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Abstract

Allocation games are coalitional games defined in
the literature as a way to analyze fair division prob-
lems of indivisible goods. The prototypical solu-
tion concepts for them are the Shapley value and the
Banzhaf value. Unfortunately, their computation is
intractable, formally #P-hard. Motivated by this
bad news, structural requirements are investigated
which can be used to identify islands of tractability.
The main result is that, over the class of allocation
games, the Shapley value and the Banzhaf value
can be computed in polynomial time when inter-
actions among agents can be formalized as graphs
of bounded treewidth. This is shown by means of
technical tools that are of interest in their own and
that can be used for analyzing different kinds of
coalitional games. Tractability is also shown for
games where each good can be assigned to at most
two agents, independently of their interactions.

1 Introduction

Coalitional game theory provides a solid mathematical frame-
work to study scenarios where agents can obtain higher
worths by collaborating with each other rather than by act-
ing in isolation (see, e.g., [Nisan et al., 2007; Osborne and
Rubinstein, 1994]). In abstract terms, a coalitional game G is
a tuple (N, v), where N is a set of agents and v is a function
associating each coalition C' C N with the worth that agents
in C' can guarantee to themselves. The worth can be freely
distributed among the agents and, in fact, the crucial prob-
lem is to single out the most desirable distributions (of the
worth associated with the grand-coalition V), usually called
solution concepts, which can be perceived as fair and stable.

In this paper, we consider the class of allocation games,
which provides a framework to analyze fair division prob-
lems where monetary compensations are allowed and utilities
are quasi-linear [Moulin, 1992]: We are given an allocation
scenario .4 comprising a set of goods and a set of agents, and
each agent is to be assigned at most one good she is interested
in. Each good g has a value val(g) € R and the worth v 4(C)
associated with any coalition C' C N is the maximum overall
value that can be obtained over the assignments to agents in
C only, also called allocations, hereinafter.
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Figure 1: Allocation scenario A in Example 1.1.

Example 1.1. Consider the allocation scenario A that is re-
ported in Figure 1, by using an intuitive graphical notation.
We have a set {g1, g2, g3, g4} of goods that have to be allo-
cated to three agents. Each edge connects an agent to a good
she is interested in. Edges in bold identify an optimal alloca-
tion, i.e., a feasible allocation whose sum of values of the al-
located goods is the maximum possible one. The value of this
allocation is val(g; ) + val(gs) + val(gs) =3+2+1 =6.

For each C C {1,2,3} with C' # (), an optimal allo-
cation restricted to the agents in C' is also reported. Then,
the associated coalitional game is Ga,=({1,2,3},v.4,).
where wvy4,({1,2,3})=6, va,({1,2})=5, wva,({1,3}) =
v, ({2,3})=4, va, ({1}) = v4, ({2})=3, and v.4, ({3})=1. <

Allocation games naturally arise in various application do-
mains, ranging from house allocation to room assignment-
rent division, to (cooperative) scheduling and task allocation,
to protocols for wireless communication networks, and to
queuing problems (see, e.g., [Moulin, 1992; Maniquet, 2003;
Mishra and Rangarajan, 2007; Greco and Scarcello, 2014b]
and the references therein). In these contexts (and when mon-
etary transfers are possible), the prototypical solution con-
cepts considered in the literature are the Shapley value [Shap-
ley, 19531 and the Banzhaf value (or index) [Banzhaf, 1965].
However, it is well known that, in general, computing such
values is #P-complete. This is a serious obstruction to their
applicability in allocation scenarios involving many agents,
and it motivates the design of approximation algorithms and
the identification of subclasses of practical interest where ex-
act computation can be carried out efficiently.

In the paper we focus on the latter approach. For a better
understanding of the problem, we first strengthen the known
hardness results to the case of goods with one possible value
only. Then, we look for islands of tractability of allocations



problems. To this end, we provide a characterization of the
marginal contribution of an agent to any coalition in terms of
certain properties of good allocations, which are not required
to be optimal ones. Such a technical tool allows us to point
out the tractability of allocation games where every good is
shared (or claimed for) by two agents at most.

The main result of the paper, also based on the tool dis-
cussed above and on further ingredients exploiting constraint
satisfaction techniques, is a polynomial-time algorithm for
the computation of the Shapley value and the Banzhaf value
in allocation games where agent interactions have a tree-like
structure—formally, have bounded freewidth [Robertson and
Seymour, 1984]. These games capture scenarios of practical
interest. For instance, we analyzed an instantiation for the
setting described in the Appendix A.1 of the work by [Greco
and Scarcello, 2014b] and referring to an allocation problem
arising in the Italian Research Assessment program. In partic-
ular, we analyzed the publications selected by the researchers
at the University of Calabria for the period 2004-2010, by dis-
covering that the treewidth of the underlying (co-authorship)
graph, consisting of more than 500 nodes, is just 9.

Moreover, the main result and the technical tools used to
get it have their own theoretical interest, since the analysis of
the complexity of reasoning problems related to coalitional
games over classes of instances having some useful structural
property is an active topic of research in artificial intelligence.
For instance, structural tractability results for the related class
of matching games have been recently pointed out by [Aziz
and de Keijzer, 2014]; and our techniques might be used to
attack some of the problems left open there about games with
graphs having bounded treewidth.

2 Formal Framework

Solution Concepts. Coalitional games can be formalized as
tuples G = (N, v) where each coalition C C N is associated
with a real value v(C') meant to encode the worth that agents
in C' obtain by collaborating with each other. A fundamental
problem for a coalitional game G = (N, v) is to single out the
most desirable outcomes, usually called solution concepts, in
terms of appropriate notions of worth distributions, i.e., of
payoff vectors of the form (1, s ZIN|) € RV where z; +
-+ 4| v equals the worth associated with the whole set IV of
agents. In the paper, we focus on the Shapley value, which is
a well-known solution concept such that the payoff associated
with each agent ¢ € N is given by

6:(G) = > w

n!
CCN\{i}

(vicutip) —v(©),

and on the Banzhaf value, for which the payoff of 7 is

6i0) = 5 > (MCULn — (@),

= on—1
CCN\{i}

where v(C' U {i}) — v(C) is the marginal contribution of i to
the coalition C' U {i}.

Allocation Scenario. Assume that a set G of goods have to
be allocated to a set N = {1,...,n} of agents. Each good
g € G is associated with a real value val(g) € R, and each
agent 7 € N can receive at most one good taken from her set
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of interest (i) C G. The tuple A = (N, G, Q,val), with
Q: N = 2¢andval : G — R, is an allocation scenario.

Goods are indivisible and unshareable. Hence, an alloca-
tion for A is a function 7 : N — G U {0} such that: (1) for
each agent i € N, (i) # 0 implies (i) € Q(i); and (2) for
each pair 7,7’ € N with ¢ # i/, 7(¢) N 7(i") = () holds. We
denote by img(m) the set of all goods in the image of m, i.e.,
img(m) = {m(i) | i € N Am(i) # 0}

By slightly abusing of notation, if S C G is a set of goods,
then val(,S) denotes the sum of their values. Moreover, if
is an allocation, then val(m) denotes the value of img(7). An
allocation 7 is optimal (w.r.t. A) if val(w) > val(n’) holds,
for each allocation 7’. The value associated with any optimal
allocation w.r.t. A is hereinafter denoted as opt(.A).

Allocation Games. Let A = (N, G, 2, val) be an allocation
scenario and let C' C N be a set of agents. The restriction of
A to C is the sub-scenario A[C] = (C, G, Q¢,val) where
Q¢ is the restriction of 2 over C. The allocation game in-
duced by A is the tuple G4 = (N,v4), where vq : 2V — R
is such that v 4 (C') = opt(A[C]), for each C C N.

The value of an empty set of goods is 0. Then, the defini-
tion trivializes for C' = @, with v4(@) = 0. Moreover, note
that v4(C) > 0 holds, for each C C N, since the allocation
where no agent receives some good is a feasible one.

The following properties are known to hold on every pair
C,C" of sets of agents such that ¢/ C C C N [Greco and
Scarcello, 2014b; Moulin, 1992]:

(allocation) monotonicity: v4(C) > v4(C"). Moreover, if
7 is an optimal allocation for .A[C', then there is an opti-
mal allocation 7’ for A[C"] such that img(7’) C img(7);

submodularity: v 4 (C'U{i})-v4(C)<v4(C'U{i})-va(C"),
foreachi € N\ C.

3 Intractability of Computation

Computing the Shapley value is a problem that has been
shown to be #P-complete on different classes of games (see,
e.g., [Deng and Papadimitriou, 1994; Nagamochi et al., 1997;
Bachrach and Rosenschein, 2009; Aziz and de Keijzer,
2014]), including the allocation games [Greco and Scarcello,
2014b]. In particular, hardness has been shown to hold even
on instances whose goods have three possible values. Below,
we improve the result by showing that there is no advantage
in focusing on scenarios where all goods have the same value.
To this end, we first focus on the Banzhaf value.

Theorem 3.1. Computing the Banzhaf value is #P-hard on
allocation games (under Turing reductions), even for scenar-
ios A= (N,G,Q,val) such that |[{val(g) | g € G}| = 1.

Proof Sketch. Let (SUI, E) be a bipartite graph, hence with
SNI=@and E C S x I. Computing the number of subsets
C C S of vertices to which all vertices in I can be matched
is #P-hard [Colbourn et al., 1995].

Based on (S U I, E), let us build the allocation scenario
A= (SU{|S|+ 1},1,9,val) where nodes in S (resp., I)
are transparently viewed as the agents (resp., goods), where
val(g) = 1 for each g € I, and where Q(i) = {g € I |



{i,9} € E} while Q(|S| + 1) = I. Consider then the alloca-
tion game G4 = (N,v4) with N = S U {|S| + 1}, and the
Banzhaf value f35)11(G.4). Observe that, for any given coali-
tion C C S = N\{|S|+1},v(CU{|S|+1})—v(C) = 0if,
and only if, C' C S'is a set of vertices to which all vertices in
I can be matched. Eventually, §)5/4+1(G4) X 251 is the num-
ber of subsets C' C S for which some vertex in I cannot be
matched, and 2/ — B)s|+1 (Ga) x 2151 is the desired number,
which can be computed in polynomial time once the Banzhaf
value fs|+1(G.4) is known. O

This result is a key ingredient to prove the following.

Theorem 3.2. Computing the Shapley value is #P-hard on al-
location games (under Turing reductions), even for scenarios

A= {(N,G,Q,val) such that |{val(g) | g € G}| = 1.

Proof Idea. The result is established by showing that the
Banzhaf value of allocation games can be computed in poly-
nomial time based on the knowledge of the Shapley value, so
that this latter concept turns out to be #P-hard too. This prop-
erty was known to hold over (certain) simple games [Aziz et
al., 2009]. For its proof, we exploit some of the arguments of
that paper and the fact that, for each agent ¢ € IV, the Shapley
value and the Banzhaf value can be rewritten as follows:

n—1
ou(G0) =3 M D s 6. ),
h=0 ’
1 n—1 (l)
ﬂz(gA) :2n_1 Z Bi(gAv h)’
h=0

where, for each h € {0, ...,n — 1}, it holds that 8;(G 4, h)
2cem iy o)=n(0(C U{i}) —v(C)).

From these results, it turns out that acting on the values of
goods does not help very much in identifying tractable classes
of instances. So, we next consider different kinds of restric-
tions based on the “interactions” that emerge among agents.

4 Characterizations of The Shapley Value

Throughout the section, assume that an allocation scenario
A= (N,G,Q,val) is given. Let {wy, ..., wn, } = {val(g) |
g € G} U {0} be the set of all values associated with goods
in G (plus the null value 0, if not present), and assume that
wy > wg > - -+ > Wy, W.lo.g, assume also that w,,, = 0.

4.1 A Closer Look at Marginal Contributions

We start with a simple reformulation. Let ¢ € N be an agent,
let h € {0,....n — 1}, let £ € {1,...,m}, and let us denote
by #¢c(Ga, h) the number of coalitions C' such that |C| = h
and v4(C U {i}) — va(C) > we. Then, the coefficients
B:(G 4, h) in the expressions illustrated in Equation (1) can
be rewritten as follows, by simple algebraic manipulations
and by exploiting the monotonicity of allocation games.

Theorem 4.1. For each agenti € N and h € {0,...,n —

Bi(Ga,h) = w1 x #1(Ga,h)+ _
oo we X (#ep(Ga, h) —#ei_1(Ga, h)) .

1,
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Hence, counting the number of coalitions to which some
given marginal contribution can be provided is deeply related
to the computation of the Shapley and Banzhaf values of al-
location games. We now further explore this specific task.

For each “level” ¢ € {1,...,m} over the possible values,
an agent ¢ € N is said to be dependent at level ¢ (short: /(-
dependent) if for each g € Q(i) with val(g) > wy, there
is an agent j € N \ {i} such that g € Q(j). In particular,
note that any agent having goods with value at least w, and
which are not shared with any other agent is not dependent at
level /; in fact, all her marginal contributions are at least wy,
independently of the coalition to be considered. Let G,
(N¢, E¢) be the undirected graph where Ny is the set of all
(-dependent agents and where {i,j} € E if, and only if,
there is a good g € Q(:) N Q(j) with val(g) > we. Then,
a coalition R C Ny of agents is called a component at level
¢ (short: ¢-component) if the subgraph of G, induced by the
nodes in R is connected. As a special case, if there is no good
g € Q(4) with val(g) > wy, then {i} is an -component.

Example 4.2. Consider the scenario .4 reported in Figure 1.
We have w; = val(g;). Moreover, {1,2} and {3} are the
only subset-maximal components at level 1. Indeed, g1 €
Q(1) N Q(2), and there is no good in £2(3) with value wy. <

If C C N is a coalition and ¢ ¢ C' is an agent, then we
denote by p5(C) the ¢-part of C w.r.t. i. This is the emptyset
if i € Ny; otherwise, p}(C) is the subset-maximal (in fact,
unique) ¢-component R C C' U {i} with ¢ € R. These con-
cepts play a key role to characterize marginal contributions.

Theorem 4.3. Let C C N be a coalition and let i € N\ C be

an agent for which there is a good g € Q(i) with val(g) >

wy. Then, the following statements are equivalent:

(1) va(CU{i}) —va(C) > wy; ‘

(2) there is an allocation 7 for Alp,(C)] such that
val(w(j)) > wy, for each j € pi,(C).

Proof Idea. If i ¢ N, then p,(C) = () and (2) trivially
holds. Moreover, its marginal contribution to any coalition is
at least wy. So, (1) holds, too. In the remaining, consider the
case where i € Ny, so that i € pj(C). Let R = p,(C) \ {i}
and let S = C'\ R. Here, we show how to deal with the case
S = (). The result can be generalized by noticing that agents
in S do not “interact” with agents in R (w.r.t. level wy).

(1)=(2) Assume that (2) does not hold for optimal applica-
tions. That is, there is an optimal allocation 7 for A[R U {i}]
and of an agent j € R U {3} such that val(7(j')) < we.
Consider the following two possible cases. First, assume that
val(7(i)) < wg. Since the restriction of ™ over the agents
in R is a feasible allocation for A[R], then we immediately
get that v 4 (R) > val(w) — val(7(i)) > val(w) — wy, and
hence v4(R U {i}) — va(R) < w;. Second, assume that
val(7(i)) > we. We start by observing that, due to the opti-
mality of 7, for each agent ;' € R U {i} with val(7(j')) <
we, {9 g € Qj")Aval(g) > we} C img(7). Thatis, goods
that might be in principle allocated to an agent j' € R U {i}
with val(7(j’)) < w, and having value at least w, are actu-
ally allocated to some different agent in R U {i}. Given that
R U {4} is an £-component (and that, in particular, each agent
is /-dependent), we are guaranteed about the existence of a



succession i = j1, 75, ..., j;, such that 7(j.) N Q(j.,,) # 0,
for each z € {1,...,h-1}; and val(w(j;)) < we. Consider
then the function 7-; : R — GU{0} with 7-; (4., 1) = 7(j..),
for each z € {1,...,h-1}; and 7-;(5”) = 7(j"), for each
" € R\ {j5,....J,}. Then, 7; is an allocation for A[R)]
and we have that val(7-;) = val(7) — val(@(j})). Hence,
vA(R) > val(7-;) = val(w) —val(w(j;)) > val(m) — we.
Thatis, v4(RU {i}) — v4(R) < wg. In both cases, we have
derived a contradiction with (1).

(2)=-(1) Let 7’ be an allocation for A[R U {i}] such that
val(7') > wy, for each j € R U {i}. We can show that
there is an optimal allocation 7 for A[R U {i}] with the same
property. Because of the allocation monotonicity property,
there is also an optimal allocation 7-; for A[R] such that
img(7-;) C img(7). Hence, for each j € R, val(7-;(j)) >
wy. Now, observe that v (R U {i}) = val(img(7)) and
va(R) = val(img(7-;)). So, va(R U {i}) — va(R) co-
incides with the value of one of the goods in img(7), and
va(RU{i}) —va(R) > wy. O

Example 4.4. By continuing with Example 4.2, note that
{1,2} = p;({2,3}) holds, for ¢ € {1,2}. Therefore, the
allocation for Ag[{1,2}] depicted in Figure 1 witnesses, by
Theorem 4.3, that v 4, ({1,2,3}) —v.4,({2,3}) > wa. <

4.2 Bounded Sharing

Our analysis intensively uses Theorem 4.3. The first outcome
is an island of tractability based on the notion of bounded
sharing. Formally, for a given level ¢, define the sharing de-
gree of an allocation scenario .4, denoted by sdy(.A), as the
maximum, over all goods g with val(g) > wy, of |{j € N |
g € Q(j)}|. Intuitively, it measures the maximum number of
agents competing for the same good (with value at least wy).

Theorem 4.5. The Shapley and Banzhaf values of allocation
games G 4 can be computed in polynomial time on scenarios

A= (N,G,Q,val) such that sd¢(A) < 2, for each level L.

Proof Idea. Letibeanagentin N, andleth € {0,...,n—1}.
The line of the proof is to show that:
: —1)!
#ei(Gah) =

(n—1—h)hl

o X =0,if h < [pi(N\ {i})| — 1; orif 7 is not ¢-dependent,
or the subgraph of G, induced by the nodes in p) (N \ {i})
contains a cycle, or there are two agents j and j” in p,(N \
{i}) with [(5) N Q") N{g | val(g) = we}| > 1.

(n=Ipe(N\{i)])!

(n=h=1)!(h+1—[py (N\{i}))!’

In particular, the value derives by analyzing the allocations

of Theorem 4.3.(2) on the scenario A such that sdy(A) < 2.

The result is then established because of this closed form, of

Theorem 4.1, and of the expressions in Equation (1). O

X, where

o X = otherwise.

5 Bounded Treewidth

We now move to allocation games where the interactions
among agents have a tree-like structure. We use the techni-
cal tools provided in Section 4, by combining them with CSP
techniques that are of interest in their own.
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For any scenario A = (N, G, 2, val), let G(A) = (N, E)
be the undirected graph such that {3, j} € E if, and only if,
there is a good g € Q(i) N Q(j). Moreover, recall that a
tree decomposition of a graph G = (N, E) is a pair (T, x),
where T = (V, F) is a tree, and y is a function assigning
to each vertex p € V a set of nodes x(p) C N, such that
the following conditions are satisfied: (1) Vb € N, Ip € V
such that b € x(p); (2) V{b,d} € E, 3p € V such that
{b,d} € x(p); @) Vb € N, theset {p € V [ b € x(p)}
induces a connected subtree of 7. The width of (T, x) is
maxpey |x(p) — 1, and the treewidth of G (short: tw(Q))
is the minimum width over all its tree decompositions (see,
e.g., [Robertson and Seymour, 1984]).

5.1 Preliminaries on CSPs

A constraint satisfaction problem (short: CSP) instance is a
triple Z = (Var, U, C), where Var is a finite set of variables,
U is a finite domain of values, and C = {C1,Cs, ..., C,} is
a finite set of constraints (see, e.g., [Dechter, 2003]).

Each constraint C,, for 1 < v < ¢, is a pair (S,,7,),
where S, C Var is a set of variables called the constraint
scope, and 1, is a constraint relation, i.e., a set of substitu-
tions # : S, — U indicating the allowed combinations of
simultaneous values for the variables in S,,. A substitution
fromasetV C Varto U is often viewed as the set of pairs of
the form X /u, where (X)) = w is the value to which X € V
is mapped. For each variable X € Var, its domain is the
set of all elements u € U for which some constraint relation
contains a substitution § with 6(X) = u. A substitution 6
satisfies C, if its restriction to S, occurs in 7,. A solution
to Z is a substitution 6 : Var — U satisfying all constraints.
The set of all solutions is denoted by ©(Z). If W is a set
of variables, then ©(Z, W) denotes the set of all solutions in
©(Z) restricted to the variables in V. Variables outside W
can be viewed as auxiliary ones—they are used for internal
encoding activities, and they are not required in the output.

With each CSP instance Z, we can naturally associate the
graph G(Z) whose nodes are the variables and where there is
an edge between any pair of variables appearing within the
same scope. Deciding whether there is a solution (and com-
pute one, if any) is generally NP-hard, but it is known to
be feasible in polynomial time on classes of CSP instances
7T whose associated graphs have treewidth bounded by some
given constant [Gottlob et al., 2013]. Recently, these kinds of
structural tractability results have been generalized to count-
ing problems, as summarized below.

Theorem 5.1 (cf. [Pichler and Skritek, 2013; Greco and
Scarcello, 2014al). Counting the number of substitutions in
O(Z, W) is feasible in polynomial time, on classes of CSP
instances T such that the treewidth of G(I) is bounded by a
constant, and the size of the domain of each variable not in
W is bounded by some constant, too.

Note that, differently from the case of the standard decision
and computation problems, the result is established under the
additional condition that auxiliary variables have a bounded
domain. If the condition is not met, then #P-complete in-
stances can be exhibited [Pichler and Skritek, 2013].
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Figure 2: Decomposition in Example 5.2—the label of the
root modified as in the proof of Theorem 5.3 is on the top.

5.2 CSP Encoding (for the Banzhaf Value)

In order to establish a tractability result, we shall encode
the computation of the coefficients #c;(G 4, h) in terms of a
counting problem over a suitably defined CSP instance and
we shall then make use of Theorem 5.1. The challenge is to
end up with an encoding using a constant number of values
for the auxiliary variables. For instance, the natural encoding
where some variable X; (associated with an agent j € V)
can take as values the goods in () is not useful here. In
fact, we propose an encoding that uses both the given allo-
cation scenario A and a tree decomposition TD = (T, x) of
G(A). The idea is that each good is associated with some dis-
tinguished vertex of 7', while suitable variables in the labels
of the tree encode the roadmaps to reach such goods. In par-
ticular, their domain just contains the needed road signs (five
values are enough). This is detailed below.

We start by building a tree decomposition with certain de-
sirable properties. Let (T, x’) be a tree decomposition of
G(A) whose width is & > 0. Note that, for each good g € G,
we are guaranteed about the existence of a vertex v; in 7'
such that x(vy) 2 {j | ¢ € Q(j)}. Indeed, the agents in
{j 1 g€Q(j)} form aclique in G(A).

In a pre-processing step, we modify (77, x’) by adding a
fresh vertex v, as a child of v],, whose label is x(vg) =
X(vg) N{j | g € Qj)}. By iterating over all goods, we
get the desired tree where each good ¢ is associated with a
distinguished vertex (in fact, leaf) v, labeled by the agents
to whom ¢ can be allocated. Of course, the transformation
is feasible in polynomial time. Eventually, we further trans-
form the decomposition by making it binary: For each vertex
v with children v, ..., v,,, We can create a novel vertex v as a
child of v and with its label, by subsequently appending under
it all these children but v1. Let TD = (T, x) be the resulting
tree decomposition, having the same width as (T, x').

Example 5.2. Figure 2 illustrates a width-2 tree decomposi-
tion TDg of G(Ap), by evidencing the vertices that are univo-
cally associated with the goods in {g1, g2, g3, 94 }. Moreover,
note that the decomposition is defined over a binary tree. <

The input to our encoding is the allocation scenario A, the
agent ¢ € N, the natural number ¢, and the tree decompo-
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0 0
® 1 if v is a vertex of the form v, for a good g with val(g) > wy
v 1 if v is not a leaf, v is its left child, and j € x(v1)
AV 1 if v is not a leaf, vy is its right child, and j € x(v2)
1 1 if v is not the root, p is its parent, and j € x(p)
(X7 ] [Oalx] T 1] 1L
0 T ] 1 ol o 0
o) 1] 0 | ifj#1 0| o0 1
T 0 | o | ifj#i 1] 0 0
1 1 0
= o o T T
l X; [ X [ X l l X;° [ Xj/g
0 0 0 Vu € {0, 1} 0]
O] ) T Vu € {0,1} O]
T T T vu € {0,71} ©
b v T vu € {0, 71} O]
b ¢ ) ) Vu € {0, 1}
“ | o T o) Vu € {0, 1}
NE v o) Vu € {0, 1}
A T N ©) Vu € {0, 1}
Y T O) vu € {0,7} | Vu € {0, 1}

Figure 3: CSP encoding in Section 5.2.

sition TD = (T, x). Note that, for the moment, we do not
consider the size h. Then, we define the encoding ¢ such that
&(A,i,¢,TD) is the CSP instance ( Var, U, C), where

o Var = U;cn{X;, VP U{X] [visin T Aj € x(v)};
e U={0,1,0,/ N\ 1h

and where C is defined as follows, with constraint relations

being reported in tabular form in Figure 3:

1. For each agent j € N and vertex v in T with j € x(v),
there is a constraint (S, j, 7y ;) With S, j = { X7, X; };

. For each good g with val(g) > w, and each j € x(vy),
there is a constraint (S ;, 7,;) such that S, ; = {X*};

. For each agent j € N, there is a constraint (.S, r;) such
that S; = {Y;, X, };

. For each pair of agents j € N and j° € N that are
adjacent in G/, there is a constraint (S; ;/,7; /) such
that de‘/ = {Y}, Xj, Xj/};

. For each non-leaf vertex v whose left (resp., right) child
is v1 (resp., v2), and for each j € x(v), there is a con-

straint (S, ;,7;, ;) such that Sy, ; = { X7, X', X2 };

. For each good g with val(g) > w, and for each pair
J. 7" € x(vg) with g € Q(j)NQ(5’), there is a constraint
(Sg,jﬂ"? 7"97]',]‘/) such that SgJ,j/ = {vag y X;),g};

7. No further constraint is in C.

Theorem 5.3. The following properties hold:
(a) £(A,i,£,TD) can be built in polynomial time;
(b) the domain of each variable in (A, i, L, TD) consists of
at most 5 distinct elements;
(&) tw(GE(A,i,£,TD))) < 5 % (t(G(A)) + 1);
(d) if 0 is a solution to (A, i, £, TD), then Ry = {5 | 0(Y;) =
1A j#i}issuchthat va(Rg U {i})—va(Rg) > we;
(e) if R C N\ {i}issuchthatva(RU{i}) —va(R) > wy,
then there is a solution 0 to £(A, i, ¢, TD) with R = Ry;

(N Sp_o#ci(Ga,h) = |O(E(A, 4, £,TD), {Y1, ..., Y, })|-



Proof Sketch. Property (a) and Property (b) are immediate.

Concerning Property (c) note that, if TD = (T, x), then
the tuple (T, x¢) such that for each vertex v in T, x¢(v) =
Ujex@ X5, Y5, X7PU{X}", X;* | vis not aleaf} is a tree
decomposition of G(£(A, ¢, ¢, TD)). Note that the decomposi-
tion does not depend on i and ¢. As an example, the modified
label associated with the root node of the tree decomposition
of the graph G(Ap) in Example 5.2 is shown in Figure 2.

Concerning Property (d), assume that ¢ is a solution to
&(A,1,¢,TD) and let Ry be the set {j | 0(X;) =1 A j #i}.

Let j be any agent in Ry U {i}. First, we claim that there
is a vertex v* in T such that Q(XJ"-’*):@. By contradiction,
assume there is no such vertex. Let v be the vertex in TD
that is the closest to the root with j € x(v). Because of
the constraint (.S, j,7,,;) of type 1, we have that (X}) €
{«,~\.}. If v is a non-leaf vertex, then because of constraint
(84 js7y.;) of type 5, we have that (X}’) € {./,\} holds,
with w € {v1,v2} being one of its two children in 7. In
particular, given the constraint of type 1, for the child w it
must be the case that j € y(w) holds. Therefore, we can
apply the argument again on w, and so top-down from w we
can eventually reach a leaf o such that 6(v) € {,/,\.}. But,
this is impossible by the constraint (S5 ;, 75, ;) of type 1. So,
we know that for each j € Ry U {i}, there is a vertex v* in T
such that (X ;’ )=®. Moreover, for each vertex w in the path
connecting v and v*, (w) € {7, \.}. Therefore, because of
constraints of type 5, for each vertex u with j € x(u) and not
occurring in this path, it is the case that §(u) = 1.

Hence, for each j € Ry U {i}, there is precisely one vertex
v* such that H(X;-’*):Q. Because of the constraints of type
1 and 2, it holds that v* = v, for some good g € Q(j) with
val(g) > wy. Moreover, because of the constraints of type 6,
there is no other agent j' such that 6(X ]"-’,* )=@. In the light of
these properties, the function 7 : N — G such that 7(j) = g,
for each j € Ry U {i} with 0(X;*)=0, and 7(j) = 0, for
each other agent j is well-defined and is an allocation. In
particular, for each agent j € Ry U {i}, val(m(j)) > w.

Letnow Ry = {j | 0(Y;) = 1 Aj # i}. Observe that,
because of the constraints of type 3, it holds that Ry C Ry.
In particular, (X;) = 1. Moreover, note that because of the
constraints of type 4, whenever §(X;/) = 1 and §(Y;) = 1
with j and j’ being adjacent in Gy, then 6(X;) = 1 holds,
too. Hence, Ry U {i} D pi(Ry). It follows that we can
apply Theorem 4.3 on the coalition Ry, and we conclude that
UA(Rg U {Z}) — U_A(Rg) > Wy.

Consider now Property (e). If R C N\ {i} is a coalition
withva(RU{i}) —va(R) > wy, then by Theorem 4.3 there
is an allocation 7 such that val(n(j)) > wy, for each j €
p,(R). Consider the substitution 6 such that: 6(Y;) = 1 iff
j € RU{i}; 0(X;) = 1iff j € pj(R); 0(X;*) = O iff
m(j) = g: 0(X}) = 0iff j & R; 0(X}) = 1iff 0(X}*) = ©
holds for a vertex v, that is not in the subtree of 7" rooted at v;
O(XV) = . (resp., G(X;-’) =) if G(X;}") = @ for a vertex
v, that occurs in the subtree rooted at the left (resp., right)
child of v. By inspecting the constraints, it can be checked
that 6 is in fact a solution to £(A, ¢, £, TD).
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Finally, Property (f) derives by Property (d), by Prop-
erty (e), by the fact that 0(Y;) = 0(X;) = 1 holds in any
solution, and by the definition of #cy(G 4, h). O

By combining Theorem 5.3, Theorem 5.1, Theorem 4.1,
and Equation (1), we get the tractability result.

Corollary 5.4. The Banzhaf value of allocation games G 4
can be computed in polynomial time on scenarios A =
(N, G,Q,val) such that tw(G(A)) is bounded by a constant.

5.3 From the Banzhaf Value to the Shapley Value

The encoding ¢ discussed so far does not take / as a param-
eter. In fact, it just provides us a way to compute the value

Z;é #c) (G4, h) and, hence, the Banzhaf value. In order to

compute the contribution #CZ(Q 4, h) for each cardinality of
the coalitions and, hence, the Shapley value by Theorem 4.1
and Equation (1), we need a way to filter, out of all possible
solutions, those 6 such that |[Ry| = h. This is not immedi-
ate (by preserving structural properties and the bound on the
domains), so that a careful construction is in order.

Theorem 5.5. The Shapley value of allocation games can
be computed in polynomial time on all allocation scenarios
whose interaction graphs have bounded treewidth.

Proof Idea. Consider this class of allocation scenarios A
with tw(G(A)) < k, for some fixed natural number k. Then,
a width-k tree decomposition TD of G(.A) and the encod-
ing Z = &(A, i,¢,TD) can be computed in polynomial time.
Let TD' be a tree decomposition of G(Z) whose width is
bounded by 5 x (k + 1) (cf. Theorem 5.3). Consider the
modified CSP instance 7' = ((Z,{Y1,...,Yn},h,TD') =
(Var',U’,C') such that: Var’ = Var U{W, | visinT'};
U =UU{0,...,h};and C' = CU{(S,,r) | visin T"}.

In particular, for each non-leaf vertex v in 7" with children
vy and vy, we have S, = x'(v) U {W,,, W,,, W,,}. More-
over, 7, contains all possible substitutions # over the vari-
ables in S, such that 0(W,,),8(W,,),0(W,,) € {0,...,h}
and 0(VV,) — [{¥; € S, | v = cr(j) A 6(Y;) = 1}] =
O(Wy,) + 0(W,,), where cx(j) is the vertex v* that is the
closest to the root and such that Y; € x/(v*). Additionally,
if v is the root of 7", then we require that 6(W,) = h + 1
holds. Instead, if v is a leaf, then S, = x'(v) U {W,},
and r, contains all possible substitutions # over .S, such that
O(Wy) = {Yj € Sy | v =cx(j) AO(Y;) = 1}].

Note that tw(G(Z')) < tw(G(Z)) + 3. Moreover, by
Theorem 5.3 and the above encoding, it can be checked
that |©(Z',{Y1,...,Y,})| coincides with #c}(Ga,h). We
then get the Shapley value by using Theorem 4.1 and Equa-
tion (1). Unfortunately, we cannot apply Theorem 5.1 on Z’
and {Y7, ..., Y, }, since the auxiliary variables W, do not have
abounded domain. However, we can add such variables to the
output variables without altering the number of solutions, be-
cause |©(Z', {Y1,.... Yo, })| = |0, {Y1,.... Y, } U (Var’ \
Var)| holds. Thus, Theorem 5.1 applied on Z’ with output
variables {Y1, ..., Y;, }U(Var’\ Var), ensures that #c}(G 4, h)
can be computed in polynomial-time. O



6 Conclusion

We have studied the problem of computing the Shapley value
and the Banzhaf value of allocation games, which are coali-
tional games implicitly (and succinctly) specified in terms of
an underlying allocation scenario. We have shown that the
problem is #P-complete, even in stringent settings. Motivated
by this bad news, we identified islands of tractability by fo-
cusing either on scenarios with sharing degree at most 2 or
such that the interactions among agents have a tree-like struc-
ture. This way, real world applications with useful structural
properties can efficiently be dealt with. Moreover, the techni-
cal tools used to get the results may have a wider spectrum of
applicability, beyond allocation problems.

A variant of the proposed framework considers scenarios
where agents must necessarily get some good. In this case,
it makes sense to have goods with negative values, too. In
fact, we remark that our algorithms can be extended to man-
age these cases as well, by just considering suitable neg-
ative levels. Our work leaves open the technical question
of whether tractability still holds over scenarios with shar-
ing degree bounded by some constant greater than 2 (e.g.,
sdg(A) > 3). Moreover, it might stimulate further research
to analyze the complexity of other solution concepts over al-
location games, such as the nucleolus [Schmeidler, 1969]. Fi-
nally, we point out that since our technical elaborations are
often rather involved, their immediate/naive implementation
might be unpractical. Indeed, there is much room for practi-
cal improvements, for instance, by adopting implementation
strategies used for decomposition methods in data-intensive
applications (e.g., in the evaluation of SQL queries) and par-
allel solutions. This might constitute another interesting av-
enue of further research.
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