some items, then there exist Pareto
optimal and equitable allocations that split more than one
item. For example, if the two agents have identical utilities
over all items, then the allocation that gives half of each item
to each agent is equitable and Pareto optimal. However, in
the case that the valuation are such that a; /b; # a;/b; for all
items i # j, then Adjusted Winner is exactly characterized
by Pareto optimality and equitability.

Theorem 2 If the valuations satisfy a;/b; # a;/b; for all
items i # j, then the only Pareto optimal and equitable allo-
cation is the result of Adjusted Winner.

Proof: Recall first that an allocation is maxmin if it maxi-
mizes the minimum utility of the agents. Notice that AW
achieves the same level of utility for the agents. Now As-
sume there exists an allocation («, ) that is Pareto optimal
and equitable, but not a result of AW. Then the allocation is
not ordered and there exist at least two items ¢ and j such that
both agents get a fraction of them. This contradicts Lemma
1, and so («, B) does not exist. O

An allocation is maxmin if it maximizes the minimum
utility over both agents. From Lemma 3.3 [Dall’ Aglio and
Mosca, 2007], an allocation is maxmin if and only if it is
Pareto optimal and equitable. Together with Theorem 1, this
leads to another characterization.

Theorem 3 Adjusted Winner is equivalent to the procedure
that always outputs a maxmin and minimally fractional allo-
cation.

4 Equilibrium Existence

In this section, we study Adjusted Winner when the agents are
strategic, that is, their reported valuations are not necessarily
the same as their actual valuations. Let x = (z1, za,...,Tm)
andy = (y1,¥o, ..., Tm) be the strategies (i.e. declared val-
uations) of Alice and Bob respectively. Call (x,y) a strategy
profile. We will refer to a and b as the frue values of Alice
and Bob. Note that since strategies are reported valuations
they are positive numbers that sum to 1.



Since the input to Adjusted Winner is now a strategy pro-
file (x,y) instead of (a, b), this means that the properties of
the procedure are only guaranteed to hold with respect to the
declared valuations, and not necessarily the true ones>.

A strategy profile (x,y) is an e-Nash equilibrium if no
agent can increase its utility by more than € by deviating to a
different (pure) strategy. For ¢ = 0, we obtain a pure Nash
equilibrium.

The main result of this section is that e-Nash equilibria al-
ways exist. Furthermore, using an appropriate rule for settling
ties between items with equal ratios x; /y;, the procedure also
has exact pure Nash equilibria. We start our investigations
from simple tie-breaking rules.

The main result of this section is that Adjusted Winner is
only guaranteed to have e-Nash equilibria when ¢ > 0 using
standard tie-breaking. For the discrete case, this is achieved
by the center setting the number of points or equivalently
the denominator large enough. Furthermore, we prove that
when using an appropriate rule for settling ties between items
with equal ratios x; /y;, the procedure does admit pure Nash
equilibria. We start our investigations from the standard tie-
breaking rules.

4.1 Lexicographic Tie-Breaking

The classical formulation of Adjusted Winner resolves ties in
an arbitrary deterministic way, for example by ordering the
items lexicographically, such that items with lower indices
come first.

Continuous Strategies

First, we consider the case of continuous strategies. We start
with the following theorem.

Theorem 4 Adjusted Winner with continuous strategies is
not guaranteed to have pure Nash equilibria.

Proof: Take an instance with two items and valuations (a, b),
where by > a; > ag > by > 0. Assume by contradiction
there is a pure Nash equilibrium at strategies (x,y), where
x=(z,1—z)andy = (y,1 —y). We study a few cases and
show the agents can always improve.

Case 1: (x # y). Wlo.g. z > y (the case x < y is
similar). Then3d € Rwithz - >y=1—-z+d < 1—y,
and Alice can improve by playing x' = (z — 4,1 —x + ), as
the boundary line moves to the left of its former position.

Case 2: (x = y < 1/2). Here both agents report higher
values on the item they like less; Alice’s allocation is (1, \)
while Bob’s is (0,1 — \), for some A € (0,1). Then 3 € R
with © + § < 1/2. By playingy’ = (z 4+ 6,1 — z — 9),
Bob gets (1,1 — \'), for some X' € (0,1). This is a strict
improvement since a; > as.

Case 3: (x = y > 1/2). Both agents report higher val-
ues on the item they like more. Bob gets (1 — 5-,1) and
Alice gets (5, 0), with utilities ua(AW(x,y)) = £ and
un(AW(x,y)) = (1 —5) b1 + bg. Let 6 € (0,min(1 —

SWe will show that in the equilibrium, the procedure guarantees
some of the properties with respect to the true values as well.
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x,2x — 1)) such that § < max 4“;(;:;11), 4€E£biglw) } Ob-

serve that since by > a; and 2z — a; and 2z — b; are positive,
at least one of * — a; and by — x is strictly positive and by
continuity of the strategy space, such a § exists. Now consider
alternative profiles (x’,y) = ((z — 6,1 —x +9), (z,1 — z))
and (x,y") = ((z,1—2), (x+0,1—2—4)). Since 6 < 2x—1,
the first item is still the item that gets split in the new profile.
Using the identities a; +as = b; +by = 1 and the assumption
that (x, y) is a pure Nash equilibrium, we have that

a (1= 2 = 5k5) +a2 S0 — 5> gl
bl(l—%—ﬁ)mgzo — §> faluzn)

and we obtain a contradiction.

Case 4: (x = y = 1/2). Alice and Bob get allocations
(1,0) and (0,1), respectlvely Let 0 < 0 < (bl b2) and
consider the strategy y’ = (x+5 1—z— 5) of Bob. Usmg vy,
Bob gets the allocation (517 +1+0), which is better than (0, 1).
Since by > bs, such § exists.

As none of the cases 1 — 4 are stable, the procedure has no
pure Nash equilibrium. (]

However, we show that Adjusted Winner admits approxi-
mate Nash equilibria.

Theorem 5 Each instance of Adjusted Winner has an e-Nash
equilibrium, for every € > Q.

Proof: Let (a, b) be any instance. We show there exists an e-
Nash equilibrium in which Alice plays her true valuations and
Bob plays a small perturbation of Alice’s valuations. More
formally, we show there exist €q,...,€,,, such that an e-
equilibrium is obtained when Alice plays a = (a1, ..., an)
and Bob plays a = (a1, .. ., @y, ), where @; = a; +¢; for each
item i € [m]and }_." | ¢; = 0. The theorem will follow from
the next two lemmas. O

Lemma 2 For any pair of strategies (a, &), where |a; —a;| <
e/m forall i € [m], Alice’s strategy is an e-best response.

Proof: Since the procedure is envy-free, Alice gets at least
half of the total value by being truthful regardless of Bob’s
strategy, so:

ua(AWa(a,a)) > 1/2.
Assume for contradiction that there is another strategy a’ that
is a better response for Alice. Then it must hold that

ua(AWa(a',a)) > 1/2 + e

Now since strategies a and a are e-close, then ) _, |a; —
€, so it holds that:

us (AWB (a', 5))

(Nll‘ <

ua(AWg(a',a)) + €
1 —ua(AWa(a',a)) +e< 1/2

But since the allocation must also be envy-free according to
Bob’s declared valuation profile a, we have that:

ua(AWg(a',a)) > 1/2
The last inequality gives a contradiction. Thus when Bob’s
strategy is e-close to Alice’s truthful strategy a, Alice’s truth-

ful strategy a is a e-best response, which completes the proof
of the lemma. ]

<



Lemma 3 When Alice plays a, Bob has an e-best response
that is e-close to Alice’s strategy.

Proof: Let 1 = (m1,...,my,) be a fixed permutation of
the items. Then there exist uniquely defined index [ €
{1,...,m} and A € [0, 1) such that

Qry +. ..aﬁl71+)\aﬂl = 3

(I-XNar, +am g+t an, (1)
Note that Adjusted Winner uses lexicographic tie breaking

to sort the items when there exist equal ratios ; /y; = z;/y;,
for some i # j. Thus the order ™ may never appear in an out-
come of the procedure when the agents use the same strate-
gies.

However, we show that Bob can approximate the outcome
of Equation (1) arbitrarily well. We have two cases:

Case I: )\ € (0,1). Then there exist €1, . . ., €, such that
the following conditions hold:

e |¢j| < min (i, 2)‘;’” ), forall j € [m],
o the items are strictly ordered by =: aﬂf’fﬁﬂ >
° Z;nzl € =0,

e it’s still item 7r; that gets split, in a fraction § € (0, 1)

close to \; that is, A — §| < 7.
T

Informally, Bob plays a perturbation of Alice’s truthful
strategy inducing ordering 7 on the items (with no ties) and
splits item 7r; in a fraction close to A.

Case 2: A = 0. Again, there are €1, . .
following conditions hold:

., €m, such that the

e ¢; < min (<, amﬂ) forall j € [m],
23
a1\'1+151r1

A
’
Ay Hemm,

e the item order is 7:

i Z;nzl €; =0,

e item 7 is split in a ratio § close to zero: 0] < 3.
T

. >

Thus Bob can approximate the outcome of Equation (1).

Now consider any e-best response y of Bob; this induces
some permutation of the items according to the ratios. If y is
e-close to the strategy of Alice we are done. Otherwise, Bob
could change his strategy to be e-close to the strategy of Alice
while inducing the same permutation. This will only improve
his utility as the boundary line moves to the left. O

It can be observed that there is at least one other e-Nash
equilibrium, at strategies (b, b), where b is a perturbation of
Bob’s truthful profile.

Discrete Strategies

Even though the continuous procedure is not guaranteed to
have pure Nash equilibria, this does not imply that the dis-
crete variant should also fail to have pure Nash equilibria.
However we do find that this is indeed the case.

Theorem 6 Adjusted Winner with discrete strategies is not
guaranteed to have pure Nash equilibria.
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Proof: Consider a game with 4 items and 7 points, where
Alice and Bob have valuations (1, 1,2, 3) and (2, 3,1, 1), re-
spectively. This game does not admit a pure Nash equilib-
rium; this fact can be verified with a program that checks all
possible configurations. (|

Our next theorem shows that an e-Nash equilibrium always
exists in the discrete case if the number of points is set ad-
equately, such that the agents can approximately represent
their true valuations.

Theorem 7 For any profile (a,b) and any € > 0, there exists
P’ such that the procedure has an e-Nash equilibrium when
the agents are given P’ points.

Proof: Let € > 0, and consider any profile (a, b) with de-
nominator P. Then if we interpret (a,b) as a profile for
the continuous setting, we get a €/2-Nash equilibrium (a, &)
from Theorem 5, where &; = a; + ¢;, for all j € [m].

~

Recall that a;,b; € Q; where a; = % and b; = 7{, for
some s;,t;, € N. We can find a rational number e’j = %
- J

(with g;,r; € N) that approximates €; within 5 for each

j € [m], and such that the ordering of the items induced by

the ratios —— is the same as the one given by —~. Define
a;+e€; a; +ej

a’ such that @ = a; + €.
It follows that (a,a’) is an e-Nash equilibrium with
aj,a; € Q, forall j € [m]. Thus whenever the agents have a

denominator of P = P-J[7., r;, the strategy profiles (a, &’)
can be represented in the discrete procedure, so by giving P’

points to the agents, there exists an e-Nash equilibrium. [

4.2 Informed Tie-Breaking

If the tie-breaking rule is not independent of the valuations,
then both the discrete and continuous variants of Adjusted
Winner have exact pure Nash equilibria. The deterministic
tie-breaking rule under which this is possible is the one in
which one of the agents, for example Bob, is allowed to re-
solve ties by sorting them in the best possible order for him.
Bob can compute the optimal order as outlined in the next
definition.

Definition 1 (Informed Tie-Breaking) Let there be a fixed
agent, for example Bob. Given any strategies (X,y), for each
permutation T, let I € [m] and A, € [0, 1) be the uniquely
defined item and fraction for which:

Try oo Ty F ATy = (L= Ny, + Yy + o F Y,

Let ™ be an optimal permutation with respect to (Xx,y),
namely 7 € argmaxy (1 — X)yx, + Yy +. ..+ Yr,,. Then
under informed tie-breaking, the procedure resolves ties in
the order given by m*.

Note that there might be more than one choice of 7* and
Bob picks any fixed one. Now we can state the equilibrium
existence theorems.

Theorem 8 Adjusted Winner with continuous strategies and
informed tie-breaking is guaranteed to have a pure Nash
equilibrium.



Proof: We show that the profile (a,a) is an exact equilib-
rium. By envy-freeness of the procedure, Alice gets at least
half of the points at this strategy profile. Moreover, she cannot
get strictly above half, since that would violate envy-freeness
from the point of view of Bob’s declared valuation, which is
also a. Thus Alice’s strategy is a best response. As argued
in Theorem 5 and 7, there exists an optimal permutation 7*
such that by playing a and sorting the items in the order 7*,
Bob can obtain the best possible utility (and as mentioned in
Lemma 3, this value is achievable at these strategies). O

Similarly, it can be shown that the strategy profile (a, a) is
a pure Nash equilibrium in the discrete procedure.

Theorem 9 Adjusted Winner with discrete strategies and in-
formed tie-breaking is guaranteed to have a pure Nash equi-
librium.

Proof: Consider the strategy profile (a, a). From Theorem 8,
this is a Nash equilibrium in the continuous case. Since the
strategy space in the discrete procedure is more restricted,
there are no improving deviations here either, and so the the-
orem follows. ]

5 Efficiency and Fairness of Equilibria

Having examined the existence of pure Nash equilibria in Ad-
justed Winner, we now study the fairness and efficiency of
exact equilibria. For fairness, we observe that following. The
reason is that by reporting truthfully, each agent guarantees at
least 1/2 utility [Barbanel and Brams, 2014].

Theorem 10 All the pure Nash equilibria of Adjusted Winner
are envy-free with respect to the true valuations of the agents.

For efficiency, we use the well known measure of the Price of
Anarchy [Koutsoupias and Papadimitriou, 1999; Nisan et al.,
editors 2007].

First, the social welfare of an allocation W is defined as the
sum of the agents’ utilities: SW(W) = us(Wa)+up(Wp).
Then the Price of Anarchy is defined as the ratio between the
maximum social welfare and the welfare of the worst-case
pure Nash equilibrium.

Our main findings are that when the procedure is equipped
with an informed tie-breaking rule () all the pure Nash equi-
libria are Pareto optimal with respect to the true valuations
and (i) the price of anarchy is constant; that is, each pure
Nash equilibrium achieves at least 75% of the optimal social
welfare.

From the previous discussion, it can be observed that in ev-
ery exact equilibrium, Alice and Bob copy each other’s strat-

egy.

Theorem 11 Every Nash equilibrium of Adjusted Winner oc-
curs at “symmetric” strategy profiles, of the form (x,x).

We start with a lemma.

Lemma 4 Let (x,x) be a pure Nash equilibrium of Adjusted
Winner with informed tie-breaking and let ™ be the permu-
tation that Bob chooses. Then, among all possible permuta-
tions, m* maximizes Alice’s utility.

459

Proof: Assume by contradiction that there exists a permuta-
tion 7 that gives Alice a strictly larger utility; let a be her
marginal increase from 7* to w. As discussed in Section
4, Alice can find appropriate constants €y, .. ., €, such that
AW (%', x) with x’ (1 + €1,...,Tm + €) orders the
items by 7 and the allocations AW (x, x) and AW (x’, x) dif-
fer only in the allocation of the split item by by . Moreover,
by continuity of the strategies, for each a, there exist ¢;’s such
that § is small enough for AW (x’,x) to be better for Alice
than AW (x, x). O

Next we show that all equilibria are Pareto optimal.

Theorem 12 All the pure Nash equilibria of Adjusted Winner
with informed tie-breaking are Pareto optimal with respect to
the true valuations a and b.

Proof: Let (x,x) be a pure Nash equilibrium of Adjusted
Winner under informed tie-breaking and let [ be the item that
gets split (if any, otherwise the item to the left of the boundary
line). Order Alice’s items decreasing order of ratios a; /x; and
Bob’s items in increasing order of ratios b; /x;. Since (x, x) is
a pure Nash equilibrium, by Lemma 4, both agents are getting
their maximum utility over all possible tie-breaking orderings
of items. This means that for every item ¢ < [ and every item
j >l with i # j, it holds that
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a;

b;
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which by Lemma 1, implies that AW (x,x) is Pareto
optimal. O

The Pareto optimality of a strategy profile has a direct im-
plication on the social welfare achieved at that profile.

Theorem 13 The Price of Anarchy of Adjusted Winner is
4/3.

Proof: Let (x,y) be any pure Nash equilibrium and let
OPT, and OPTg be the utilities of Alice and Bob respec-
tively in the optimal allocation. Since AW (x,y) is Pareto
optimal by Theorem 12, the allocation for at least one of the
agents, (e.g. Alice), is at least as good as that of the optimal
allocation. In other words, ua (AW (x,y)) > OPT4. On the
other hand, since AW (x,y) is envy-free, Bob’s utility from
AW (x,y) is at least 1/2 which is at least £OPTg. Overall,

the social welfare of AW (x,y) is at least OPT4 + SOPTp
and the ratio is minimized when O PT'4 and O PTg are min-
imum. Since OPT4 > OPTp > 1/2, the ratio is at least
4/3.

The bound is (almost) tight, given by the following simple
instance with two items. Leta = (1 —¢,€¢) and b = (¢, 1 —¢)
and consider the strategy profilex = (¢, 1—¢) andy = (¢, 1—
€). It is not hard to see that x,y is a pure Nash equilibrium
for Alice breaking ties. The social welfare of the optimal
allocation is 2 — 2¢. In the allocation of Adjusted Winner,
Alice wins the first item and the second item is split (almost)
in half. The social welfare of the mechanism is 1 + % +
o(€) and the approximation ratio is (almost) 4/3. As € grows
smaller, the ratio becomes closer to 4/3. O



6 Future Work

According to Foley [1967], the quintessential characteristics
of fairness are envy-freeness and Pareto optimality. We show
that Adjusted Winner is guaranteed to have pure Nash equi-
libria, which satisfy both of these fairness notions. This at-
tests to the usefulness and theoretical robustness of the proce-
dure. A very interesting direction for future work is to study
the imperfect information setting, as the Nash equilibria stud-
ied here require the agents to have full information of each
other’s preferences.
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