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Zürich, Switzerland

Yongjie Yang
Universität des Saarlandes

Saarbrücken, Germany

Abstract
In 1990, Thomas Schwartz proposed the conjec-
ture that every nonempty tournament has a unique
minimal τ -retentive set (τ stands for tournament
equilibrium set). A weak variant of Schwartz’s
Conjecture was recently proposed by Felix Brandt.
However, both conjectures were disproved very re-
cently by two counterexamples. In this paper, we
prove sufficient conditions for infinite classes of
tournaments that satisfy Schwartz’s Conjecture and
Brandt’s Conjecture. Moreover, we prove that τ
can be calculated in polynomial time in several in-
finite classes of tournaments. Furthermore, our re-
sults reveal some structures that are forbidden in
every counterexample to Schwartz’s Conjecture.

1 Introduction
Tournaments play a significant role in multiagent sys-
tems [Brandt et al., 2013a]. For instance, a group of au-
tonomous agents may jointly decide on a course of action
based on the relation of majority preference, which prescribes
that an alternative dominates another alternative if a majority
of agents prefer the former to the later. If there is no tie, the
relation of majority preference gives rise to a tournament—a
complete and antisymmetric binary relation over the alterna-
tives. A tournament can be represented by a directed graph
where between each pair of vertices (alternatives) there is ex-
actly one arc. Moreover, an arc from a vertex a to another
vertex b means that a is preferred to b by a majority of agents
(or a dominates b).

When tournaments are used for joint decision making, the
problem of determining which vertices should be selected as
the winners is of particular importance. If there is a vertex
that dominates every other vertex, then this vertex is widely
recognized as the winner. This winner is called the Con-
dorcet winner (many tournaments solutions select only the
Condorcet winner when it exists, see [Hudry, 2009] for fur-
ther discussions). However, the relation of majority prefer-
ence may result in tournaments where no Condorcet win-
ner exists. For instance, given three alternatives a, b, c and
three agents, if the preferences of the agents are a � b �
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c, b � c � a, c � a � b, then, there will be a triangle in
the tournament (a dominates b, b dominates c, and c domi-
nates a); and thus, no alternative dominates all other alterna-
tives. This is called a Condorcet paradox in the literature.
In this case there is no straightforward notion of a “best”
alternative. To address the problem, researchers proposed
several prominent tournament solutions. A tournament so-
lution is a function that maps a tournament to a nonempty
set of vertices, the winners. In many literature, the tourna-
ment solutions are required to include the Condorcet win-
ner in the winning set whenever the Condorcet winner ex-
ists. In particular, Thomas Schwartz proposed to select the
tournament equilibrium set (τ for short) as the winners. For
a given tournament solution S, Schwartz calls a set of ver-
tices S-retentive if it satisfies a natural stability criterion with
respect to S (see Section 2 for further details). He then recur-
sively defines τ as the union of all minimal τ -retentive sets.
Moreover, Schwartz conjectured that every tournament has a
unique minimal τ -retentive set. This conjecture is of partic-
ular importance since it is equivalent that τ having any one
of a set of desirable fairness properties. Fairness properties
play a significant role in evaluating tournament solutions. In
general, the more the fairness properties a tournament solu-
tion satisfies, the better it is. We refer to [Brandt et al., 2013a;
Brandt, 2011; Brandt et al., 2014] for further discussions on
fairness properties of tournaments solutions. In particular, if
τ satisfied monotonicity, it would be a very attractive solution
concept refining both the Banks set and the minimal covering
set [Brandt et al., 2010].

Unfortunately, Schwartz’s Conjecture has been disproved
very recently by Brandt et al., who firstly proposed a coun-
terexample with around 10136 vertices using the probabilistic
method [Brandt et al., 2013b], and then devised a counterex-
ample with only 24 vertices [Brandt and Seedig, 2013]. Their
negative results imply that τ does not satisfy the following
properties: monotonicity, independent of unchosen alterna-
tives, weak superset and strong superset (see [Brandt, 2011]
for the definitions).

In this paper, we provide some positive results. In par-
ticular, we prove sufficient conditions for infinite classes of
tournaments that satisfy Schwartz’s Conjecture. Our results
reveal some structures that are forbidden in every counterex-
ample to Schwartz’s Conjecture. This might be helpful in
finding further smaller counterexamples to Schwartz’s Con-
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jecture.
In addition, we prove that τ can be calculated in polyno-

mial time for serval special classes of tournaments. Recall
that in general, even determining whether a given vertex is in
τ is NP-hard [Brandt et al., 2010].

Finally, we study a weak variant of Schwartz’s Conjecture
proposed by Brandt et al. [2013b]. In [Brandt et al., 2013b],
the authors actually disproved Schwartz’s Conjecture by dis-
proving this weak variant.

2 Preliminaries
Tournament. A tournament T is a pair (V (T ),�), where
V (T ) is a set of alternatives and� is an asymmetric and com-
plete (and thus irreflexive) binary relation on V (T ), called the
dominance relation. Intuitively, a � b (reads a dominates b)
signifies that alternative a is socially preferable to alternative
b. For two sets X and Y of alternatives, X � Y means that
x � y for every x ∈ X and every y ∈ Y . Tournaments can
be represented by directed graphs where between every pair
of vertices there is exactly one arc. Precisely, a tournament
T = (V (T ),�) can be represented by a directed graph where
alternatives one-to-one correspond to vertices, and there is an
arc from a to b if a � b. For simplicity, we still use a � b
to denote the arc from a to b. Throughout this paper, we ex-
changeably use the terms “vertex” and “alternative”.

A source of a tournament T = (V (T ),�) is a vertex a
so that a � b for every other vertex b ∈ V (T ) \ {a}. From
social choice point of view, the source is called the Condorcet
winner of the tournament. Clearly, every tournament has at
most one source. A tournament is transitive if there is an
order (v1, v2, ..., vk) of the vertices such that for every vi, vj
with i < j there is an arc from vi to vj . Clearly, v1 is the
source of the transitive tournament.

For a vertex v ∈ V (T ), let N−T (v) denote the set of in-
neighbors of v in T and N+

T (v) the set of out-neighbors of
v, that is N−T (v) = {u ∈ V (T ) | u � v} and N+

T (v) =
{u ∈ V (T ) | v � u}. For a subset B ⊆ V (T ), T [B] is the
subtournament induced by B, that is, T [B] = (B,�′) where
for every a, b ∈ B, a �′ b if and only if a � b. A triangle is a
tournament with three vertices so that each vertex has exactly
one in-neighbor. Two triangles are vertex-disjoint if they do
not share a common vertex. For a tournament T , its triangle
packing number is the maximum number of vertex-disjoint
copies of triangles, and its triangle covering number is the
minimum number of vertices intersecting all triangles of T .

A tournament T = (V (T ),�) is isomorphic to another
tournament T ′ = (V (T ′),�′) if there is a bijection f :
V (T )→ V (T ′) such that v � u if and only if f(v) �′ f(u).
We say that T is H-free for some tournament H if no sub-
tournament of T is isomorphic to H; otherwise, we say T
contains H .

Tournament Equilibrium Set (τ ) A tournament solution
S is a function that maps every tournament T to a nonempty
set S(T ) ⊆ V (T ). For a tournament solution S and a tour-
nament T , a nonempty subset A ⊆ V (T ) is an S-retentive
set in T if for all v ∈ A with N−T (v) 6= ∅, we have that
S(N−T (v)) ⊆ A. An S-retentive set A in T is said to be min-
imal if there is no other S-retentive set B in T with B ⊂ A.

Since the set V (T ) of all alternatives is trivially S-retentive
in T , S-retentive sets are guaranteed to exist. Schwartz de-
fined the tournament equilibrium set (τ for short) recursively
as the union of all minimal τ -retentive sets. This recursion
is well-defined since |N−T (v)| is strictly smaller than |V (T )|,
for every v. Particularly, the τ -retentive set of a triangle is the
set of all three vertices.

Composition-Consistent. The terminologies here mainly
follow from [Brandt et al., 2011]. A homogeneous set (com-
ponent) of T is a subset X ⊆ V (T ) such that for all v ∈
V (T ) \X , either {v} � X or X � {v}. A homogeneous set
X ⊆ V (T ) is non-trivial if 1 < |X| < |V (T )|; otherwise it
is trivial. A tournament is prime if all its homogeneous sets
are trivial. A prime tournament T on at least two vertices is
critical if T − v is not prime for all v ∈ V (T ). Here, T − v
is the tournament obtained from T by deleting the vertex v.

A decomposition of T is a set of pairwise disjoint homoge-
neous sets {B1, B2, ..., Bk} of T such that V (T ) = ∪ki=1Bi.
The null decomposition of a tournament T is V (T ). Given
a particular decomposition of a tournament, the summary of
the tournament is defined as follows.

Definition 1. Let T = (V (T ),�) be a tournament and B̃ =
{B1, B2, ..., Bk} a decomposition of T . The summary of T
with respect to B̃ is defined as T̃ = ({1, 2, ..., k}, �̃), where
for every i 6= j, i�̃j if and only if Bi � Bj .

A tournament is called reducible if it admits a decom-
position into two homogeneous sets. Otherwise, it is irre-
ducible. Laslier [1997] has shown that there exists a natural
unique way to decompose any irreducible tournament (in fact,
Laslier [1997] proved this for all tournaments. See [Brandt et
al., 2011] for discussion). Call a decomposition B̃ finer than
another decomposition B̃′ if B̃ 6= B̃′ and for each B ∈ B̃

there exists B′ ∈ B̃′ such that B ⊆ B′. B̃′ is said to
be coarser than B̃. A decomposition is minimal if its only
coarser decomposition is the null decomposition.

Lemma 1. [Laslier, 1997] Every irreducible tournament T
with more than one alternative admits a unique minimal de-
composition. Moreover the summary of T with respect to the
decomposition is prime.

A tournament solution is composition-consistent if it
chooses the “best” alternatives from the “best” compo-
nents [Laffond et al., 1996].

Definition 2. A tournament solution S is composition-
consistent if for all tournaments T and T̃ such that T̃
is the summary of T with respect to some decomposition
{B1, B2, ..., Bk},

S(T ) =
⋃

i∈S(T̃ )

S(T [Bi])

Brandt et al. [2013a] proved that among all tournament
solutions that are defined as the union of all minimal reten-
tive sets with respect to some tournament solution, τ is the
only one that is composition-consistent (see [Brandt et al.,
2013a] for further details). Notice that this holds regardless
of whether Schwartz’s Conjecture holds.
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2.1 Our Contribution
In 1990, Schwartz proposed the following conjecture.

Conjecture 1 (Schwartz’s Conjecture). Every nonempty
tournament has a unique minimal τ -retentive set.

Over the years, Schwartz’s Conjecture has been exten-
sively studied from the social choice perspective [Dutta,
1990; Laffond et al., 1993; Laslier, 1997; Houy, 2009;
Brandt, 2011; Brandt et al., 2010]. In particular, it is known
that Schwartz’s Conjecture is equivalent to τ having any one
of several desirable properties of tournament solutions, in-
cluding monotonicity, independent of unchosen alternatives,
weak superset and strong superset. Unfortunately, Schwartz’s
Conjecture was disproved very recently [Brandt and Seedig,
2013; Brandt et al., 2013b].

In this paper, we develop structural conditions that a tour-
nament must satisfy in order for Schwartz’s Conjecture to
hold. Our first result is summarized in the following theorem.

Theorem 1. Schwartz’s Conjecture holds for all tournaments
whose triangle packing number and triangle covering num-
ber are equal. Moreover, τ can be calculated in polynomial
time for these tournaments.

A proper subclass of the tournaments who have equal num-
ber of triangle packing and triangle covering are the ones
where triangles are pairwise vertex-disjoint. In this case, each
triangle is a homogenous set and the tournaments are transi-
tive over the triangles. This could happen in real-world ap-
plications where the alternatives can be divided into groups,
each containing at most three alternatives that are “similar” to
each other. The similarity implies that every agent ranks the
alternatives in the same group together. Moreover, all agents
have a consensus ranking over the groups. The term “simi-
larity” has been studied in the literature. For example, Elkind
et al. [2012] studied the clone structure, where cloning an
alternative means to replace this alternative with a group of
alternatives that are ranked together by all agents. Another
example are elections with bounded single-peaked width or
bounded single-crossing width (see e.g., [Cornaz et al., 2013]
for further information on single-peaked width and single-
crossing width). The second condition stating that all agents
have a common consensus ranking over the alternatives could
arise in the applications where there exists a correct ranking
over the alternatives, and each agent’s preference corresponds
to a noisy perception of this correct ranking [Conitzer and
Sandholm, 2005] (in the case we are discussing, the noise
is due to the similarity of the alternatives in each group). We
remark that for tournaments with equal triangle packing num-
ber and triangle covering number, it is not necessary that all
triangles are pairwise vertex-disjoint.

To prove Theorem 1, we use some properties of tourna-
ments whose triangle packing number and triangle covering
number are equal. In particular, it is easy to see that such tour-
naments must exclude certain 5-vertex tournaments as sub-
tournaments. We give such tournaments in Fig. 1, where the
undrawn arcs can take either orientation.

Curiously, Brandt and Seedig’s counterexample [2013] to
Schwartz’s Conjecture on 24 vertices contains both F1 and F2

as subtournaments: two disjoint copies of F1 are formed by

F1 F2

Figure 1: Tournaments on five vertices with triangle packing
number strictly less than triangle covering number.

{x1, x2, x3, x4, x9} and {y1, y2, y3, y4, y9}, and two disjoint
copies of F2 are formed by {x1, x7, x5, x10} ∪ {v ∈ Y1} and
{y1, y7, y5, y10} ∪ {v ∈ X2} in their figure.

Now we come to our second result. In particular, we prove
Schwartz’s Conjecture for tournaments defined by a forbid-
den subtournament called U5. Let U5 be the tournament with
vertices v1, . . . , v5 such that v2 � v1, and vi � vj if j−i ≡ 1,
2 (mod 5) and i, j 6= 1, 2. Various subclasses and gener-
alizations of U5-free tournaments are well-studied [Ehren-
feucht and Rozenberg, 1990; Schmerl and Trotter, 1993;
Liu, 2015; Belkhechine and Boudabbous, 2013].

Theorem 2. Schwartz’s Conjecture holds in U5-free tourna-
ments.

We remark that the 24-vertex counterexample to
Schwartz’s Conjecture by Brandt and Seedig [2013]
contains two disjoint copies of U5; the first copy
is induced by x1, x3, x5, x12 and any vertex of
Y1; the second copy is induced by y1, y3, y5,
y12 and any vertex of X2. Our third result is as follows.

Theorem 3. Schwartz’s Conjecture holds for critical tourna-
ments. Moreover, τ can be calculated in polynomial time for
critical tournaments.

Now we discuss some extensions of the above results. It
is well known that τ contains exactly the Condorcet winner
whenever the Condorcet winner exists. As a consequence,
Schwartz’s Conjecture holds in all tournaments where Con-
dorcet winner exists. Since τ is composition-consistent, we
then have the following corollary.

Corollary 1. Schwartz’s Conjecture holds in all tournaments
T who have a summary T̃ = ({1, 2, ..., k},�) with respect to
a decomposition {B1, B2, ..., Bk} of T such that T̃ admits the
Condorcet winner i, and at least one of the following holds
for each i = 1, 2, ..., k:

(1) the triangle packing number and the triangle covering
number of T [Bi] are equal; or

(2) T [Bi] is U5-free; or
(3) T [Bi] is critical.

Our fourth result concerns a weakening of Schwartz’s Con-
jecture, which claims the existence of an “undominated” ver-
tex set A in any tournament T , where A is undominated if
there is a vertex v ∈ V (T ) \ A and a vertex u ∈ A so that
u � v.
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Conjecture 2 ([Brandt et al., 2013b]). Let (A,B) be a par-
tition of the vertex set of a tournament T . Then one of A,B
contains a transitive subset which is undominated in T .

It is known that Conjecture 1 implies Conjecture 2 [Brandt
et al., 2013b]. Therefore, all the above results for Schwartz’s
Conjecture apply to Conjecture 2. In addition, we prove Con-
jecture 2 for all tournaments in which every triangle shares at
most one of its arcs with other triangles.

Theorem 4. Conjecture 2 holds for all tournament T where
every triangle shares at most one arc with other triangles.

In the remainder of the paper, we prove the theorems
shown above.

3 Triangle Packing-Covering
In this section we prove Theorem 1. Before proceeding
further, we introduce an interesting property on minimal τ -
retentive set.

Lemma 2. Any minimal τ -retentive set either induces an ir-
reducible subtournament, or contains only one vertex.

Proof. Let T be a tournament. Assume, for the sake of con-
tradiction, that the statement is false. Then there exists a mini-
mal τ -retentive setX with |X| ≥ 2 which induces a reducible
subtournament. Let A ⊆ X and B ⊆ X be the two homoge-
nous sets such that A � B in T [X]. We argue that A is also a
τ -retentive set of T . Let x be any vertex in A. If N−T (x) = ∅,
we are done. Assume now that N−T (x) 6= ∅. Since A � B,
we know thatX∩N−T (x) ⊆ A. SinceX is a τ -retentive set of
T and x ∈ X , we know that τ(N−T (x)) ⊆ (X∩N−T (x)) ⊆ A.
Therefore, A is also a τ -retentive set, contradicting that X is
a minimal τ -retentive set.

The above lemma implies that no minimal τ -retentive
set contains exactly two vertices. Moreover, a minimal τ -
retentive set contains exactly one vertex if and only if the ver-
tex is the Condorcet winner of the tournament.

Lemma 3. If a tournament does not have a source, then
any minimal τ -retentive set of T contains at least 3 vertices.
Moreover, every minimal τ -retentive set contains at least one
triangle.

Now we discuss a property on tournaments whose triangle
packing number equals its triangle covering number. Let T
be a tournament not containing any of the five tournaments
represented by F1, F2 in Fig. 1 as subtournament; we call
such a tournament clean.

Proposition 1 ([Cai et al., 2001]). For clean tourna-
ments T = (V (T ),�) with |V (T )| ≥ 5, V (T ) can be parti-
tioned into sets V1, . . . , Vt for some t ≥ 3 such that

(1) for i = 1, . . . , t, the induced tournament T [Vi] is tran-
sitive and thus admits a linear order B such that xB y when-
ever x � y;

(2) for i = 1, . . . , t there is a map f : Vi+1 → Vi such that

• for any v ∈ Vi+1, x � v for each x in Vi with x B
f(v); and v � x for each x in Vi with f(v)D x;

• for any u, v ∈ Vi+1 with uB v, it holds f(u)D f(v);

(3) for any i, j with 1 ≤ i ≤ j − 2 ≤ t − 2, each arc
between Vi and Vj is directed from Vi to Vj .

Proof of Theorem 1. Cai et al. [2001] showed that if a tour-
nament T (of size at least 5) has its triangle packing number
and triangle covering number equal, T is neat; and thus, there
exists a partition V1, . . . , Vt of its vertices satisfying Proposi-
tion 1. Recall that t ≥ 3. For each i = 1, 2, 3, let si be the
source of T [Vi]. We distinguish between the following cases.

Case 1. s1 B f(s2). In this case, it is easy to check that s1
is the source of T , and thus, Theorem 1 holds.

Case 2. f(s2) D s1 (equivalently, f(s2) = s1) and s2 B
f(s3). According to the condition (2) in Proposition 1 and
f(s2) D s1, we have that {s2} � V1. Moreover, since s2 B
f(s3), we know that {s2} � V3. Further, {s2} � Vi for each
i ≥ 4. With s2 being the source of T [V2], we conclude that
s2 is the source of T , and thus, Theorem 1 holds.

Case 3. f(s2)D s1 and f(s3)D s2 (equivalently, f(s3) =
s2). Then {s1, s2, s3} forms a triangle in T . We claim that
X = {s1, s2, s3} is a τ -retentive set of T . To see this, no-
tice that f(s2) D s1, s2 � s1 and N−T (s1) ⊆ V2. As s2
is the source of T [V2], τ(N−T (s1)) = {s2} ⊂ X . Simi-
larly, f(s3) D s2, s3 � s2 and N−T (s2) ⊆ V3. With s3
being the source of T [V3], τ(N−T (s2)) = {s3} ⊂ X . Fi-
nally, N−T (s3) ⊆ V1 ∪V4. Now, since T [V1 ∪V4] is transitive
and s1 is its source, τ(N−T (s3)) = {s1} ⊂ X . This implies
that X = {s1, s2, s3} is a τ -retentive set of T , and completes
the proof of the claim. Due to Lemma 3, X is a minimal
τ -retentive set.

Next, we show thatX is the unique minimal τ -retentive set
of T . Suppose that there exists another minimal τ -retentive
set Y of T . Due to Lemma 3, |Y | ≥ 3. Due to the above
analysis, if Y contains any of {s1, s2, s3}, Y contains all of
them. Therefore, we know that Y ∩ X = ∅. Let x be any
vertex in Y . We consider all possibilities of x, and prove that
each possibility contradicts with the fact that Y ∩ X = ∅.
(1) x ∈ V1. In this case, τ(N−T (x)) = {s2}. (2) x ∈ V2 and
s1 6∈ N−T (x). In this case, τ(N−T (x)) = {s3}. (3) x ∈ V2 and
s1 ∈ N−T (x). In this case, {s1, s2, s3} ⊆ N−T (x). Accord-
ing to the above analysis, it is easy to see that {s1, s2, s3}
is also a minimal τ -retentive set of T [N−T (x)]; and thus,
{s1, s2, s3} ⊆ τ(N−T (x)). (4) x ∈ V3 and s2 6∈ N−T (x). In
this case, τ(N−T (x)) = {s1}. (5) x ∈ V3 and s2 ∈ N−T (x). In
this case, {s1, s2, s3} ⊆ N−T (x) (then, the same as (2)). (6)
x ∈ V4 and s3 6∈ N−T (x). In this case, τ(N−T (x)) = {s2}. (7)
x ∈ V4 and s3 ∈ N−T (x). In this case, {s1, s2, s3} ⊆ N−T (x)
(then, the same as (2)). (8) x ∈ Vi for each i ≥ 5. Then it is
easy to see that {s1, s2, s3} ⊆ N−T (x) (then, the same as (2)).
In each of the above cases, τ(N−T (x)) contains some vertices
from {s1, s2, s3}, implying that Y ∩ {s1, s2, s3} 6= ∅, a con-
tradiction. Therefore, we conclude that X = {s1, s2, s3} is
indeed the unique minimal τ -retentive set of T .

Cai et al. [2001] proved that for tournaments where the tri-
angle packing number equals the triangle covering number, a
partition stated in Proposition 1 can be found in polynomial
time. Then, according to the above proof, the τ of these tour-
naments can be calculated in polynomial time.
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4 Tournaments Excluding U5

In this section we prove Schwartz’s Conjecture for tourna-
ments that do not contain U5. That is, we give a proof of
Theorem 2.

Definition 3. For odd n ∈ N≥5, define tournaments

• Hn is the tournament with vertices v1, . . . , vn such that
vi � vj if j − i ≡ 1, 2, . . . , (n− 1)/2 (mod n).

• Un is the tournament obtained from Hn by reversing all
arcs which have both ends in {v1, . . . , v(n−1)/2}.

We first prove Schwartz’s Conjecture for Hn with odd n.

Lemma 4. Schwartz’s Conjecture holds for tournamentsHn,
for all odd n ∈ H≥5.

Proof. For any tournament Hn, we show that V (Hn) is the
unique minimal τ -retentive set. For the sake of contradiction,
assume that there is a minimal τ -retentive set R ⊂ V (Hn).
Let vi be a vertex such that vi ∈ V (Hn) \ R. Due to the
definition of Hn, there is some vertex vj ∈ V (Hn) with
τ(N−Hn

(vj)) = vi, where j ≡ i + n−1
2 (mod n). As R is

τ -retentive and vi /∈ R, we have vj 6∈ R. Again, there is
some vertex vk ∈ V (Hn) with τ(N−Hn

(vk)) = vj , where
k ≡ j + n−1

2 ≡ i + n−1
2 + n−1

2 ≡ i − 1 (mod n). Hence,
vi−1 6∈ R. Similarly, we can show that vj−1, vi−2, vj−2, vi−3
and so on are not in R, contradicting that R 6= ∅.

Now we prove Schwartz’s Conjecture for U5-free tourna-
ments. We start with U5-free tournaments that are prime.

Proposition 2 ([Liu, 2015]). Let T be a prime tournament.
Then T is U5-free if and only if T is isomorphic to Hn for
some odd n ≥ 1, or V (T ) can be partitioned into setsX,Y, Z
such that each of T [X∪Y ], T [Y ∪Z], T [Z∪X] is transitive.

Lemma 5. Schwartz’s Conjecture holds for all U5-free tour-
naments that are prime.

Proof. Let T be a U5-free tournament that is prime. Due
to Proposition 2 and Lemma 4, we can assume that V (T )
can be partitioned into sets X,Y, Z such that each of X ∪
Y, Y ∪Z,Z ∪X induces a transitive subtournament. If T has
a source, then the source is the unique minimal τ -retentive set
of T . Assume from now on that T does not have a source.

Let sxy , syz and sxz be the source vertices of T [X ∪ Y ],
T [Y ∪ Z] and T [Z ∪X], respectively. Observe that sxy , syz
and sxz are distinct, as T does not have a source. More-
over, sxy, syz, sxz all belong to distinct partition classes of
the partition (that is, each X,Y, Z contains exactly one from
{sxz, sxy, syz}). Assume, without loss of generality, that
syz � sxy; otherwise, we can exchange x with z.

We claim that {sxy, syz, sxz} is a minimal τ -retentive set.
As sxy dominates all vertices inX∪Y , all in-neighbors of sxy
belong to Z. Since syz � sxy , it must be that syz ∈ Z. Then,
since sxz is the source of T [X ∪Z], it must be that sxz ∈ X .
This implies that sxy ∈ Y . Moreover, {sxz, syz, sxy} forms
a triangle with sxz � syz, syz � sxy, sxy � sxz . Since
sxz is the source of T [X ∪ Z], N−T (sxz) ⊆ Y . Since sxy is
the source of T [X ∪ Y ] and sxz ∈ X , we have that sxy ∈
N−T (sxz) and sxy dominates every other vertex in N−T (sxz).

Therefore, τ(N−T (sxz)) = {sxy}. Analogously, we can show
that τ(N−T (sxy)) = {syz} and τ(N−T (syz)) = {sxz}. There-
fore, {sxy, syz, sxz} is a τ -retentive set. By Lemma 3, every
minimal τ -retentive set of T contains at least 3 vertices. This
implies that {sxy, syz, sxz} is a minimal τ -retentive set.

Finally, we prove that R is the unique minimal τ -retentive
set. For the sake of contradiction, assume that there exists
another minimal τ -retentive set R′ of T . By Lemma 3, R′
contains at least one triangle. Hence, R′ must contain at least
one vertex from Y . Let that vertex be d ∈ R′∩Y . If d = sxy ,
then, as discussed above, sxz and syz must also be in R′.
Thus, R′ ⊇ R, the desired contradiction. Next we assume
that d 6= sxy . Since d ∈ Y , we have that sxy � d and
syz � d. If sxz � d, we have {sxz, syz, sxy} ⊆ N−T (d).
Then due to the above analysis, it is easy to check that
{sxy, syz, sxz} is also a minimal τ -retentive set of T [N−T (d)];
thus, {sxy, syz, sxz} ⊆ R′, a contradiction. On the other
hand, if d � sxz , then due to that T [X ∪ Y ] is transitive and
sxz is the source of T [X], we have that N−T (d) ∩ X = ∅.
Therefore, all in-neighbors of sxz are in Y ∪ Z. Since syz is
the source of T [Y ∪Z], τ(N−T (d)) = {syz}. Due to the above
analysis, if one of {sxy, syz, sxz} is in a τ -retentive set, then
all of them are in the τ -retentive set. Therefore, we have that
{sxy, syz, sxz} ⊆ R′, also a contradiction.

Now it remains to prove Schwartz’s Conjecture for non-
prime U5-free tournaments. The following lemma is useful.
Lemma 6. Let T be a tournament with a decomposition
B̃ = {B1, B2, ..., Bk}. Let T̃ = ({1, 2, ..., k}, �̃) be the
summary of T with respect to B̃. If Schwartz’s Conjec-
ture holds in T̃ and in every T [Bi] for i = 1, 2, ..., k, then
Schwartz’s Conjecture holds in T .

Proof. (Sketch.) If T̃ has a source, then it is easy to check that
the lemma is true (due to that τ is composition-consistent).
In the following, we assume that T̃ does not have a source.
Let R̃ be the unique minimal τ -retentive set of T̃ , and let
Ri be the unique minimal τ -retentive set of T [Bi] for ev-
ery i ∈ R̃. We claim that ∪i∈R̃Ri is the unique mini-
mal τ -retentive set of T . Let R be any minimal τ -retentive
set of T . Since τ is composition-consistent, we know that
R ⊆ (∪i∈R̃Ri). Let x ∈ R be a vertex in some Ri with
i ∈ R̃. The in-neighbors N−T (x) of x can be divided into two
sets: N−T [Bi]

(x) and ∪j�̃iBj . Since Bi is a homogeneous
set of T , we know that (∪j�̃iBj) � N−T [Bi]

(x). Therefore,
τ(N−T (x)) = τ(∪j�̃iBj). Since τ is composition-consistent,
we know that

τ(N−T (x)) =
⋃

j∈R̃,j�̃i

Rj

Therefore, (∪j∈R̃,j�̃iRj) ⊆ R. Analogously, from any ver-

tex y ∈ Rj with j ∈ R̃ and j�̃i, we can conclude that all ver-
tices ∪l∈R̃,l�̃jRl must be inR. Due to Lemma 2, T̃ [R̃] is irre-

ducible, which implies that after at most |R̃| steps, all vertices
in ∪i∈R̃Ri must be in R (see Theorem 2 in [Moon, 2013] for
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a property of irreducible tournaments). SinceR ⊆ (∪i∈R̃Ri),
we conclude that R = ∪i∈R̃Ri, and R is the unique minimal
τ -retentive set of T .

Let T be a non-prime U5-free tournament. Let A be the
minimum set of vertices such that there is an arc from ev-
ery vertex in A to every vertex not in A (in the literature, A is
called the Smith set of T [Smith, 1973]). Clearly, T [A] is irre-
ducible; and moreover, {A, V (T ) \A} is a decomposition of
T . Let T̃ be the summary of T with respect to {A, V (T )\A}.
Then, the vertex corresponding to A in the summary T̃ is
the Condorcet winner (source) of T̃ . Since τ is composition-
consistent, every minimal τ -retentive set of T must be in A.
Let {A1, A2, ..., Ak} be the unique decomposition of T [A]
according to Lemma 1, and let T̃ [A] be the summary of T [A]
with respect to {A1, A2, ..., Ak}. Due to Lemma 1, T̃ [A] is
a U5-free prime tournament. Due to Lemma 5, Schwartz’s
Conjecture holds in T̃ [A]. Then, according to Lemma 6, we
need only to prove that Schwartz’s Conjecture holds in each
T [Ai]: we recursively decompose each T [Ai]. In each recur-
sion, we have a U5-free summary of the original tournament.
Then, again, due to Lemma 5, Schwartz’s Conjecture holds in
this summary. We recursively use this scheme until the sum-
mary contains only one vertex. Then, due to Lemma 6, we
can finally prove that Schwartz’s Conjecture holds in every
T [Ai].

5 Critical Tournaments
In this section we prove Schwartz’s Conjecture for critical
tournaments, that is, we prove Theorem 3.

For odd n ∈ N≥5, let Wn be the tournament with vertices
v, w1, . . . , wn−1 such thatwi � wj for i < j, and {wi | i ≡ 0
(mod 2)} � {v} � {wi | i ≡ 1 (mod 2)}. We employ a
structural result of critical tournaments:
Proposition 3 ([Schmerl and Trotter, 1993]). Any critical
tournament on at least five vertices is isomorphic to either
Hn, or Un, or Wn, for any odd n ∈ N≥5.

By Lemma 4, it remains to prove Schwartz’s Conjecture
for Un and Wn in order to prove it for critical tournaments.
Lemma 7. Schwartz’s Conjecture holds for tournaments Un,
for any odd n ∈ N≥5.

Proof. Observe that Un does not have a source, hence by
Lemma 3 every minimal τ -retentive set of Un must con-
tain at least three vertices. We show that the set R ={
vn−1

2
, vn+1

2
, vn

}
is a minimal τ -retentive set of Un. By

definition of Un, it is evident that vn is the only in-neighbor
of vn−1

2
, hence τ(N−Un

(vn−1
2

)) = {vn}. With
{
vn−1

2

}
�{

v1, . . . , vn−3
2

}
and N−Un

(
vn+1

2

)
=
{
v1, . . . , vn−1

2

}
, we

observe that τ
(
N−Un

(
vn+1

2

))
=
{
vn−1

2

}
. Finally,

{
vn+1

2

}
�
{
vn+3

2
, . . . , vn

}
and N−Un

(vn) =
{
vn+1

2
, . . . , vn−1

}
, so

τ(N−Un
(vn)) =

{
vn+1

2

}
. Therefore, R =

{
vn−1

2
, vn+1

2
, vn

}
is a minimal τ -retentive set of T . Next, we show that R is

the unique minimal τ -retentive set of T . For the sake of con-
tradiction, suppose there exists another minimal τ -retentive
set R′ of Un other than R. Let vi ∈ R′ \ R. Since vn is
the only in-neighbor of vn−1

2
, the set τ(N−Un

(vi)) contains at

least one vertex from
{
vn, vn−1

2

}
. Now, as shown above,

any τ -retentive set of Un which contains any vertex from{
vn−1

2
, vn+1

2
, vn

}
must contain all vertices in R. As R′ con-

tains at least one vertex from
{
vn, vn−1

2

}
, it holds R ⊂ R′, a

contradiction.

Lemma 8. Schwartz’s Conjecture holds for tournamentsWn,
for any odd n ∈ N≥5.

Proof. We claim that {v, w1, w2} is the unique minimal τ -
retentive set of Wn. This follows from the facts that (i) w1

is the unique in-neighbor of w2; and (ii) v is the unique in-
neighbor of w1; and (iii) w2 is the source of the subtourna-
ment induced by w2 and all in-neighbors of v.

Due to the above proofs, and the fact that whether a tour-
nament is isomorphic to Hn, Un or Wn for any odd n can be
determined in polynomial time, τ can be calculated in poly-
nomial time for critical tournaments.

As corollary we obtain Schwartz’s Conjecture for fur-
ther well-studied classes of tournaments. Latka [2003]
showed that any prime tournament T of size at least
12 does not contain W5 (Theorem 1.2 in [Latka, 2003].
The authors in [Latka, 2003] use N5 to denote the
graph W5 defined in this paper) if and only if T
is isomorphic to an element of {H2n+1 | n ≥ 2}
∪ {U2n+1 | n ≥ 2}. Recall that Schwartz’s Conjecture
holds in all tournaments with at most 12 vertices [Brandt and
Seedig, 2013]. By recursively use Lemma 6, as discussed in
the last in Section 4, we have the following lemma.

Corollary 2. Schwartz’s Conjecture holds for all W5-free
tournaments.

6 Undominated Sets in Tournaments with
Triangles Sharing at Most One Arc

In this section, we prove Theorem 4. Due to space limitations,
we give only the sketch of the proof.

A feedback vertex set S of a tournament T is a subset of the
vertices such that T [V (T )\S] is transitive. A feedback vertex
set S is minimal if there is no other feedback vertex set S′
with S′ ⊂ S. Let (A,B) be a partition of T . Let fvs(A) be a
minimal feedback vertex set of T [A], and letX = A\fvs(A).
Then for each vertex v ∈ fvs(A) there is a triangle formed by
v and two vertices inX . Hence,X is undominated in T [A]. If
no vertex from B dominates X in T , then X is undominated
in T , and is the desired set. Suppose now that some non-
empty set R ⊆ B of vertices dominates X in T . Consider the
following cases:

Case 1: Some r ∈ R dominates A in T .
In this case, we find a minimal feedback vertex set fvs(B)

of T [B] such that r /∈ fvs(B). Then, one can check that
B \ fvs(B) is undominated in T .
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Case 2: No vertex of R dominates all vertices in A.
Now, for each vertex r ∈ R we can find a vertex gr ∈

fvs(A), called the guard of r, such that gr � r. Let G be the
set of all guard vertices of R. Then, we can find a desired set
S (that is, a set S which induces a transitive subtournament
and is undominated in T ) such that S is formed from X by
replacing some vertices inX with vertices inG. Due to space
limitations, we defer further details to a full version of the
paper.

7 Discussion
τ (Tournament equilibrium set) is a prominent tournament so-
lution that has been extensively studied. Recently, Schwartz’s
Conjecture (Conjecture 1) and a weak variant proposed by
Brandt [2013b] (Conjecture 2) were disproved, implying that
τ does not satisfy many desirable properties. It is believed
that tournaments where Schwartz’s Conjecture does not hold
are rare. However, less theoretical evidence is known. In
this paper, we take the first step towards this line of research.
In particular, we devised several sufficient conditions for in-
finite classes of tournaments that satisfy Schwartz’s Conjec-
ture and Brandt’s Conjecture (see Theorems 1-4). Moreover,
we explored several interesting properties on τ -retentive sets
(Lemmas 2, 3 and 6). These properties might be useful in
further study on τ and Schwartz’s Conjecture.

Our results imply that every counterexample to Schwartz’s
Conjecture must contain at least one copy of W5, one copy
of U5, and at least any one copy of graphs depicted in Fig. 1
({F1, F2}). Notice that this does not mean that every coun-
terexample includes at least 15 vertices, since these copies
of W5, U5, F1, F2 could be overlapped. We believe that ex-
tending our method can yield the smallest counterexample to
Schwartz’s Conjecture, which is currently only known to lie
in the range between 12 and 24 [Brandt and Seedig, 2013].

An intriguing direction for further research would be to ex-
tend our results to further tournaments.
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