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Abstract

We consider discrete protocols for the classical
Steinhaus cake cutting problem. Under mild tech-
nical conditions, we show that any deterministic
strategy-proof protocol for two agents in the stan-
dard Robertson-Webb query model is dictatorial,
that is, there is a fixed agent to which the protocol
allocates the entire cake. For n > 2 agents, a simi-
lar impossibility holds, namely there always exists
an agent that gets the empty piece (i.e. no cake). In
contrast, we exhibit randomized protocols that are
truthful in expectation and compute approximately
fair allocations.

1

In this paper, we consider the classical cake cutting problem
due to Steinhaus [1948] :

Introduction

How can one fairly allocate a divisible good among
multiple agents with private heterogeneous valua-
tions?

Cake cutting is a fundamental problem in fair division. The
cake is a metaphor for a heterogeneous divisible resource,
such as land, time, memory in shared computing systems,
clean water, greenhouse gass emissions, fossil fuels and other
natural deposits. The problem is to fairly divide the resource
among multiple participants, such that everyone is happy with
their allocation.

The model has been studied in a large body of literature
in economics, political science, and mathematics [Brams and
Taylor, 1996; Robertson and Webb, 1998], and has recently
been studied in the computer science community, as prob-
lems in resource allocation and fair division in particular are
arguably relevant for the design of multiagent systems. Ex-
amples include manufacturing and scheduling, airport traf-
fic, and industrial procurement [Chevaleyre et al., 2006;
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Procaccia, 2013]. More recently, the problem of fair divi-
sion is also motivated by the allocation of computational re-
sources (such as CPU, memory, bandwidth) among users of
shared computing systems [Gutman and Nisan, 2012; Kash
et al., 2013], and has emerged as an important topic in artifi-
cial intelligence [Procaccia, 2009; Caragiannis et al., 2011;
Cohler et al., 2011; Brams et al., 2012; Bei et al., 2012;
Aumann et al., 2013; Kurokawa et al., 2013; Branzei et al.,
2013; Chen et al., 2013].

Mathematically, the cake is modeled as the interval [0, 1]
and must be divided among a set N = {1,...,n} of agents.
A piece of cake X is a finite set of disjoint subintervals of
[0,1]. The preferences of each agent ¢ are given by an inte-
grable, non-negative value density function v; : [0,1] — R*
that induces a value for each possible piece of cake. The
valuation of agent i for a piece X is given by V;(X)
Jx vi(z)dz. Without loss of generality, we assume that
each agent ¢ € NN has a value of one for the entire cake:
Vi([0,1]) = 1.

An allocation A = (Aq, ..., A,,) is a partition of the cake
among the agents, that is, each agent i receives the piece A;,
the pieces are disjoint', and J;cy A; = [0,1]. The clas-
sical literature on cake cutting is concerned with obtaining
fair allocations; among the many existing criteria of fairness
we mention proportional, envy-free, and perfect partitions.
For instance, an allocation A is said to be envy-free if for all
agents 4, j € N, V;(4;) > Vi(4;). In the classical literature
on cake cutting, a protocol is said to have a property such as
envy-freeness if each agent ¢ is guaranteed not to be envious
by behaving fruthfully in the protocol (i.e., not misrepresent-
ing its private valuation function), regardless of what the other
agents do.

The classical cake cutting protocols, extensively discussed
by Robertson and Webb [1998], can be divided in two main
classes, namely discrete and moving-knife (or continuous)
protocols. More recently, also direct revelation protocols
were studied [Chen et al., 2013; Mossel and Tamuz, 2010;
Maya and Nisan, 2012]. Discrete protocols enjoy a stan-
dard query model, the Robertson-Webb model, that captures
all existing discrete protocols and models the interaction be-

"For convenience, we actually allow pieces to intersect in a finite
number of points; note that by definition, single points have zero
value to all the agents.



tween the center and the agents through a sequence of queries.
The Robertson-Webb model was employed in a body of work
studying the complexity of cake cutting [Edmonds and Pruhs,
2006b; 2006a; Woeginger and Sgall, 2007; Procaccia, 2009;
Kurokawa et al., 2013] and is also the focus of the present
paper (see formal definition below).

The classical discrete protocols are not strategy-proof
[Chen et al., 2013; Branzei and Miltersen, 2013; Kurokawa
et al., 2013], i.e., there are scenarios (possible behaviors of
the other agents) in which it is possible for an agent to get a
piece of strictly larger value by misrepresenting its valuation
function than by behaving truthfully. This begs the question
of whether alternative strategy-proof protocols can be con-
structed. Addressing this question, Kurokawa et al showed
a negative result: For any number of agents n > 2, there is
no Robertson-Webb protocol of complexity bounded only by
a function of n (i.e., independent of the valuations) that is
strategy-proof and computes an envy-free allocation.

The main results of our paper are impossibility theorems
closely releated to the result of Kurokawa et al., but rather
than stating that no fair allocation can computed, we essen-
tially state that no reasonable allocation can be computed at
all; thus, the ”unfairness conclusions” of our theorems are
stronger. Also, we do not need to make any assumption about
the complexity of the protocols.

For two agents, our result is particularly strong, with a con-
clusion similar to the classical dictatorship results of social
choice theory, in particular the Gibbard-Satterthwaite theo-
rem [Gibbard, 1973; Satterthwaite, 1975], which is a corner-
stone of social choice theory and mechanism design.

Theorem 1. Suppose a deterministic cake cutting protocol
fortwo agents in the Robertson-Webb model is strategy-proof.
Then, restricted to hungry agents, the protocol is a dictator-
ship.

Theorem 2. Suppose a deterministic cake cutting protocol
for n > 3 hungry agents in the Robertson-Webb model is
strategy-proof. Then, in every outcome associated with truth-
ful reports by hungry agents, there is at least one agent that
gets the empty piece (i.e., no cake).

Here, we say that an agent ¢ is hungry if its value density
function v; is hungry, i.e., satisfies v;(z) > 0 for all z.
We say that a protocol is a dictatorship if there is a fixed
agent (the dictator) to whom the entire cake is allocated
in all truthful executions of the protocol, no matter what
the value density functions are>. We say that a protocol is
strategy-proof if for every profile of value density function
it holds that truthful reporting is a dominant strategy for
each agent ¢, when the protocol is viewed as a complete
and perfect information extensive form game where agents
choose strategically what to report.

2This is consistent with the standard meaning of “dictatorship”
in social choice theory: For all preference profiles, the social choice
is the most preferred alternative of the dictator.
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1.1 Comments on the Impossibility Theorems

The theorems refer to the Robertson-Webb model as formal-
ized originally by Woeginger and Sgall [2007]. An alterna-
tive and slightly more permissive formalization is given by
Procaccia [2013]. But in his formalization, protocols such as
the following are allowed:

“Allocate [0, 0.5) to agent I and [0.5,1] to agent 2”

This protocol is clearly strategy-proof but not a dictatorship.
The only difference between the two formalizations is that
the Woeginger-Sgall version requires all cut points to be de-
fined by the agents rather than by the center. This property is
essential for the theorems and their proofs.

Strategy-proofness is a notion more commonly used for
direct revelation protocols than for indirect revelation pro-
tocols like the ones consider here. The definition we use is
our interpretation of the definition stated by Kurokawa et al..
A weaker (i.e., more permissive) notion would be to call an
indirect revelation protocol strategy-proof if the correspond-
ing (by the revelation principle) direct revelation protocol is
strategy-proof, i.e., has truth telling being a dominant strat-
egy. It is easy to see that this weaker notion is equivalent
to truth telling being a Nash equilibrium of each complete in-
formation game defined by the protocol (see, e.g., Proposition
9.23 of Nisan [2007]). It is a very interesting open problem
to extend our results to the weaker notion. One can observe
that the negative result of Kurokawa er al. does extend.

The theorems trivially fail without the restriction to hungry
agents. For instance, the following protocol can be formal-
ized in the Robertson-Webb model and is strategy-proof but
not a dictatorship (unless restricted to hungry agents, in which
case agent 1 becomes the dictator):

Ask agent 1 for an initial segment of the cake worth
as much as the entire cake to him. Assign that seg-
ment to agent 1 and the rest (if any) to agent 2.

The conclusion of Theorem 2 cannot be improved to the pro-
tocol being a dictatorship. Indeed, consider the following pro-
tocol:

“Agent 1 cuts the cake in two pieces of equal value.
Agent 2 takes the piece it prefers. Agent 3 takes the
remaining piece.”

Agent 1 never receives anything, so it has no incentive to mis-
report. Agent 2 can always select its most preferrred piece, so
it has no incentive to lie either. Finally, agent 3 takes the re-
maining piece without making any report; thus the protocol
is strategyproof. However, it is not a dictatorship.

1.2 Organization of the paper

The paper proceeds as follows: In Section 2 we define the
Robertson-Webb model. In Section 3, we prove our two main
theorems. In Section 4, we show that by considering ran-
domized instead of deterministic protocols, there exist mean-
ingful protocols in the Robertson-Webb model that are non-
dictatorial and truthful-in-expectation.



x + Cut (1; %)
a < Eval (2; 1)
if (& > 1) then

allocate [0, z] to Agent 1 and [z, 1] to Agent 2
else

allocate [0, z] to Agent 2 and [z, 1] to Agent 1
end if

Algorithm 1: Cut-and-Choose protocol

2 The Robertson-Webb model

The Robertson-Webb model, as formalized by Woeginger and
Sgall [2007], allows the following two query types between
the protocol and the agents:

e Cut(i;): Agent 4 cuts the cake at a point y where
V:([0, y]) = a. The point y becomes a cut point.

e Eval(i;y): Agent i returns V;([0, y]) where y is a previ-
ously made cut point.

The queries made by the protocol may depend on the outputs
of previous queries. At termination, the cut points define a
partition of the cake into a finite set of intervals that the pro-
tocol allocates to the agents in some specified way.

We illustrate the Robertson-Webb model with the well
known Cut and Choose protocol, which computes an envy-
free and proportional allocation for two agents: () Agent 1
cuts the cake in two pieces that it values equally, (i4) Agent 2
chooses its favorite piece, and (ii7) Agent 1 takes the remain-
der. Cut and Choose can be defined in the Robertson-Webb
model as shown in Algorithm 1.

To make the definition rigorous, we formally define a
Robertson-Webb protocol as an infinite decision tree (see Fig-
ure 1) where each internal node X is labeled with the query
made if X is reached. There is a directed outgoing edge e
from such a node X" for every possible answer to the given
query (i.e., infinitely many), and the node ) reached through
edge e is either an internal node, or a leaf containing the re-
sulting allocation if the path to ) is taken. We require that the
protocol does not ask for information it already knows and
does not accept information from the agents that is inconsis-
tent with previous replies (e.g., reports that implies negatively
valued subintervals). We require that the protocol terminates
(reaches a leaf) for every profile of value density functions,
if agents report truthfully. If truthful reporting according to
a value density function profile v makes the protocol reach a
leaf u, we say that v is associated with u and vice versa.

Without loss of generality, protocols can be assumed to
have alternating Cut and Eval queries: For any protocol M,
there is an equivalent protocol M’ that after every cut asks for
the values for all agents of the newly generated subintervals
and produces allocations identical to M on every instance.
We say that a protocol is strategy-proof if for every profile of
value density function it holds that truthful reporting is a dom-
inant strategy for each agent 7, when the protocol is viewed
as a complete and perfect information extensive form game
where agents choose strategically what to report.

Viewing the protocol as a complete and perfect informa-
tion extensive form game this way in particular entails as-
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Figure 1: Representation of a Robertson-Webb protocol as an
infinite decision tree

suming that all communication between agents and center is
broadcast and accessible to all agents. In addition, the trans-
formation of a protocol M to a protocol M’ with alternating
Cut and Eval queries as described above preserves strategy-
proofness: any extra Eval queries introduced in the transfor-
mation are payoff irrelevant cheap talk” seen from the point
of view of the agents.

3 Proof of the main theorems
We start with a lemma.

Lemma 1. Let M be a strategy-proof Robertson-Webb pro-
tocol for two agents that is not dictatorial when restricted
to hungry valuations. Then, in no leaf of M reached under
truthful reporting for some profile of hungry valuations, is the
entire cake given to a single agent.

Proof. Assume to the contrary that at a reachable leaf u the
entire cake is allocated to a single agent, say, agent 1. Let
v = (v1,v2) be the profile of hungry value density func-
tions associated with u. Since the protocol is not dictatorial
when restricted to hungry agents, there is another reachable
leaf u’ where agent 1 does not receive the entire cake. Let
v/ = (v}, v],) be a profile of hungry value density functions
associated with /. Consider now the outcome when agents
report according to the profile w = (v], v2). It must be the
case that agent 1 receives the entire cake in this outcome;
otherwise the protocol is not strategy-proof, as agent 1 could
misrepresent his value density function as v; and get the en-
tire cake, assuming that the other agent reports according to
vo. But this means that when the protocol is played with pro-
file w, agent 2 would benefit from misrepresenting his value
density function as v}, rather than v, as he would then receive
a non-empty piece rather than nothing at all. This contradicts
the strategy-proofness of M. O

For the proof of the theorems, it is convenient to define a
restricted kind of protocols where the physical locations of
the cut points do not matter; instead, the protocol is only
concerned with the values that the agents have for the gen-
erated pieces. We call such protocols strictly mediated and



observe that in fact, all classical protocols in the Robertson-
Webb model belong to this class. Strict mediation can be
interpreted as the center not having direct access to the cake;
instead, it can only see it through the eyes of the agents.

Definition 1 (Strictly Mediated Protocol). A strictly medi-
ated protocol for n agents is an infinite decision tree contain-
ing two kinds of (internal) nodes — Cut nodes and Eval nodes
— and leaves:

e An Eval node is labeled by a pair of natural numbers
(i,4) and has a successor for each real number o €
(0,1).

e A Cut node is labeled by a pair of natural numbers (i, j)
and a real number o € (0, 1) and has a single successor.

o Each leaf is labeled with a finite sequence of natural
numbers in {1,...,n}.
The semantics is the following. At any point in the execution
(at some node u in the tree), a set of cut points xop = 0 <
1 < X2 < - < xp < Tpy1 = 1 has been defined (where k
is the number of cut nodes above u):

o When an Eval node X with labels (i, j) is reached, agent
i is asked for its value of interval [x;,x;11]; given the
agent’s answer, o € (0,1), execution moves to the suc-
cessor node reached along the edge labeled with the
value a.

When a Cut node with labels (i, j, &) is reached, agent i
is asked to define a new cut point ¥’ somewhere between
xj and 11 so that his value of the interval [x;,x'] is
an a-fraction of his value of the interval [xj,xj11].

When a leaf node with labels (ig, i1, . .., 1) is reached,
each interval (z;, x;11) is allocated to agent i j, with the
cut points themselves given arbitrarily.

For convenience, we have defined strictly mediated pro-
tocols as a separate model rather than as a special case of
Robertson-Webb protocols. However, given a strictly medi-
ated protocol, it is easy to define a Robertson-Webb protocol
that simulates it, so we shall also consider strictly mediated
protocols as a special case of Robertson-Webb protocols.

To get some intuition, consider the following example.

Example 1. Let M be some strictly mediated protocol that
on an execution path reaches a leaf where the cut points dis-
covered are {0.1,0.7}, and the values of the agents for each
subinterval are:

o Agent 1 has: V1([0,0.1]) = vy, V1(]0.1,0.7]) = va.
e Agent 2 has: V5([0,0.1]) = w1, V2([0.1,0.7]) = wa.

Say that M stopped after discovering these values and allo-
cated the subintervals in the order [1,2,1]; that is, agent 1
received [0,0.1] U [0.7, 1], while agent 2 received [0.1,0.7].
Then M has the property that if the answers of the agents re-
sulted instead in a different set of cut points, {x1,x2}, but
the evaluate queries were answered in the same way (i.e.
Vi([0,21]) = v1, Vi([z1,z2]) = ve, V2([0,21]) = wy,
Va([z1, z2]) = w2), then M outputs the same allocation or-
der (i.e. agent 1 gets [0, x1| U [z2, 1] and 2 gets [x1, x2]).

The relevance of the strictly mediated model is apparent
from the following lemma.
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Lemma 2. Assume there exists a strategy-proof protocol M
for n > 2 agents with the property that there exists an out-
come that is associated with a hungry valuation profile and
where every agent receives a non-empty piece. Then there
exists a strategy-proof strictly mediated protocol R with the
same property.

Proof. Rather than formally describe the protocol R as a de-
cision tree, we give an informal description, from which a
formal (but probably less readable) description as a decision
tree could easily be derived. First, we describe the idea of the
construction.

The key constraint that a strictly mediated protocol has to
satisfy is to not let the sequence of queries it makes nor its fi-
nal allocation depend on the exact physical location of the cut
points. It can only let these actions depend on the reports of
the agents. With this in mind, the idea of the protocol R is to
directly simulate the protocol M step by step. But since the
protocol M might have behavior that depends on the physical
location of the cut points, we let R maintain a list of fictitious
or pretend locations y;,¢ = 1,...,k in (0, 1) that it feeds to
M instead of the actual cut points y¢,¢ = 1, ..., k made, pre-
serving order, i.e, with the invariant maintained that y; < y;,
ifand only if y; < y forall ¢,¢’. An alternative point of view
is that R, being strictly mediated, has no precise measuring
device that can determine exactly where the agents make the
cut points, but that it makes its own primitive yardstick as it
goes along, using the cut points actually made by the agents
as marks on its yard stick. However, we also have to make
sure that we preserve the outcome of M where all agents get
a piece. Therefore, R has to be somewhat careful when defin-
ing the fictitious cut points.

Let X be some outcome (leaf) of M that is associated with
a hungry value density function profile and in which all agents
receives a non-empty piece. Concretely, R simulates M as
described in the next cases.

Case 1: Whenever the protocol M wants to ask agent ¢ a cut
query Cut(i; av), the protocol R computes numbers ¢, ', o/
and by a Cut query asks agent ¢ to specify a point y; in
the subinterval [y ; y:] between existing cut points g and
yp for which V;([yy, y:]) = o'. The numbers t',t"”, o/ are
computed so that a truthful agent ¢ will execute exactly the
Cut(4; ) query. This computation can be performed by R
for the following reason. As we explained when we defined
the Roberson-Webb model, we maintain the invariant that all
new subintervals are evaluated by all agents after each Cut
query in the original protocol M. As R simulates M step
by step, R also maintains this knowledge. When agent 1 re-
turns the new cut point y; from the Cut query, the protocol R
needs to find a suitable fictitious cut point y; . There are two
sub-cases:

e In the execution of M, it is still possible to reach X
(i.e., X is a descendant of the Cut(i; &) node that R is
simulating at the moment). In this case, there is a unique
value for the cut point that will keep this possibility open
by keeping the exeuction of M on the path to X. We let
y{ be this unique value.



o In the execution of M, it is no longer possible to reach
X. In this case, we let y; = (y;, + ;) /2.

In both sub-cases, we feed y; back to M as the fictitious
answer to the Cut query Cut(i; o).

Case 2: Whenever M asks agent ¢ an Eval query Eval(i; i)
where yy (v} ) is a new real (fictitious) cut point, R asks agent
i to evaluate [y, yp ] where y” is the largest cut point smaller
than yy (or 0, if no such cut point exists). As y; is an older
cut point, R already knows a report for V;([0,y;~]) and can
return a report for V;([0, y:~]) as the sum of these reports to

M.

Case 3: Finally, when M makes an allocation in the end, R
allocates each subinterval [y, 3] to the agent to which M
allocates (y, Yy ).

Now we check that R has the desired properties:

o By construction, R is strictly mediated.

o By construction, there is an outcome of R associated with
a hungry valuation profile where all agents get a piece of the
cake, namely the hungy value density function profile where
agents answer Eval queries in the way that keeps the execu-
tion of M on the track to X.

o Finally, suppose that R is not truthful. That is, there is a
scenario where an agent, say agent 1, has value density func-
tion v, and there is a strategies o; for agents ¢ = 2,..,nin R,
so that truthful reporting is not an optimal strategy for agent
1. Then some other strategy 7 is strictly better, yielding an
increase in payoff § > 0. We claim that then there is a value
density function v’ for agent 1 and strategies o for agents
1 = 2,..,n in M so that truthful reporting is not an optimal
strategy for agent 1. Hence M is also not truthful, contradict-
ing the assumption on M. We define:

e o’ simply to be any value density function that is consis-
tent with the reports that M receives by R when R is
given input v and

e o/ to be the strategy of reporting to M the way R reports
to M for agent ¢, when agent ¢ plays according to o; in
R.

Then truthful reporting of v’ is not optimal for agent 1 in M,
if all agents ¢ = 2,..,n play according to o;, since agent 1
would get an increase in payoff of § by playing the strategy
7' of reporting to M the way R reports to M for agent 1,
when agent 1 plays using 7 in R. 0

Our next lemma shows that strategy-proof strictly mediated
protocols are very restricted in their behavior.

Lemma 3. Let M be a strictly mediated protocol for n >
2 agents that has some outcome, with an associated hungry
valuation profile, in which each agent receives a non-empty
piece. Then M is not strategy-proof.

Proof. Let X be a leaf of the protocol, associated with a hun-
gry value density function profile v, in which an allocation is
made where all the agents receive a non-empty piece. Denote
by 1 < x2 < --- < xjs the labels of the cut points de-
fined on the path to X. (Note that they were not necessarily

Figure 2: Valuation profile v* at the top and v’ at the bottom.
The cut points z7,..., 2z}, are completely contained in the
interval (z_q,z}).

defined in that order on the path - the indices here indicate
the order of the cut points according to usual ordering of real
numbers. Also note that since the protocol is strictly medi-
ated, x1, ..., x ) are symbolic label names rather than actual
real numbers.) Without loss of generality, assume that M
asks the first Cut query to agent 1. Since the allocation at X
is non-dictatorial, then we have the following:

e agent 1 does not receive the entire cake
e agent 1 receives at least one subinterval, say (zx_1, Zy).

Suppose any concrete sequence ] < ..--- .. < x}, of real
numbers strictly between 0 and 1 is given. By continously
deforming v, we can construct a hungry value density func-
tion profile v* associated with the leaf X so that when the
protocol is executed on v*, the actual cut point with label z;
becomes x. That is, the allocation order (from left to right)
computed by M is the same for both valuations, v* and v’ —
for example, if agent 2 gets the piece [0, 27] on input v*, then
agent 2 also gets the piece [0, )] on input v/, and viceversa.
We shall define two such valuation profiles (see Figure 2),
namely v* (with actual cut points ] < ..--- .. < z},) and
v’ (with actual cut points 2} < --- < ), ). We choose
v* to be an arbitrary hungry profile associated with X. Let
w* be the valuation of agent 1 for his piece in the outcome
associated with v*; since agent 1 does not receive the entire
cake at X, we have that w < 1. The profile v’ is constructed
and its cut points are chosen so that 1:;671 <z <o <
xh; < x},. Moreover, xj,_, is chosen sufficiently close to 0
and a:}C sufficiently close to 1, to ensure that the valuation of
agent 1 for (zp_1, z)) according to v* is strictly larger than
w. Since v’ is associated with X, agent 1 gets the subinterval
(x},_y,z},) when both agents report according to v'.
Consider now the following strategy o; for each other agent
ie{2,...,n}k
1. If agent 1 answers the first cut query according to a val-
uation consistent with v’, then agent ¢ answers for the
remainder of the protocol as if his valuation is also con-
sistent with v,

2. Otherwise, agent ¢ answers truthfully throughout the
protocol.

Observe that since the first Cut query is addressed to agent
1, the answer of the agent will be different under valuations
v* and v’ by choice of the two profiles.

Suppose the true type profile of the agents is v* and agents
2,...,n adopt strategies oo, ..., 0,, respectively. Then, if



agent 1 answers truthfully, it gets in the end a piece worth w
to the agent. However, if agent 1 lies by answering according
to a valuation consistent with v/, then in the end it gets a
piece for which (z;_1,xx) is a subset. Since the value of
agent 1 for this interval alone is strictly larger than w*, M is
not strategy-proof. O

We are now ready to prove our two main theorems.

Proof. (of Theorem 1) Suppose we have a strategy-proof pro-
tocol M which is not a dictatorship when restricted to two
hungry agents. We have by Lemma 1 that it non-trivially
shares the cake between the agents in all outcomes corre-
sponding to truthful reports of hungry value density func-
tions. By Lemma 2, there is a strategy-proof strictly medi-
ated protocol with an outcome in which the cake is shared.
But this contradicts Lemma 3. O

Proof. (of Theorem 2) Suppose we have a strategy-proof pro-
tocol M with some outcome where n > 3 agents get a
non-empty piece. By Lemma 2, there exists a strategy-proof
strictly mediated protocol R with the same property. This
contradicts Lemma 3.

4 Randomized Protocols

In this section we turn to randomized protocols in the
Robertson-Webb model. A randomized protocol can formally
be defined similar to the definition of deterministic protocols
in Section 2, except that the decision tree now contains three
types of internal nodes: cut nodes, evaluate nodes, and chance
nodes. The cut and evaluate nodes are the same as for deter-
ministic protocols, while each chance node X has some num-
ber of directed outgoing edges, each of which is labeled with
the probability of being taken when the execution reaches the
node X.

A protocol M is truthful in expectation if on every in-
stance, the expected utility of an agent ¢ (taken over all ran-
dom coin tosses of M) is the best possible when behaving
truthfully, regardless of the strategies of the other agents.
Mossel and Tamuz [2010] showed a randomized direct rev-
elation protocol that is truthful in expectation and computes
a perfect allocation, that is, an allocation A = (A, ..., A,)
where V;(A;) =1/n,Vi,j € N:

Given as input valuations V1, . . . | V., find a perfect
partition A = (Ay, ..., Ay,) and allocate it using a
random permutation w over {1,...,n} (i.e. agent
i receives the piece Ar,).

Perfect partitions are guaranteed to exist and require at
most n(n — 1)? cuts [Alon, 19871, so the protocol is well-
defined, but not constructive. Here, we observe that we can
“discretize” the Mossel-Tamuz protocol to get an explicit
Robertson-Webb protocol that is truthful in expectation and
computes an “almost perfect” allocation.

Theorem 3. Given € > 0, there is a randomized Robertson-
Webb protocol M, that asks at most O(n?/e) queries, is
truthful in expectation and allocates to each agent a piece of
value between 1/n—e and 1 /n+¢, according to the valuation
functions of all agents.
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K« [L(Z*lq

for each agenti € {1,...,n} do
Ti0 < 0
Ti k41 < 1
foreachj € {1,...,K} do
Tij Cut (i; %)
end for
end for
X « U?:l{a:m, . ,.CL‘i’K}
for each subset Y C X, with |Y| < n(n —1) do
for each allocation (A, ..., A,) definable by cuts in Y’
do
for eachi,j € {1,...,n} do
Ngj < #{k S {0, . ,K} | (xi’]“l'i’]wrl) C AJ}

wij () iy
end for
if (£ -2 <w;;) and (w;; <+ %), foralli,j
then

7 + RANDOMPERMUTATION ({1,...,n})

for each agenti € {1,...,n} do
Wi, < A; // Agent (i) gets piece A;
end for
return W
end if
end for
end for

Algorithm 2: Randomized Robertson-Webb protocol that is
truthful in expectation and almost perfect

Proof. Given € > 0, let M. be the protocol in Algorithm 4.
At a high level, protocol M, asks each agent to divide
the cake in many small cells (X of them) of equal value
1/K; then M, exhaustively enumerates all subsets Y of size
bounded by n(n — 1) from the cut points supplied by the
agents. Given that a perfect partition is guaranteed to exist
on the continuous cake within at most n(n — 1) cuts [Alon,
1987], one of the sets Y is guaranteed to work. That is, M.
finds a set of points Y and an allocation A that uses exclu-
sively cut points in Y such that:

e every point in Y is close to a cut point of a perfect par-
tition A on the continuous cake (within distance at most
1/K from the point of view of each agent)

o the allocation order (from left to right) in A is the same
as the one in A.

Then for each contiguous piece X € A, the value of an agent
¢ for X is the same as agent i’s value for the corresponding
piece X in the perfect partition A, except possibly for a gain
or loss of 2/ K due to estimation errors (at most 1/K at each
endpoint of X) It follows that A approximates A within an
error of at most . Finally, once M. finds an appropriate
partition, it allocates it using a random permutation 7, and so
the expected value of each agent is exactly 1/n, regardless
of the strategies of the other agents, as in the Mossel-Tamuz
protocol. Thus M. is truthful in expectation and e-perfect.

O



5 Discussion

As stated in the introduction, an important open question is
whether the impossibility theorems hold with respect to the
stronger notion of Nash equilibrium. Leaving the Robertson-
Webb model, the question of whether non-dictatorial and fair
direct revelation protocols exist for hungry agents (e.g. with
piecewise constant value density functions) remains open as
well. A partial answer was given for the class of piecewise
uniform valuations [Chen et al., 2013], but these valuations
do not capture hungry agents and, moreover, the protocol of
Chen et al. may discard cake.
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