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Abstract
Our work deals with the important problem of
globally characterizing truthful mechanisms where
players have multi-parameter, additive valuations,
like scheduling unrelated machines or additive
combinatorial auctions. Very few mechanisms are
known for these settings and the question is: Can
we prove that no other truthful mechanisms exist?
We characterize truthful mechanisms for n players
and 2 tasks or items, as either task-independent, or
a player-grouping minimizer, a new class of mech-
anisms we discover, which generalizes affine min-
imizers. We assume decisiveness, strong mono-
tonicity and that the truthful payments1 are contin-
uous functions of players’ bids.

1 Introduction
Using the power of crowdsourcing and cloud computing to
compute complicated tasks that consist of multiple sub-tasks
is a major challenge in multi-agent systems. When assigning
the tasks to different agents/cloud providers, we have to pro-
vide the agents with the right incentives to truthfully report
the times they need to complete the tasks, and execute the
tasks that are assigned to them.

Combinatorial auctions constitute another important class
of problems. Here multiple items are auctioned simultane-
ously, and we need to motivate the agents to report their true
valuations for the items. Can we characterize all allocation
algorithms that are truthful for these two settings?

Fifteen years ago Nisan and Ronen posed their famous –
still open– question about the approximability of the opti-
mum makespan in unrelated machine scheduling by truth-
ful scheduling mechanisms [Nisan and Ronen, 2001]. In
this strategic version of the unrelated machines problem, we
are given n machines and m tasks, and the machines are
owned by selfish agents, each of them holding the vector

∗Work supported by the French National Research Agency
through the ANR project CoCoRICo-CoDec, ANR-number
DS0805.

1The (normalized) payments are uniquely determined by the al-
location function of the mechanism; thus the assumptions concern
properties of the allocation.

ti = (tij)
m
j=1 of running times (costs) on his machine i as pri-

vate information. A scheduling mechanism consists of an al-
location algorithm, and a payment scheme (p1, . . . , pn).Hav-
ing received the bid vectors t′i for the costs from the respec-
tive agents, the matrix t′ is used as input of the allocation
algorithm, and the payments to each agent are calculated ac-
cording to the payment scheme. The utility of player i is then
pi − costi, where costi is defined as the total running time
of the received jobs on machine i, i.e., the finish time of the
machine. Note that for each player, the costs incurred from
the different tasks are additive. A similar problem to unre-
lated scheduling is that of combinatorial auctions (CAs) with
additive bidder valuations: we get a model equivalent to addi-
tive CAs by assuming negative values of tij , and leaving the
scheduling model unchanged otherwise.

We are interested in truthful mechanisms, where bidding
t′i = ti is a dominant strategy for every agent. It is
well known that weak monotonicity (WMON) of the alloca-
tion function is necessary and sufficient for truthful imple-
mentability (see [Saks and Yu, 2005; Archer and Kleinberg,
2008]). Thus, the problem boils down to searching for mono-
tone allocation algorithms for unrelated scheduling.

Nisan and Ronen conjectured that no mechanism can yield
an approximation of the makespan by a factor smaller than
min(n,m), the approximation ratio of the VCG mechanism,
that gives each task to the player bidding the smallest cost for
that task. The attempts to prove lower bounds based merely
on monotonicity, have only given small constants as lower
bounds [Christodoulou et al., 2007; Koutsoupias and Vidali,
2007; Mu’alem and Schapira, 2007].2 Narrowing the gap be-
tween the constant factor lower bound and the upper bound
n became a paradigmatic problem of algorithmic mechanism
design, and directed much attention to mechanisms with ad-
ditive bidder valuations in general (see, eg., [Lavi, 2007]).

While monotonicity characterized truthful mechanisms
well in the (single-parameter) related machines case (see [Ep-
stein et al., 2013] and references therein), it is much more dif-
ficult to exploit it in multi-parameter settings like unrelated
scheduling. A different approach is to improve our under-
standing by investigating the global structure of WMON al-
locations. To this end we strive for global, closed form char-

2A lower bound n has been established adding the anonymity
assumption [Ashlagi et al., 2012].
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acterizations. Even though it seems extremely hard to pro-
vide a complete characterization for the original problem, at-
tempts to characterize restricted, in some way purified classes
of WMON mechanisms prove to be very useful: they develop
insight, while new types of allocations might be discovered
along the way.

In this paper we assume strong monotonicity (SMON), a
condition that parallels Arrow’s Independence of Irrelevant
Alternatives (IIA) condition, and which is the strict version
of the WMON property (see Definition 3).3 We completely
characterize SMON mechanisms for two tasks, and at the
same time identify a new class of monotone allocations.

Related work. Characterizations by weak monotonic-
ity [Myerson, 1981; Saks and Yu, 2005; Gui et al., 2005;
Archer and Kleinberg, 2008; Frongillo and Kash, 2012], and
cycle monotonicity [Rochet, 1987] describe truthfully imple-
mentable allocations in a local fashion. Complete charac-
terizations, of implementable allocations describe them in a
global fashion. The most important result of this type is
due to Roberts who showed that for unrestricted domains the
only implementable social choice rules are affine maximiz-
ers [Roberts, 1979], a generalization of VCG mechanisms.
However, the requirement of unrestricted valuations does not
apply to most of the realistic setups with richer structure.

Characterizations for domains with high economic impor-
tance like combinatorial auctions or the scheduling domain
seem very hard to obtain, even with additional restrictions.
The characterizations we know for the case of n players, ei-
ther concern domains where SMON can be assumed with-
out loss of generality [Roberts, 1979; Papadimitriou et al.,
2008], or put additional restrictions [Lavi et al., 2003; 2009;
Dobzinski and Nisan, 2011; Christodoulou and Kovács,
2011]. The only complete characterization results for addi-
tive bidders in the multi-parameter setting are for two play-
ers [Dobzinski and Sundararajan, 2008; Christodoulou et al.,
2008]. These characterizations involve affine minimizers, or
threshold mechanisms, or a combination of these.4 We define
these allocation rules next.

Definition 1 (affine minimizer). An allocation function A
is an affine minimizer if there exist positive multiplicative
constants λi for each player i, and additive constants ca
one for each allocation a, such that for every input matrix
t = {tij}n×m the allocation A(t) = {aij}n×m minimizes∑n
i=1

∑m
j=1 λi · aij · tij + ca (where aij is 1 if player i gets

task j and 0 otherwise).

Threshold allocations are exactly those that admit addi-
tive payment functions over the received tasks/items [Vidali,
2009]. Restricted to SMON mechanisms, they coincide (as-
suming proper tie-breaking) with task-independent mecha-
nisms, that allocate each task by an arbitrary monotone single
item allocation. These single item mechanisms were charac-
terized as virtual utility maximizers in [Mishra and Quadir,
2012].

3It is known [Mu’alem and Schapira, 2007] that SMON mechan-
ims can only approximate the makespan by factor min(m,n).

4Affine maximizers become affine minimizers in scheduling.

Our contribution. 1. We identify a so far unknown mono-
tone allocation rule generalizing affine minimizers, that we
call player-grouping minimizer. A player-grouping mini-
mizer partitions the set of players, and always allocates all
tasks within one subset of the partition (called group) by some
affine minimizer. Between any two groups of players, pref-
erences are decided by minimizing arbitrary fixed increasing
functions of the objective values of the groups:

Definition 2 (player-grouping minimizer). Let {Ng}rg=1
be a partition of the set of players into r groups, with at
least two players in each group. For each 1 ≤ g ≤ r let
Φg : (−∞, Cg) → R be an increasing continuous bijection5

and Ag be an affine minimizer over the players of group g.
Within each group the affine minimizer Ag decides, which
players (would) receive the tasks in that group. For given
bids ti of the players in group g, let Optg denote the objec-
tive value of Ag.6 Group s receives all the tasks, allocated
according to As, if Φs(Opts) = ming Φg(Optg) (assuming
some consistent tie-breaking rule).

Example 1. The allocation for n = 4 and m = 2, that gives
the tasks to the players who provide the minimum of the
expressions t11+t12, t11+5t22, 5t21+t12, 5t21+5t22, and
(t31 + t32 + 3)3, (t31 + t42)3, (t41 + t32 − 1)3, (t41 + t42)3

is a grouping minimizer. (If ties are broken by a fixed order of
these eight possible allocations, then it is an SMON grouping
minimizer.) Note that here players 1 and 2 form group N1,
in the respective affine minimizer λ2 = 5 and the additive
constants ca are zero; the Φ1 function for this group is the
identity function Φ1(x) = x. Another group N2 consists of
players 3 and 4. The corresponding affine minimizer has
multiplicative constants λ = 1, and additive constants 3,
0, -1 and 0 depending on the allocation within these two
players; moreover, Φ2(x) = x3.

2. We characterize SMON mechanisms for two tasks or items
as either task-independent mechanisms or player-grouping
minimizers:

Theorem 1. Every continuous decisive SMON mechanism
for allocating two tasks or items, with additive bidder val-
uations and tij ∈ R, is either a task-independent mechanism,
or a grouping minimizer (if the grouping minimizer is onto7,
then it is an affine minimizer).

Since monotone allocations for two players are essen-
tially SMON (with an appropriate tie-breaking rule), for two
tasks our result generalizes the 2-player characterization in
[Christodoulou et al., 2008]. Moreover, grouping minimizers
are very similar to virtual utility maximizers for a single item
[Mishra and Quadir, 2012].
3. We derive a key lemma (Lemma 2) that turns out to be of
’universal’ use for the SMON problem. For fixed bids t−i,
of all other players, the allocations to a single player i de-
pending on his own 2-dimensional bid vector ti, partition the

5The Cg ∈ R ∪ {+∞} with Cg being +∞ for at least one g;
this is needed for the tasks to be always allocated.

6Optg = minag
∑

i

∑
j λitija

g
ij + cag , where allocations ag

give all tasks to group g.
7I.e. every allocation occurs for at least one input t.
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Figure 1: The allocations to a single player depending on
his own 2-dimensional bid vector, partitions the bid-space ac-
cording to one of these shapes.

bid-space according to one of the shapes in Figure 1 (due to
the WMON property). The positions of the boundary lines
in these figures correspond to the (differences of the) pay-
ments to player i for the different allocations. We investigate
these boundary positions (i.e. the truthful payments), as func-
tions of the other players’ bids.8 For SMON mechanisms,
Lemma 2 implies the linearity of these payment functions in
’most’ cases. We prove that linearity of all boundary func-
tions results in the mechanism being an affine minimizer. The
only exceptions where linearity needs not hold, imply either a
task independent mechanism or a boundary between different
player-groups in a grouping minimizer (see Figures 2 and 3).

Our technical assumptions are decisiveness, continuity of
the payment functions, and that the costs tij can take arbitrary
real values.9 For a discussion on these, and some examples
of degenerate allocation rules, see the full version 10.

Preliminaries. The following notation and observations
apply to any number of tasks. Since we treat the two-tasks
case in the paper, we will illustrate these notions for m = 2.
For a more detailed treatment see, e.g., [Christodoulou et al.,
2008; Vidali, 2009].

An allocation matrix is a = (a1, a2, . . . , an), where ak is
the binary allocation vector of player k.We also use α, α′ . . .
etc. to denote m-dimensional allocation vectors (for two
tasks, α, ak ∈ {(00), (01), (10), (11)}). For two tasks, aik
denotes the allocation giving the first task to player i and the
second to player k (mind the difference to aij , which is a sin-
gle bit). The bid matrix of all players except for player k,
is denoted by t−k, whereas t−ik denotes the bid matrix of
all players except for players i and k. For fixed t−k, the al-
location regions Rkα = {tk | ak(tk, t−k) = α} ⊂ Rm for all
possible α, partition the bid space Rm of player k in 2m parts.

Definition 3. An allocation function A satisfies SMON
(WMON) if A(tk, t−k) = a, and A(t′k, t−k) = a′, where
a 6= a′, imply (ak − a′k)(tk − t′k) < 0 (≤ 0).

For WMON allocations the allocation regions of any player
must have a special geometric shape: the boundary between

8Truthful normalized payments are uniquely determined by the
allocation function and by t−i.

9Note that similar assumptions are made in [Dobzinski and
Nisan, 2011; Dobzinski and Sundararajan, 2008; Christodoulou et
al., 2008; Mishra and Quadir, 2012].

10Full version of the paper: https://infotomb.com//eeevx

any two regions Rkα and Rkα′ (if it exists) is part of the hyper-
plane (α − α′) · tk = fkα:α′ , where the functions fkα:α′ , that
determine these boundary positions are defined as follows: In
a truthful mechanism, the payment of player k depends on
t−k and on ak. Let pkak(t−k) denote this payment. Then

fkα:α′ = pkα(t−k)− pkα′(t−k).

In general, for some t−k some of the allocation areas Rα
might be empty. We make the assumption that the allo-
cation figures are complete (all the 2m regions are always
nonempty), i.e., the allocation is decisive:

Definition 4. An allocation function A is decisive, if every
player k, for every fixed bids t−k of the other players and
every particular allocation α ∈ {0, 1}m has bids tk so that
A allocates him exactly the items in α.

Thus, for WMON allocations of two tasks, the allocation
of player k as a function of (tk1, tk2) has a geometrical repre-
sentation of one of three possible shapes (see Figure 1). For
given fixed t−k, we call this geometric representation the (al-
location) figure of player k.

In Section 2.1 we investigate how the positions fkα:α′ of
a player’s boundaries change as a function of t−k. We will
show that this change is linear in t−k with only a few excep-
tions. For fixed t−ik the boundary fkα:α′ is a function of the
bid ti. We assume the continuity of fkα:α′(ti) for any fixed
t−ik. Most of the time, w.l.o.g. we consider the figure and
boundaries of the first player. In this case, for k = 1, we omit
the superscript in fk, Rk, etc.

In the rest of the section we summarize further implications
of the SMON property, the strict version of WMON. See the
full version for omitted proofs. If an allocation rule A(t) is
SMON, then the allocation of all players is constant in the in-
terior of any region Rkα (otherwise, changing tk would result
in changing a to a′, with ak = a′k, contradicting SMON). We
denote by fka:a′(t−k) the boundary between allocations a, a′
(these describe the allocation of all players, not just of player
k) for every t−k for which such a boundary exists in the fig-
ure of player k. Next we state a crucial elementary property
of continuous SMON mechanisms:

(?) For fixed bids of the other players, the boundary fka:a′
in the allocation figure of player k, considered as a function
of the bids ti of any particular player i 6= k depends only
on (a′i − ai) · ti (=

∑m
j=1(a′ij − aij)tij), by some strictly

increasing continuous function. If a′i = ai then the boundary
position is independent of ti.

For example, let a = (11, 00, 00), and a′ = (01, 10, 00),
and t3 be fixed; then fa:a′(t2) = ϕ(t21), for a nonde-
creasing real function ϕ. Similarly, if a = (10, 01, 00) and
a′ = (01, 10, 00), then fa:a′ = ψ(t21 − t22) for some nonde-
creasing function ψ. The property (?) is implied by Lemma 1,
and Observation 1 below:

Lemma 1. [increasing boundaries] Let t−1i be fixed, and
G ⊂ Rm a connected set. Assume that the boundary fa:a′
exists for all ti ∈ G. For every ti, ti ∈ G it holds that if
(a′i − ai) · ti < (a′i − ai) · ti, then fa:a′(ti) ≤ fa:a′(ti).

570



Figure 2: Types of quasi-independent allocation figures of
player 1. The letters i and j show which player receives the
tasks in the regions (here j = i is allowed). Only in type (1)
can F or G be locally nonlinear.

Corollary 1. Let S be a subset of the tasks. If aij = a′ij for
all j ∈ S, then fa:a′(ti) = fa:a′(ti) whenever ti and ti differ
only on tasks in S.

For example, let a = (11, 00, 00), and a′ = (01, 10, 00).
By the lemma (for i = 2), f11:01 is increasing in t21. The
corollary says, that f11:01 is a function of only t21. S con-
sists of task j = 2, because the allocation of this task to
player 2 remains the same a22 = a′22 = 0. Consider t2 and
t2 bids such that t21 = t21. If f11:01(t2) < f11:01(t′2) were
the case, then by the lemma, f11:01 would have a jump of at
least f11:01(t′2) − f11:01(t′2) in t21. However, f11:01(t21) is
continuous by assumption. We conclude the subsection with
a couple of simple observations that hold in the case of con-
tinuous boundary functions.
Observation 1. (a) [boundary points] Let t−1 = (ti, t−1i).

If t1 is a point on the boundary fa:a′(t−1), where the
allocations ai and a′i are different, then for t−i =
(t1, t−1i) the bid ti is a point on the boundary
f ia:a′(t−i).

(b) [inverse boundaries] Let t−1i be fixed. If for some
monotone continuous univariate function fa:a′(ti) =
ϕ((a′i − ai) · ti), then f ia′:a(t1) = ϕ−1((a1 − a′1) · t1).

(c) [strictly increasing boundaries] Let t−1i be fixed, and
G ⊂ Rm a connected set. Assume that the bound-
ary fa:a′ exists for all ti ∈ G. The function fa:a′(ti) is
strictly increasing in (a′i − ai) · ti over ti ∈ G.

2 Characterization
In this section we sketch the proof of Theorem 1. The full
version contains the detailed proofs. Figures 2 and 3 show
the possible allocation figures of player 1, w.r.t. the depen-
dence of boundaries on other players’ bids. The player in-
dices marking the four regions indicate the players who get
the tasks in the respective region. As an example, consider
Figure 2 (1). Here player i gets task 1 in regions R01 and
R00; and player j gets task 2 in R00 and R10. By property
(?), the position f11:01 of the boundary betweenR11 andR01

is given by an increasing function of ti1, that we denote by
F (ti1). Similarly, the horizontal boundary position is deter-
mined by an increasing function G(tj2). If the figure has a
shape like in Figure 2 (2), then the slanted boundary has the
equation t11 − t12 = F (ti1)−G(tj2).

In general, in every allocation figure, task 1 is either given
to the same player in R01 and in R00, or to two different

players, and similarly for task 2. Accordingly, the bound-
aries where task 1 changes owner are either only the vertical
boundaries (like in types (1) to (6)), or the vertical boundaries
and f01:00 where two other players exchange the task among
each other. Combining all possibilities for both tasks, we ob-
tain the depicted cases.

Definition 5. We call the allocations in an allocation figure
quasi-independent, if the same player receives task 1 in R01

and inR00, and the same (possibly other) player receives task
2 in R10 and in R00.

Figures 2 and 3 show all possible quasi-independent and
non quasi-independent allocations, respectively, up to sym-
metry. Observe that for a particular boundary the (?) prop-
erty only implies that it(s position) is a multivariate function,
monotone in each variable. (E.g., in case (6) in Figure 3 f10:00
is some function f(ti1, tj2, tk2).) However, whenever differ-
ent other boundaries depend on these different variables, it
must be the case that the multivariate function is a so called
additively separable function as appears in the figure. For in-
stance, in (6), if only ti1 is increased (locally), then only the
two vertical boundaries move, and f() as a function of ti1 is
necessarily of the form F (ti1) + C(tj2, tk2) for some func-
tion F ; by similar considerations, G and H functions exist
s.t. f = F (ti1)−G(tj2) +H(tk2) + C.

2.1 Local linearity results
The main theorems of this subsection show the linear-
ity of different boundary functions fα:α′(ti). Since task-
independent allocations, that are in general nonlinear, have
“crossing” figures (see Figure 1 (b)), it will be important to
distinguish two types of allocation figures:

Definition 6. For fixed t−k, the allocation figure of k is cross-
ing, if fk11:01 = fk10:00, and fk11:10 = fk01:00.Otherwise we call
the figure non-crossing.

Mechanisms with only crossing allocation figures are task-
independent. The boundary functions fα:α′ of such mecha-
nisms need not be linear, as they indicate the critical values
for getting the task in arbitrary monotone single-task alloca-
tions. In what follows, we show that if the mechanism is
onto, the converse also holds: if the mechanism has an alloca-
tion figure (for some k and t−k) that is non-crossing, then all
boundary functions of the mechanism must be linear. How-
ever, if the mechanism is not onto, that is, certain allocations
aij never occur, then even complete (decisive) non-crossing
allocation figures might change by non-linear functions. The
resulting mechanisms, which we named (player) grouping
minimizers, constitute a generalization of affine minimizers.
The main reason for enforced linearity of the boundaries is
given in the following basic lemma. Namely, whenever these
boundaries are additive separable functions of at least two
variables, and so are their inverse boundaries (on another
player’s figure), we encounter a situation that fulfils the con-
ditions of the lemma. For an illustration see Figure 4: α and ϕ
are (roughly) inverse functions. The conditions of the lemma
imply that if the functions β and ψ are monotone, then for any
small enough ∆, the second curve is a parallel translation of
the first one both in vertical and in horizontal direction. This
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Figure 3: Non-quasi-independent allocation figures of player
1. Here the shapes of the figures are arbitrary. The letters in-
dicate the players who receive the two tasks in the respective
regions; i, j, k, ` 6= 1 denote different players. F and G are
linear, and only in (8) and (9) can H be locally nonlinear.

is possible only if the curve is a straight line (α and ϕ are
linear).
Lemma 2. Assume that for strictly monotone continuous real
functions α, β, ϕ, and ψ, for every (x, y, z) ∈ G for an open
set G ⊆ R3, it holds that
(y = α(x) + β(z)) ⇔ (x = ϕ(y) + ψ(z).) Moreover, we
assume that an open neighborhood of (x, z) pairs exists for
which (x, α(x) + β(z), z) ∈ G. Then
(a) α and ϕ are linear functions;

(b) α and ϕ are both increasing or both decreasing, and
exactly one of β and ψ is increasing;

(c) if β and ψ are also linear functions with slopes λβ and
λψ, then the slopes λa of α and λϕ of ϕ satisfy λα =

− λβ
λψ
, and λϕ = −λψλβ .

We call a real function ϕ : R → R locally linear in point
x, if a δ > 0 exists such that ϕ is linear in the interval
(x− δ, x+ δ); ϕ is locally non-linear in x, if ϕ is not a linear
function in any open neighborhood of x. With the help of
Lemma 2, in Theorems 2 and 3 we show the local linearity of
the boundary functions of region R11 (F and G) and also of
R00 (H) in most cases. The exceptional cases, when linear-
ity in general does not hold, are case (1) for functions F and
G, which is the allocation of a task-independent mechanism,
and cases (8) and (9) for H which are typical allocations of
grouping minimizers. Notice that (8), (9) are exactly the allo-
cation types, where in region R00 the tasks are given only to
players who do not get a job in any other region.
Theorem 2. If an allocation figure of player 1 is constant (i.e.
the allocations of all players in each region are constant) for
some connected open set G ⊂ R(n−1)×2 of t−1 values, then
the function F (resp. G) is locally linear in every point ti1
(resp. ti2 or tj2) in the projection of G, or case (1) of Figure 2
holds over G.

Proof. We assume an open rectangle T ⊂ G where the con-
ditions hold. Then the result extends to an arbitrary open set

G. As an illustration we give a detailed proof of the theorem
in case (2) of Figure 2 as example for how to apply Lemma 2
for the linearity of boundary functions.

In case (2), the line of the (slanted) boundary f10:01 is given
by the equation t11−t12 = F (ti1)−G(tj2), and it is a bound-
ary between allocations a1j and ai1. If we fix a boundary
point t1, then for this t1 the figure of player i has a bound-
ary f i10:00 = f iai1:a1j , and ti is a point of this boundary by
Observation 1 (b). Moreover, the boundary position for i is a
function of the form ti1 = −Gi(t12)+Hi(t11, tj2), for some
monotone increasing functionsGi andHi. For fixed t̄j2 holds

t12 = −F (ti1) + t11 +G(t̄j2)

m

ti1 = −Gi(t12) +Hi(t11, t̄j2),

and this is valid in some neighborhood of (t11, t12, ti1), since
it is valid on t−1 ∈ T .

We set y := t12, x := ti1, z := t11 and choose
the strictly monotone, continuous functions −F (x), z +
G(t̄j2), −Gi(y), and Hi(z, t̄j2), as α(), β(), ϕ(), and
ψ(z), respectively. Applying the lemma yields that F is lo-
cally linear. For proving the linearity of G we must fix ti1
instead of tj2.

Theorem 3. If an allocation figure of player 1 is constant
for some connected open set G ⊂ R(n−1)×2 of t−1 values,
then the function H() (when defined) is locally linear in each
variable of H, in every point in the corresponding projection
of G, or else one of the cases (8) or (9) in Figure 3 holds.

2.2 Global linearity results
Next, we focus on the functions F andG.We prove that local
linearity extends to global linearity of these functions. More
precisely, the functions F (ti1) for all i 6= 1 are uniquely de-
termined with domain R (unless the allocation ai1 does not
occur at all), and the same holds for G(ti2). Moreover, they
prove to be linear, unless the mechanism is task-independent.
It turns out that the requirement of Theorem 2 to have con-
stant allocations in all the four regions is not necessary, con-
cerning the functions F and G. The next observation extends
Corollary 1 to the case when other players’ bids are not fixed.

Observation 2. Let t−1 = (t2, t3, . . . , tn) and t′−1 =
(t′2, t

′
3, . . . , t

′
n), so that ti1 = t′i1. If both boundaries

fa11:ai1(t−1) and fa11:ai1(t′−1) exist, then they are equal.

From now on, we can use F 1
i (ti1) and G1

i (ti2) (in general
F ki (ti1) and Gki (ti2)) to denote the over their whole domain
uniquely determined boundary functions of a mechanism. We
will omit the superscript 1 whenever we consider the alloca-
tion of player 1. We omit the subscript i,when it is clear from
the argument ti1 or ti2. We prove that if the mechanism is not
task-independent, these functions are linear and have domain
R or ∅. The proof uses the following lemmas:

Lemma 3. If all allocation figures of a single player are
crossing, then all allocation figures of all players are cross-
ing, and therefore the mechanism is task-independent.
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Figure 4: Illustration to Lemma 2.

Lemma 4. Let ti1 be an interior point of the domain of
F (ti1). If F is locally non-linear in ti1, then the mechanism
is task-independent.

Theorem 4. If the SMON mechanism is not task-
independent, then in the allocation figures of player 1,

(a) every Fi and every Gi function is linear (when defined);

(b) for any fixed t−1 the boundaries of the region R11 are
f11:01 = mini6=1 Fi(ti1) and f11:10 = mini6=1Gi(ti2);

(c) the domain of every Fi and every Gi is R or ∅;
(d) if ai1 exists then for any fixed t−1, the tj1 values of the

players j 6= 1, i can be increased so that in R01 the
allocation becomes ai1; in turn, for any fixed t−1, the ti1
can be decreased so that in R01 the allocation becomes
ai1 (and similarly for ti2).

The same holds for the allocation figures of every player k.

2.3 Non task-independent mechanisms
This subsection completes the characterization. We define
the slopes of different boundary functions and settle the con-
nection between them. For ease of exposition, henceforth we
assume that the SMON mechanism we consider is not task-
independent (more precisely, not threshold), and therefore
has at least one non-crossing allocation figure by Lemma 4.
By Theorem 4, the F ki (ti1) and Gki (ti2) functions are lin-
ear over the whole real domain. We introduce the notation
λki,horiz and λki,vert, respectively, for their slopes:

Notation 1. If the allocation aik ever occurs in the mecha-
nism, then we denote the slope of the linear function F ki (ti1)
by λki,horiz; if the allocation aki occurs, we denote the slope
of the function Gki (ti2) by λki,vert.

Later we will prove that for non task-independent alloca-
tions λki,horiz = λki,vert must hold. Before showing this, it
will be useful to first elaborate on the H functions (see Fig-
ure 3). These will turn out to be linear, unless the players are
partitioned into isolated groups that never share the jobs (in
particular, H is always linear in cases (4)–(7), but not neces-
sarily in cases (8) and (9)). Note also that such H functions
never occur in task-independent allocations. We treat the al-
location figures of player 1, and first examine the dependence
of H functions on the bids of players i, with whom player
1 sometimes shares the jobs, i.e., either of ai1 or a1i occurs
as allocation. This case also serves as the base case of the
induction proof of Theorem 6.

Theorem 5. Assume that the allocation ai1 occurs in the
mechanism. Then whenever a boundary function H() of the

region R00 depends on ti1, or ti2, or on ti1 + ti2, this depen-
dence is linear with slope λ1i,horiz. Analogously, if the allo-
cation a1i exists, then for any of these arguments the function
has slope λ1i,vert.

Corollary 2. If for some open set of t−k values, the alloca-
tion to player k is of type (4)–(9) so that H depends on ti1 or
ti2 or on ti1+ti2, then λki,horiz = λki,vert (if both are defined).

Lemma 5. For any SMON allocation λki,horiz = λki,vert
(when defined), unless the allocation is task-independent.

Next we define a partition of the players, such that re-
stricted to any set of the partition, the mechanism is an affine
minimizer.

Definition 7. We define the player-graph with the set of play-
ers [n] as vertices: let players i and j be connected by an edge
if the allocation aij occurs in the mechanism. The players of
the same connected component are called a group.

For neighboring players i and k in the player-graph by
Lemma 5 we can define λki = λki,horiz = λki,vert. Observe
that for these λki values λki = 1/λik is obvious by Observa-
tion 1 (b).

Lemma 6. Assume that the mechanism is not task-
independent and i, j, k is a triangle in the player-graph. Then
λki = λkj · λ

j
i .

The next theorem shows that the constant slopes λki can be
defined for any pair of players within the same group.

Theorem 6. Assume that the mechanism is not task-
independent. For any two players i and k of the same group
there exist constants λki = 1/λik such that in every allocation
figure of player k where the functions F ki , G

k
i appear or H

depends on ti, they depend linearly on ti with slope λki .

Observation 3. If the mechanism is not task-independent,
then for an arbitrary path i0, i1, i2, . . . , it in the player-graph
it holds that λi0it = λi0i1 · λ

i1
i2
· . . . · λit−1

it
.

Corollary 3. For any three players i, j, k of the same group,
λki = λkj · λ

j
i .

Due to the uniqueness and transitivity of the λ values in
non task-independent allocations, we can choose λi = λ1i
to be the multiplicative weight of a player i in the group
of player 1. (We can choose a representative player in each
group to play the role of player 1.) In order to determine the
affine minimizer within a connected group of players com-
pletely, we need additive constants for each allocation to these
players, which we define next.

Lemma 7. Consider w.l.o.g. the connected group of player
1. There exist constants cii and cij for arbitrary members i
and j of the group, such that within this group the mechanism
allocates according to an affine minimizer with multiplicative
constants λ1i and additive constants cii and cij (given that
this group of players receives the tasks).

Clearly, for every connected group g we can choose a rep-
resentative player kg, and determine the multiplicative and
additive constants λkgi , c

ij and cii accordingly. We assume
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that k1 = 1. It remains to elaborate on the rules of the alloca-
tion between two different groups of players. LetOptg be the
optimum value of group g, that is Optg = mini,j∈g(λ

kg
i ti1 +

λ
kg
j tj2 + cij). The characterization result (Theorem 1) is now

an immediate corollary of Lemma 8.
Lemma 8. For every connected group g of players, there
exists an increasing continuous function Φg with domain
(−∞, Cg) and lim−∞Φg = −∞ s.t. (optimal players of)
group g with minimum value of Φg(Optg) receive the tasks.

3 Discussion
The most immediate open question is, whether our result ex-
tends to SMON mechanisms with many tasks. The charac-
terization can be generalized if we make the following strong
assumption: for any two tasks u and v, if two players (ever)
share these tasks in the 2-dimensional projection allocation
obtained by fixing the bids for every other task to some t−uv
matrix, then they also share the tasks given any other fixed
values t′−uv. This property holds for all the mechanisms that
we know, but it is not clear why it can be assumed right away.
We conjecture that every continuous decisive SMON mecha-
nism for allocating m items, with additive bidder valuations
and tij ∈ R, is the product of grouping minimizers and a
task-independent mechanism.

Another question is, if Lemma 2 can in any way be helpful
to gain insight into the nature of WMON allocations. The
lemma suggests the intuition, that in order to obtain new types
of WMON allocation rules, we need to find ones where the
boundary functions are not additive separable functions of the
relevant variables.11
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