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Abstract

It is known that Nash equilibria and approximate
Nash equilibria not necessarily optimize social op-
tima of bimatrix games. In this paper, we show that
for every fixed ε > 0, every bimatrix game (with
values in [0, 1]) has an ε-approximate Nash equi-
librium with the total payoff of the players at least
a constant factor, (1 −

√
1− ε)2, of the optimum.

Furthermore, our result can be made algorithmic in
the following sense: for every fixed 0 ≤ ε∗ < ε,
if we can find an ε∗-approximate Nash equilibrium
in polynomial time, then we can find in polynomial
time an ε-approximate Nash equilibrium with the
total payoff of the players at least a constant factor
of the optimum.
Our analysis is especially tight in the case when
ε ≥ 1

2 . In this case, we show that for any bimatrix
game there is an ε-approximate Nash equilibrium
with constant size support whose social welfare is
at least 2

√
ε − ε ≥ 0.914 times the optimal so-

cial welfare. Furthermore, we demonstrate that our
bound for the social welfare is tight, that is, for ev-
ery ε ≥ 1

2 there is a bimatrix game for which every
ε-approximate Nash equilibrium has social welfare
at most 2

√
ε− ε times the optimal social welfare.

1 Introduction
The problem of finding good equilibria in noncooperative
games and understanding their properties is a central prob-
lem in modern game theory. After Nash [Nash, 1951] proved
that every finite game has at least one equilibrium (so-called
Nash equilibrium), the natural question arose whether we
can find one efficiently. After several years of extensive
research, this study has culminated in a proof that finding
a Nash equilibrium is PPAD-complete even for two-players
normal form games [Chen et al., 2009] (see also [Daskalakis
et al., 2009a]), making the task of finding an approximate
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Nash equilibrium one of the central questions in the area of
equilibrium computation.

Since scaling the payoffs by any positive factor, and apply-
ing any additive constant, results in an equilibrium-equivalent
game, one typically considers games with all payoffs normal-
ized to be in the interval [0, 1]. Then, we say a set of mixed
strategies is an ε-approximate Nash equilibrium, if each
player has only at most ε incentive to deflect. The PPAD-
hardness of finding a Nash equilibrium can be extended to
provide a PPAD-hardness of designing a fully polynomial-
time approximation scheme for this problem [Chen et al.,
2009]. In contrast, [Lipton et al., 2003], based on [Al-
thofer, 1994], showed that for every ε > 0, one can find
an ε-approximate Nash equilibrium in quasi-polynomial-time
nO(ε−2 logn) by examining all supports of size O(ε−2 log n).
This work prompted a series of papers [Bosse et al., 2010;
Daskalakis et al., 2007; 2009b; Kontogiannis et al., 2006;
Tsaknakis and Spirakis, 2008] giving polynomial-time al-
gorithms to find an ε-approximate Nash equilibrium for de-
creasing values of ε, culminating with the state of the art re-
sult by [Tsaknakis and Spirakis, 2008], which finds in poly-
nomial time a 0.3393-approximate Nash equilibrium of a
bimatrix game. However, the question whether there is a
polynomial-time approximation scheme (which could run in
time nO(f(1/ε))) still remains one of the central open ques-
tions in the area of equilibria computations.

While the Nash theorem [Nash, 1951] ensures that every fi-
nite two-player game has at least one Nash equilibrium, typ-
ical games posses many equilibria and it is natural to seek
those equilibria that are more desirable than others. One nat-
ural measure of the most desirable equilibria is to maximize
its social welfare, that is, the sum of players’ payoffs. Unlike
the problem of finding a Nash equilibrium, which is known to
be PPAD-complete, finding a Nash equilibrium with maximal
social welfare is known to be NP-hard [Gilboa and Zemel,
1989; Conitzer and Sandholm, 2008], and thus, it is likely
to be computationally even more difficult. In fact, it is even
NP-hard to approximate (to any positive ratio) the maximum
social welfare obtained in an exact Nash equilibrium, even
in symmetric 2-player games [Conitzer and Sandholm, 2008,
Corollary 6]. Therefore, it is natural to ask the question of
computational complexity of finding an ε-approximate Nash
equilibrium that approximates well the optimal social wel-
fare. The mentioned above quasi-polynomial-time algorithm

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

504



by [Lipton et al., 2003] not only finds an ε-approximate Nash
equilibrium, but also the social welfare of the equilibrium
found is an ε-approximation of the social welfare in any Nash
equilibrium. In other words, in quasi-polynomial-time we can
find an arbitrarily good approximate Nash equilibrium with
social welfare near to the best Nash equilibrium. Although
this result raised a hope that it may be possible to extend it
to design a polynomial-time algorithm, there are strong hard-
ness results known now. Hazan and Krauthgamer [Hazan and
Krauthgamer, 2011] show that for a fixed small ε, finding an
ε-approximate Nash equilibrium in a two-player game whose
social welfare is off by at most ε from best Nash equilib-
rium is as hard as finding a hidden clique of size O(log n)
in the random graph Gn,1/2 (see also [Austrin et al., 2013;
Minder and Vilenchik, 2009]). These hardness results have
been further strengthened by Braverman et al. [Braverman et
al., 2015], who showed that assuming the deterministic Ex-
ponential Time Hypothesis (that any deterministic algorithm
for 3SAT requires 2Ω(n) time), there is a constant ε > 0 such
that any algorithm for finding an ε-approximate Nash equilib-
rium whose social welfare is at least (1−ε) times the optimal
social welfare of a Nash equilibrium of the game, requires
2Ω̃(logn) time. The above results demonstrate that it is very
unlikely to obtain a polynomial-time approximation scheme
that for every positive constants ε and ε′ would construct in
polynomial time an ε-approximate Nash equilibrium whose
social welfare is at least (1−ε′) times the optimal social wel-
fare of a Nash equilibrium of the game. We note that for large
ε, a stronger (optimal) result is possible: Austrin et al. [Aus-
trin et al., 2013, Theorem 1.3] gave a polynomial-time al-
gorithm that finds a 1

2 -approximate Nash equilibrium whose
social welfare is as good as that of any Nash equilibrium.

1.1 Approximate Nash equilibria with near
optimal social welfare

In this paper we take a more pragmatic approach and fo-
cus on the analysis of the social welfare in ε-approximate
Nash equilibria in a two-player game for a fixed ε, for the
regime when we know that we can find an ε-approximate
Nash equilibrium. Our goal is more general than that pre-
sented in earlier works, like e.g., in [Austrin et al., 2013;
Braverman et al., 2015; Hazan and Krauthgamer, 2011;
Minder and Vilenchik, 2009]; it is not to compare the social
welfare of an ε-approximate Nash equilibrium to that of any
Nash equilibrium, but rather to compare it with the optimal
social welfare.

It is known that a Nash equilibrium can be arbitrarily far
from the optimal social welfare in a bimatrix game. A sim-
ple example describing this situation is a prisoners’ dilemma
game:

C D
C

(
2
3 ,

2
3

)
(0, 1)

D (1, 0) (δ, δ)

Assuming that δ < 2
3 , the optimal social welfare is

achieved by the strategy profile (C,C) with total payoff of 4
3 ,

but the unique Nash equilibrium is the strategy profile (D,D)
with total payoff of 2δ. Thus, by taking δ arbitrarily small, we

can make the social welfare of a Nash equilibrium arbitrarily
far from the optimal social welfare of a game.

The central question studied in this paper is if we allow
the players up to ε loss to deviate from the best response
strategy, whether we can find a stable strategy profile (an ε-
approximate Nash equilibrium) that guarantees the players a
value close to the social optimum?

We note that, to the best of our knowledge, the known
polynomial-time algorithms to construct an ε-approximate
Nash equilibrium for a constant ε > 0, do not guaran-
tee any welfare for the ε-approximate Nash equilibrium and
they return an ε-approximate Nash equilibrium strategy pro-
file which can be arbitrarily far from the optimal social
welfare (see, e.g., [Bosse et al., 2010; Daskalakis, 2013;
Daskalakis et al., 2007; 2009b; Kontogiannis et al., 2006;
Tsaknakis and Spirakis, 2008] for more details).

1.2 New contributions
In this paper we provide several results showing that for ev-
ery bimatrix game, for every ε > 0, there is always an ε-
approximate Nash equilibrium with near optimal social wel-
fare, at least a constant fraction the optimal social welfare.
Our analysis shows that by considering an appropriate mix-
ture of the optimal strategies and exact or approximate Nash
equilibria, one can find the desired approximate Nash equi-
librium with near optimal social welfare.

We begin with the case when ε ≥ 1
2 , the case for which

it is known that there is always an ε-approximate Nash
equilibrium with constant size support (cf. [Daskalakis et
al., 2009b]). We show that in that case we can find an
ε-approximate Nash equilibrium with constant size support
whose social welfare is at least 2

√
ε − ε ≥ 0.914 times the

optimal social welfare. Furthermore, we demonstrate that our
bound for the social welfare is tight.

Theorem 1 For every ε ≥ 1
2 , we can construct in polynomial

time an ε-approximate Nash equilibrium (and with constant
size support) whose social value is at least 2

√
ε− ε times

the optimal social welfare. Furthermore, there is a bimatrix
game for which for every ε ≥ 1

2 , every ε-approximate Nash
equilibrium has social welfare no more than 2

√
ε− ε times

the optimal social welfare.
In particular, we can construct in polynomial time a 1

2 -
approximate Nash equilibrium whose social welfare is at
least 2

√
2−1
2 ≈ 0.914 times the optimal social welfare.

As a byproduct of our approach, we also obtain a stronger
result for the class of win-lose bimatrix games and show that
for any ε ∈ [ 1

2 , 1], for any win-lose bimatrix game with values
in {0, 1}, we can find in polynomial time an ε-approximate
Nash equilibrium with optimal social welfare (Theorem 5).

The case ε < 1
2 is more challenging and while we do not

have a tight bound for the social welfare in this case, we can
still construct an ε-approximate Nash equilibrium with social
welfare that is at least κε times the optimum, for some posi-
tive constant κε. One challenge in the case ε < 1

2 stems from
the fact that there are bimatrix games with no ε-approximate
Nash equilibrium with constant support (cf. [Feder et al.,
2007]), which requires us to use a different approach than that
in Theorem 1 to deal with this case. Using as a starting point
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ε∗-approximate Nash equilibria with arbitrary social welfare
and ε∗ < ε, we modify them to obtain an ε-approximate Nash
equilibrium with high social welfare to get the following.
Theorem 2 For every fixed positive ε < 1

2 there is a positive
constant κε = (1−

√
1− ε)2, such that every bimatrix game

has an ε-approximate Nash equilibrium with social welfare
at least κε times the optimal social welfare.

Our construction is algorithmic and gives the following.
Theorem 3 Let ε∗ be such that there is a polynomial time
algorithm for finding an ε∗-approximate Nash equilibrium
of a bimatrix game. Then for every fixed positive ε > ε∗,

there is a positive constant ζε,ε∗ = (1−
√

1−ε
1−ε∗ )2, such that

for every bimatrix game one can find in polynomial time an
ε-approximate Nash equilibrium with social welfare at least
ζε,ε∗ times the optimal social welfare.

We also obtain further algorithmic results improving the
bounds for the social welfare above in several special cases
for ε < 1

2 . For example, in the case when the optimal so-
cial welfare is at least 2−3ε

1−ε , then in Theorem 8 we design a
polynomial-time algorithm that finds an ε-approximate Nash
equilibrium with constant support size and with social wel-
fare at least (1 − ε(1−ε)

2−3ε ) ≥ 0.5 times the optimum social
welfare. For this case we will prove that if the optimum so-
cial welfare is less than 2−3ε

1−ε , we need logarithmic support in
order to create an ε-Nash equilibrium.

We will prove Theorem 1 in Section 3 and Theorems 2 and
3 in Section 4.

2 Preliminaries
Consider a two-player normal form game with n strategies
in the disposal of every player and let (R,C) be the payoff
matrices in [0, 1]n×n of the row player and the column player
respectively. If the row player plays the strategy i and the
column player plays the strategy j then the row player’s pay-
off is Rij and the column player’s payoff is Cij . A mixed
strategy x ∈ [0, 1]n is a column vector that describes a prob-
ability distribution on the n pure strategies of a player; a
support of a mixed strategy x is the set of the pure strate-
gies i such that xi > 0. Note that if the row player plays a
mixed strategy x and the column player plays a mixed strat-
egy y the expected payoff of the row player is xTRy and
the expected payoff of the column player is xTCy. The
social welfare is the total payoff of both players, i.e., it is
cost = xTRy + xTCy = xT (R+ C)y.

A Nash equilibrium is a strategy profile (x∗, y∗) such that

x∗TRy∗ ≥ eTi Ry∗ for every i = 1, . . . , n ,

x∗TCy∗ ≥ x∗TCei for every i = 1, . . . , n ,

where ei ∈ [0, 1]n is the column vector with 1 in its coordi-
nate i and 0 elsewhere.

For any ε ≥ 0, an ε-approximate Nash equilibrium is any
strategy profile (x∗, y∗) such that

x∗TRy∗ + ε ≥ eTi Ry∗ for every i = 1, . . . , n ,

x∗TCy∗ + ε ≥ x∗TCei for every i = 1, . . . , n .

Note that a 0-Nash equilibrium is a (exact) Nash equilibrium.
Throughout the paper, we let (i, j) to denote the pure strat-

egy profile that maximizes the sum of the payoffs of the two
players (utilitarian objective). We define opt to be the optimal
social welfare, that is,

∀x, y ∈ [0, 1]nopt = Rij + Cij ≥ xT (R+ C)y . (1)

(Note that i and j can be trivially found in O(n2) time.)
We define the pure strategy r of the row player as the best

response strategy of the row player to the strategy j of the
column player and the pure strategy c of the column player as
the best response strategy of the column player to the strategy
i of the row player. The optimality of the profile (i, j) yields:

opt = Rij + Cij ≥ Ric + Cic , (2)
opt = Rij + Cij ≥ Rrj + Crj . (3)

The central goal of this paper is for a fixed ε ∈ [0, 1], to find
an ε-approximate Nash equilibrium strategy profile (x∗, y∗)
whose social welfare cost is as close to opt as possible.

In our analysis, we will consider several cases depending
on the values of Rrj −Rij and Cic − Cij :
• Rrj −Rij ≤ ε and Cic − Cij ≤ ε,
• Rrj − Rij ≥ ε and Cic − Cij > ε (and the symmetric

case Rrj −Rij > ε and Cic − Cij ≥ ε),
• Rrj − Rij < ε and Cic − Cij > ε (and the symmetric

case Rrj −Rij > ε and Cic − Cij < ε).

We will use the fact that in the first case, whenRrj−Rij ≤
ε and Cic − Cij ≤ ε, the strategy profile (i, j) (which can be
found in polynomial time) is an ε-approximate Nash equilib-
rium, and since it has the optimal social welfare, in this case
we can find an optimal solution by choosing strategy (i, j).
Thus, our main task will be to find a good algorithm to con-
struct an ε-approximate Nash equilibrium in the other cases.

In our analysis, we will separately consider two regimes:
one when ε ≥ 1

2 and one when ε < 1
2 .

3 Approximation with ε ≥ 1
2

We begin with the scenario when ε ≥ 1
2 , proving Theorem 1.

We will show in Section 3.1 that if ε ≥ 1
2 , then one can find an

ε-approximate Nash equilibrium with constant size support
that has an almost optimal social welfare, at least 2

√
ε− ε ≥

0.914 times the optimal social welfare. We will also prove
that our bound is tight for any ε ≥ 1

2 , by showing in Section
3.2 explicit bimatrix games for which every ε-approximate
Nash equilibrium has social welfare no more than 2

√
ε− ε

times the optimal social welfare.
Let us recall that (i, j) is the pure strategy profile that max-

imizes the sum of the payoffs of the two players, and hence
opt = Rij + Cij (cf. (1)). Let us recall that r is the pure
strategy of the row player that is the best response strategy
of the row player to the strategy j of the column player and
that c is the pure strategy of the column player that is the best
response strategy of the column player to the strategy i of the
row player. We will now consider several cases depending on
the values of Rrj −Rij and Cic − Cij .
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Let us first note that it is impossible to have Rrj −Rij ≥ ε
andCic−Cij > ε, or to haveRrj−Rij > ε andCic−Cij ≥ ε
(since these cases are symmetric, we will focus only on the
first one). To show that we cannot have Rrj − Rij ≥ ε and
Cic − Cij > ε, we first observe that these inequalities yield:

Rij ≤ Rrj − ε ≤ 1− ε and Cij < Cic − ε < 1− ε . (4)

Next, Rrj − Rij ≥ ε together with (3) yield Rij + Cij ≥
Rrj +Crj ≥ Rij +ε+Crj , what implies Cij ≥ ε. Similarly,
Cic − Cij > ε and (2) give Rij + Cij ≥ Ric + Cic > Ric +
Cij + ε, and hence Rij > ε. Now, however, we observe that
with the assumption ε ≥ 1

2 , the inequalities above form a
contradiction, and therefore this case cannot happen.

Since we cannot have either of the cases Rrj − Rij ≥ ε
and Cic −Cij > ε, or Rrj −Rij > ε and Cic −Cij ≥ ε, we
only have to consider one of the following three scenarios:
(1) Rrj −Rij ≤ ε and Cic−Cij ≤ ε, (2) Rrj −Rij < ε and
Cic − Cij > ε, (3) Rrj −Rij > ε and Cic − Cij < ε.

We will now consider these cases, depending on the values
of Rrj −Rij and Cic − Cij :
(1) If Rrj − Rij ≤ ε and Cic − Cij ≤ ε, then we know

that the strategy profile (i, j) is an ε-approximate Nash
equilibrium with the optimal social welfare.

(2) If Rrj −Rij < ε and Cic − Cij > ε, then we note that

Cic > Cij + ε ≥ max{Cij , ε} , (5)

and that (2) yields Rij −Ric ≥ Cic − Cij > ε.
Next, we prove a key lemma describing an ε-approximate
Nash equilibrium in our setting.

Lemma 4 Let ε ∈ [ 1
2 , 1],Rrj−Rij < ε, andCic−Cij >

ε. Let p = ε
Cic−Cij

. The strategy profile (i, pj+(1−p)c),
where p is the probability for the column player to play
strategy j and (1−p) is the probability of playing strategy
c respectively, is an ε-approximate Nash equilibrium.

Proof. Let us first notice that p is well defined with 0 <
p ≤ 1 since 0 < ε < Cic − Cij .
Let b be the best response strategy of the row player to
the strategy pj + (1 − p)c of the column player. If the
row player plays strategy i, her incentive to deviate is:

pRbj + (1− p)Rbc − pRij − (1− p)Ric
≤ pRrj + (1− p)− pRij − (1− p)Ric
≤ p + (1− p)− p(Rij −Ric)

= 1− ε · (Rij −Ric)
Cic − Cij

≤ 1− ε ≤ ε .

The first inequality follows from Rbj ≤ Rrj and Rbc ≤
1, the second one because of the fact that Rrj ≤ 1 and
Ric ≥ 0, the third one because Rij + Cij ≥ Ric + Cic,
and the final one follows from the fact that ε ≥ 1

2 .
On the other hand, the incentive to deviate for the column
player when the row player plays i is Cic − pCij − (1−
p)Cic = ε. Hence the strategy profile (i, pj + (1 − p)c)
is an ε-approximate Nash equilibrium. ut

(3) Rrj−Rij > ε andCic−Cij < ε is symmetric to case (2).

3.1 Upper bound in Theorem 1
We now prove that ε-APPROXIMATE NASH (R,C, ε) pre-
sented below, returns an ε-approximate Nash equilibrium
with social welfare at least (2

√
ε − ε)opt. By the argu-

ments above, we only have to consider the following scenar-
ios: (1)Rrj−Rij ≤ ε and Cic−Cij ≤ ε, (2)Rrj−Rij < ε
and Cic − Cij > ε, (3) Rrj −Rij > ε and Cic − Cij < ε.

ε-APPROXIMATE NASH (R,C, ε)

• Find i, j such that Rij + Cij is maximized.

• Find r, c such that Rrj is maximized and Cic is maxi-
mized.

• If Rrj −Rij ≤ ε and Cic − Cij ≤ ε, then return strategy
profile (i, j).

• If Rrj−Rij < ε and Cic−Cij > ε, then set p = ε
Cic−Cij

and return strategy profile (i, pj + (1− p)c).

• If Rrj−Rij > ε and Cic−Cij < ε, then set p = ε
Rrj−Rij

and return strategy profile (pi+ (1− p)r, j).

Let us recall that if Rrj −Rij ≤ ε and Cic−Cij ≤ ε, then
the strategy (i, j) is an ε-approximate Nash equilibrium with
social welfare opt, and therefore the algorithm will return an
optimum solution that is an ε-approximate Nash equilibrium.
Therefore, we only have to consider scenarios (2) and (3).
Since these scenarios are symmetric, we focus only on sce-
nario (2), when Rrj −Rij < ε and Cic −Cij > ε: we prove
that the strategy profile (i, pj + (1 − p)c) with p = ε

Cic−Cij

has social welfare at least (2
√
ε− ε)opt.

The social welfare of our solution is cost = p(Rij+Cij)+
(1− p)(Ric + Cic). Let

ρ =
opt

cost
=

Rij + Cij
p(Rij + Cij) + (1− p)(Ric + Cic)

≤ Rij + Cij
p(Rij + Cij) + (1− p)Cic

. (6)

Observe that if we consider the last bound as a function of
Rij , we obtain a function of the form f(x) = x+β

px+γ , with
0 ≤ p ≤ 1, β = Cij and γ = pCij + (1 − p)Cic. Notice
further that since by (5), we have pCij+(1−p)Cic > pCij+
(1 − p)Cij = Cij ≥ 0, we obtain γ > β ≥ 0. Therefore, by
considering the derivative f ′(x) = γ−pβ

(px+γ)2 > 0, we observe
that f is increasing in x. Thus, the right hand side of (6) takes
the maximum value when Rij is maximum, that is, is equal
to 1, independently from the other variables. Hence,

ρ ≤ 1 + Cij
p + pCij + (1− p)Cic

=
−C2

ij − Cij(1− Cic) + Cic

−Cij(Cic − ε) + Cic(Cic − ε) + ε
. (7)

We note that the right hand side of (7) takes maximum
when Cic = Cij +

√
ε, and hence when p =

√
ε. If we

plug this in (7), then we obtain ρ ≤ 1+Cij

2
√
ε−ε+Cij

. Next, we

observe that since ε ∈ [ 1
2 , 1] we have 2

√
ε−ε ≤ 1, and hence

507



0.5 0.6 0.7 0.8 0.9 1
1

1.02

1.04

1.06

1.08

ε

ρ

Figure 1: Bound for ρ = opt
cost as a function of ε, ε ≥ 1

2 .
Notice that ρ(1) ≤ 1 and ρ( 1

2 ) ≤ 2
2
√

2−1
≈ 1.094.

the right hand side of is decreasing and takes the maximum at
Cij = 0. Therefore ρ ≤ 1

2
√
ε−ε . This completes the proof of

the first part (upper bound) of Theorem 1.
Figure 1 depicts the upper bound as a function of ε.

3.2 Lower bound in Theorem 1
We now show the second part of Theorem 1 and for every ε ∈
[ 1
2 , 1], we present a game for which the social welfare of every
ε-approximate Nash equilibrium is at most (2

√
ε− ε)opt.

Fix ε, 1
2 ≤ ε ≤ 1. Consider a bimatrix game with one

strategy for the row player, strategy i, and with two strategies
for the column player, strategies j and c. Set Rij = 1, Cij =
0, Ric = 0, and Cic =

√
ε, resulting in the following game:

j c
i (1, 0) (0,

√
ε)

The optimal strategy is (i, j) with the social welfare opt = 1.
In order to obtain an ε-approximate Nash equilibrium the col-
umn player needs to randomize between her strategies, play-
ing strategy j with probability p and strategy c with proba-
bility (1 − p). Then, the strategy profile (i, pj + (1 − p)c)
is an ε-approximate Nash equilibrium if and only if

√
ε ≤

(1− p)
√
ε+ ε. This is equivalent to p ≤

√
ε. Conditioned on

this, we bound the social welfare of any ε-approximate Nash
equilibrium for this game. For any 0 ≤ p ≤

√
ε, if we denote

the social welfare of an ε-approximate Nash equilibrium with
fixed p by costp, then we obtain, costp = p + (1 − p)

√
ε ≤√

ε+
√
ε(1−

√
ε) = 2

√
ε− ε. Therefore, since opt = 1, we

conclude that for the game defined above, the social welfare
of every ε-approximate Nash equilibrium is at most 2

√
ε− ε

times the optimal social welfare. This completes the proof of
the second part (lower bound) of Theorem 1.

3.3 Win-lose games with ε ≥ 1
2

We note that for the class of win-lose games, one can easily
show the following stronger bound.

Theorem 5 For any win-lose bimatrix game with values in
{0,1} and any ε ∈ [ 1

2 , 1], we can find in polynomial time an
ε-approximate Nash equilibrium with optimal social welfare.

0 0.1 0.2 0.3 0.4 0.5
0

2

4

6

8

·10−2

ε

ρ

Figure 2: Bound for (1 −
√

1− ε)2 as a function of ε, as in
Theorem 2; (1−

√
1− ε)2 ≈ 0.0858 for ε = 1

2 .

4 Approximation with ε < 1
2

The analysis of the case ε < 1
2 is more complicated and our

results are not as tight as those for the case ε ≥ 1
2 . One

important reason why this case is more challenging is that
for ε < 1

2 , we know that we have to consider large support
size of the strategies. This follows from [Feder et al., 2007],
who showed that for ε < 1

2 , to find an ε-approximate-Nash
equilibrium the support needs to be of size logarithmic in the
number of strategies available to the players.

We begin with a general transformation that takes an ar-
bitrary ε∗-approximate Nash equilibria with arbitrary so-
cial welfare and outputs an ε-approximate Nash equilibrium,
ε∗ < ε, with social welfare at least a constant fraction the
optimal social welfare. This is achieved by considering an
appropriate mixture of a strategy profile with the optimal so-
cial welfare and an ε∗-approximate Nash equilibrium. We
also show that our transformation runs in polynomial time,
and thus if there is a polynomial-time algorithm finding an
ε∗-approximate Nash equilibrium then our scheme can find in
polynomial time an ε-approximate Nash equilibrium, ε∗ < ε,
with social welfare at least a constant fraction the optimal so-
cial welfare. Next, we will analyze the special case where
the social welfare is greater or equal to 2−3ε

1−ε , when we find
ε-approximate Nash equilibria with high social welfare.

4.1 Reducing social welfare
As mentioned earlier, if ε < 1

2 then we cannot hope to find an
ε-approximate Nash equilibrium with constant size support,
which is the approach we used in Section 3. However, we
will show that using an existing ε∗-approximate Nash equi-
librium, ε∗ < ε, with an arbitrary social welfare, we can con-
struct an ε-approximate Nash equilibrium with social welfare
that is at least a constant times optimal, to conclude Theorem
2. We begin with the following key lemma.
Lemma 6 Let 0 ≤ ε∗ < 1, and ε∗ < ε < 1. Let (x∗, y∗) be
the strategy profile of an ε∗-approximate Nash equilibrium.
Then, for p = 1 −

√
(1− ε)/(1− ε∗), the strategy profile

(pi + (1 − p)x∗, pj + (1 − p)y∗) is an ε-approximate Nash
equilibrium with the social welfare cost ≥ p2opt.
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Proof. Since (x∗, y∗) is a strategy profile of an ε∗-
approximate Nash equilibrium, the maximum incentive to
deviate for any player in the strategy profile (x∗, y∗) is ε∗.
Therefore, since under strategies (i, j), (i, y∗), (x∗, j) no
player can improve its payoff by more than 1, we obtain that
if the players play the strategy profile (pi + (1 − p)x∗, pj +
(1 − p)y∗), then the maximum incentive to deviate for any
player is upper bounded by the following:

(1−p)2ε∗+p2 +p(1−p)+p(1−p) = 1−(1−p)2(1−ε∗) .

Hence, to ensure that this strategy is an ε-approximate
Nash equilibrium for 0 ≤ ε∗ < ε < 1, we set p =

1−
√

(1− ε)/(1− ε∗). It is easy to check that 0 ≤ p ≤ 1.
Next, we can bound the social welfare cost = p2(Rij +

Cij) + (1− p)2x∗T (R+C)y∗ ≥ p2(Rij +Cij) = p2opt. ut

Proof of Theorem 2: We choose ε∗ = 0 in Lemma 6 (here
we use Nash theorem [Nash, 1951] to guarantee the existence
of an exact Nash equilibrium (x∗, y∗)) to ensure that one can
use the strategy profile (pi+ (1− p)x∗, pj+ (1− p)y∗) with
p = 1−

√
1− ε to obtain an ε-approximate Nash equilibrium

with cost ≥ p2opt = (1−
√

1− ε)2opt. ut

Our construction above can be trivially transformed into a
polynomial time algorithm, assuming that we have at hand
a polynomial-time algorithm for finding an ε∗-approximate
Nash equilibrium in any bimatrix game. This proves Theorem

3 with ζε,ε∗ = (1−
√

1−ε
1−ε∗ )2. Since the best currently known

value for ε∗ is 0.3393 [Tsaknakis and Spirakis, 2008], this
approach works (currently) only for ε > 0.3393.

4.2 Analysis of the case opt ≥ 2−3ε
1−ε

We consider a special case, when opt ≥ 2−3ε
1−ε , for which

we can construct approximate Nash equilibria with high so-
cial welfare. We will show in Theorem 8 that there is a good
ε-approximate Nash equilibrium that has a constant size sup-
port and high social welfare. This result is complemented by
Theorem 9 that shows that if opt < 2−3ε

1−ε , then an ε-Nash
equilibrium may require a logarithmic size support.

We begin with the case Rrj −Rij < ε and Cic − Cij > ε
(the case Rrj −Rij > ε and Cic − Cij < ε is symmetric).

Lemma 7 Let ε ∈ [0, 1
2 ), Rrj−Rij < ε, Cic−Cij > ε, and

p = 1−ε
−1+2ε+2Rij(1−ε) . If opt ≥ 2−3ε

1−ε then the strategy profile
(i, pj + (1− p)c) is an ε-approximate Nash equilibrium with
social welfare greater than 2−4ε+ε2

2−3ε ·opt = (1− ε(1−ε)
2−3ε ) ·opt.

Proof. We first show that p is well defined with 0 ≤ p ≤ 1.
Since Cic − Cij > ε, we get Cij < 1 − ε. Thus, if opt ≥
2−3ε
1−ε , then opt = Rij + Cij yields Rij ∈ ( 1−ε−ε2

1−ε , 1] and
Cij ∈ [ 1−2ε

1−ε , 1 − ε). Hence, −1 + 2ε + 2Rij(1 − ε) >

−1 + 2ε+ 2(1− ε− ε2) ≥ 1− ε, and thus p is well defined.
Next, we prove that the strategy profile (i, pj + (1 − p)c)

is an ε-approximate Nash equilibrium. Let b be the best
response strategy of the row player to the strategy profile

(pj + (1 − p)c) of the column player. Then the incentive
of the row player to deviate from strategy i is:

pRbj + (1− p)Rbc − pRij − (1− p)Ric ≤ 1− pRij ,

and the incentive of the column player to deviate is:

Cic − pCij − (1− p)Cic = p(Cic − Cij)

≤ p

(
1−

(
2− 3ε

1− ε
−Rij

))
= p

(
Rij −

1− 2ε

1− ε

)
.

Here we use the facts that c is the best response strategy of
the column player to the strategy i of the row player, and that
Cic ≤ 1 and Cij = opt−Rij ≥ 2−3ε

1−ε −Rij .
Our choice of p ensures that p

(
Rij − 1−2ε

1−ε

)
= 1−pRij =

−1+2ε+Rij(1−ε)
−1+2ε+2Rij(1−ε) , which takes the maximum at Rij = 1.

Therefore 1 − pRij ≤ −1+2ε+(1−ε)
−1+2ε+2(1−ε) = ε, what implies that

the strategy profile (i, pj + (1 − p)c) is an ε-approximate
Nash equilibrium. This yields the following lower bound for
the social welfare cost of the strategy profile (i, pj+(1−p)c):

opt

cost
≤

1 + 1−2ε
1−ε

pRij + 1−2ε
1−ε

=
1 + 1−2ε

1−ε
Rij(1−ε)

−1+2ε+2Rij(1−ε) + 1−2ε
1−ε

≤
1 + 1−2ε

1−ε

1− ε+ 1−2ε
1−ε

=
2− 3ε

2− 4ε+ ε2
. ut

With Lemma 7 at hand, we can prove the following.
Theorem 8 Let ε ∈ [0, 1

2 ) and opt ≥ 2−3ε
1−ε . Then one can

find in polynomial-time an ε-approximate Nash equilibrium
with constant support size and with social welfare at least
(1− ε(1−ε)

2−3ε ) · opt ≥ 0.5 · opt.
Proof. We consider three cases:
• If Rrj − Rij ≤ ε and Cic − Cij ≤ ε, then the strategy

profile (i, j) is an ε-approximate Nash equilibrium with
cost = opt.
• If Rrj −Rij ≥ ε and Cic−Cij > ε (the Rrj −Rij > ε

andCic−Cij ≥ ε is symmetric), then opt = Rij+Cij <
(Rrj − ε) + (Cic − ε) ≤ 2(1− ε). But is impossible if
at the same time ε < 1

2 and opt ≥ 2−3ε
1−ε , and therefore

this case cannot happen.
• Finally, if Rrj − Rij < ε and Cic − Cij > ε (the case
Rrj−Rij > ε and Cic−Cij < ε is symmetric), then by
Lemma 7, the strategy profile (i, pj+(1−p)c) with p =

1−ε
−1+2ε+2Rij(1−ε) , is an ε-approximate Nash equilibrium

with social welfare cost ≥ (1− ε(1−ε)
2−3ε ) · opt.

The bound (1− ε(1−ε)
2−3ε )opt ≥ 1

2opt follows from the fact that

in the interval ε ∈ [0, 1
2 ], function 1− ε(1−ε)

2−3ε is non-increasing
in ε, and hence it is minimized at ε = 1

2 with the value 1
2 .

All required strategies can be found in polynomial-time. ut

Theorem 8 ensures that if opt ≥ 2−3ε
1−ε and ε < 1

2 , then
we can create an ε-approximate Nash equilibrium with so-
cial welfare greater than or equal to 1

2opt, which is a superior
upper bound to the general case from Theorem 2.
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Lower bound. We can prove also a lower bound that for
any ε ≤ 1

2 , if opt = 2−3ε
1−ε then for any ε̂ < ε, we may need

support of size Ω(log n) to construct an ε̂-Nash equilibrium.
Theorem 9 Let ε ≤ 1

2 . There exists a bimatrix game (R,C)
in [0, 1]n×n for which the maximum sum of the payoffs of the
players is opt = 2−3ε

1−ε , and for any ε̂ < ε, any ε̂-Nash equi-
librium requires logarithmic support.
Proof. Let k = logn − 2 log log n. Let (R,C) be the two
payoff matrices in [0, 1]n×n in which every entry is chosen
independently at random from the set {(1, 1−2ε

1−ε ), (0, 1)}. We
consider the row player; the case of the column player is anal-
ogous. We will show that with high probability, for any k
columns in the payoff matrix of the column player, there is at
least one row that has all 1s in these k columns.

Fix any set of k columns. The probability that a single
row has at least one 0 in these k columns is 1 − 2−k. Thus,
the probability that every row has at least one 0 in these k
columns is (1 − 2−k)n. Hence, the probability that there is
a set of k columns for which all rows have at least one 0 in
these k columns is at most

(
n
k

)
(1 − 2−k)n. Since our choice

of k yields
(
n
k

)
(1 − 2−k)n � 1, we conclude that with high

probability, for every set of k columns there is at least one row
that has all 1s in these k columns. Analogous arguments hold
for the column player. Let us condition on the two events and
assume that for every set of k columns in the payoff matrix of
the row player there is a row that has all 1s in these columns,
and that for every set of k rows in the payoff matrix of the
column player there is a column that has all 1s in these rows.

Let us assume that there is an ε̂-Nash equilibrium (x∗, y∗)
for some ε̂ < ε ≤ 1

2 , with the support of size k. Let
p =

∑
`,m x

∗
`y
∗
m, where the sum is over all pairs (`,m),

1 ≤ `,m ≤ n, such that (R`m, C`m) = (1, 1−2ε
1−ε ). p is the

probability that the players play the strategy profile (1, 1−2ε
1−ε )

in the ε̂-Nash equilibrium, and 1 − p is the probability that
the players play the strategy profile (0, 1) in the ε̂-Nash equi-
librium. The expected payoff of the row player is p, and the
expected payoff of the column player is p

(
1−2ε
1−ε

)
+ (1− p).

Since (x∗, y∗) is an ε̂-Nash equilibrium, p+ ε̂ ≥ 1 for the
row player, and thus p > 1−ε. Hence, the expected payoff of
the column player is p

(
1−2ε
1−ε

)
+(1−p) = 1− pε

1−ε < 1−ε <
1− ε̂. But this contradicts the condition for the column player
in the assumption that (x∗, y∗) is an ε̂-Nash equilibrium. ut
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