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Abstract
We study the problem of designing envy-free spon-
sored search auctions, where bidders are budget-
constrained. Our primary goal is to design auctions
that maximize social welfare and revenue — two
classical objectives in auction theory. For this pur-
pose, we characterize envy-freeness with budgets
by proving several elementary properties including
consistency, monotonicity and transitivity. Based
on this characterization, we come up with an envy-
free auction, that is both social-optimal and bidder-
optimal for a wide class of bidder types. More gen-
erally, for all bidder types, we provide two poly-
nomial time approximation schemes (PTASs) for
maximizing social welfare or revenue, where the
notion of envy-freeness has been relaxed slightly.
Finally, in cases where randomization is allowed
in designing auctions, we devise similar PTASs for
social welfare or revenue maximization problems.

1 Introduction
Sponsored search advertising via auctions is one of the most
popular ways of Internet monetization, which account for a
major part of search engines’ revenue. Consequently, design
and analysis of such auctions has drawn a lot of attention in
artificial intelligence and electronic commerce. For exam-
ple, in the pioneering work by Varian [2007] and Edelman
et al. [2007], the “generalized second price” (GSP) auctions,
used by Google, have been modeled as position auctions
having several desirable properties. Variants of this model
have been extensively studied from both theoretical and
practical points of view [Kuminov and Tennenholtz, 2009;
Graepel et al., 2010; He et al., 2013].

In practice, budget constraints are given by bidders to spec-
ify their monetary affordability. The issues arising from bud-
gets have received some attention in prior study on auction
design [Ashlagi et al., 2010; Dobzinski et al., 2012]. It has
been observed that, in various settings, the imposition of bid-
ders’ budgets changes the problems dramatically. To see this
change in sponsored search, we point out that an advertiser’s
utility function, which is the difference between her valua-
tion for the ad slot and the money she pays, is no longer a
continuous function of her payment.

Fairness is one of the most important criteria in auction de-
sign. In economic theory, fairness can be explained as a free
market without discriminatory pricing. More precisely, buy-
ers should be allocated their most desired items under their
budget constraints. Unfortunately, auctions currently in use
may produce unfair outcomes for budget-constrained bidders
(e.g., simultaneous ascending auctions [Nisan et al., 2009]).
It has been pointed out that the lack of fairness may lead to
worse customer experience and fewer subsequent purchases
from the firm [Anderson and Simester, 2010].

In this paper, we adopt a concept of fairness called envy-
freeness in auctions. Envy-freeness is a classical criterion for
analyzing mechanisms [Foley, 1967], which has been widely
studied in artificial intelligence [Bouveret and Lang, 2005;
Othman and Sandholm, 2010]. An outcome is envy-free if
no buyer can improve her utility via exchanging her allocated
items and payment with others. In sponsored search, envy-
freeness is equivalent to the above explanation of fairness in
a free market.

Our key objective is to design “optimal” envy-free auc-
tions with respect to two classical objective functions in auc-
tion theory — social welfare and revenue. To this end, we
characterize envy-freeness with budget-constrained bidders
by proving several elementary properties including consis-
tency, monotonicity and transitivity for all envy-free out-
comes. Based on this characterization, we have designed an
envy-free auction which is both social-optimal (maximizing
social welfare) and bidder-optimal (maximizing every bid-
der’s utility) for a wide class of bidder types. More gener-
ally, for all bidder types, we devise two polynomial-time ap-
proximation schemes (PTASs) to maximize social welfare or
revenue where the notion of envy-freeness has been relaxed
slightly. Furthermore, we present similar PTASs for design-
ing optimal randomized auctions.

Our work is closely related to existing results on designing
envy-free auctions for budget-constrained bidders. We review
them briefly and identify their differences from our work.

Ashlagi et al. [2010] first investigated the effect of bud-
get constraints in designing sponsored search auctions. They
showed that a modification of the Generalized English Auc-
tion introduced by Edelman et al. [2007] is envy-free and
Pareto optimal (a weaker condition than social welfare max-
imizing). However, the mechanism they developed cannot
provide any guarantee for social welfare or revenue.
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Aggarwal et al. [2009] and Dütting et al. [2011] devel-
oped more expressive auctions with discontinuous utilities
including the case with budgets. They presented envy-free
and bidder-optimal mechanisms for matching markets that is
a more general setting than sponsored search. Unfortunately,
no bidder-optimal auction always maximizes social welfare
even in the context of sponsored search (see Example 3.7).

Feldman et al. [2012] first studied the revenue maximiza-
tion problem in designing envy-free auctions for budget-
constrained bidders. However they worked in a multi-unit
setting with identical items and multi-demand buyers.

Devanur et al. [2013] analyzed clinching auctions intro-
duced by Ausubel [2004] in the context of sponsored search.
They showed that, when all bidders have a common budget,
the clinching auction is envy-free and approximates optimal
social welfare and revenue within a constant factor. Instead,
our results aim at optimizing social welfare and revenue with-
out the common budget assumption.

Revenue maximization in envy-free auctions has been ex-
tensively studied in a more general setting. Guruswami
et al. [2005] showed that it is APX-hard to maximize the rev-
enue among envy-free outcomes in matching markets. After
that, both positive [Chen and Deng, 2010] and negative re-
sults [Briest, 2008] have been proved for this problem without
budget constraints. Relaxed notions of envy-freeness have
been also used in solving several problems (e.g., [Cohler et
al., 2011], [Brânzei and Miltersen, 2013]).

Much effort has been made to design incentive compati-
ble auctions for bidders with budgets. Dobzinski et al. [2012]
generalized clinching auctions to multi unit environment with
budget constraints. This result was also extended to ordinal
environments including sponsored search scenario in [Goel
et al., 2012]. For multiple keyword sponsored search auc-
tions with budgets, Colini-Baldeshi et al. [2012] developed a
randomized incentive compatible and Pareto optimal mech-
anism. Dobzinski and Paes Leme [2014] designed truthful
auctions to approximate “liquid welfare” within a constant
factor in multi-unit environments. But these mechanisms may
produce unfair outcomes for budget-constrained bidders.

When considering social welfare or revenue maximization,
Incentive Compatibility and Envy-freeness are not compat-
ible in several settings with budgets (see [Feldman et al.,
2012] and references therein). Example 3.7 shows that no
truthful mechanism can always output social-optimal envy-
free outcomes. Therefore, in this paper we forgo truthfulness
and concentrate on envy-free outcomes.

2 Preliminaries
In sponsored search, m advertisement positions are allocated
to n bidders. Let N = {1, . . . , n} and M = {1, . . . ,m}
denote the set of bidders and positions respectively. Each po-
sition j ∈ M is characterized by a quality number qj , rep-
resenting the number of clicks it could provide. This model
is able to describe the setting where the value of the click
may depend on the position it appears. We assume positions
are indexed in decreasing order of qj , i.e. q1 ≥ . . . ≥ qm.
Each bidder i ∈ N is associated with a pair (vi, Bi), where
vi represents her monetary valuation per click and Bi is the

maximum payment she could afford. Note that bidder i is
only interested in getting a single position, which is also
called unit-demand. So bidder i’s valuation for position j is
viqj . We assume all vi, Bi and qj are integers. We also use
I = (v,B,q) to denote an instance of a sponsored search
auction, where v = (v1, . . . , vn), B = (B1, . . . , Bn) and
q = (q1, . . . , qm). An outcome of an auction can be repre-
sented by an allocation vector x = (x1, . . . , xn) and a pay-
ment vector p = (p1, . . . , pn), where xi denotes the expected
number of clicks allocated to bidder i and pi is the corre-
sponding payment. In deterministic auctions, an allocation
vector x can be viewed as a matching between bidders and
positions. That is, if bidder i is matched to position j then
xi = qj . In randomized auctions, a bidder may be allocated
a distribution over positions. More precisely, for each bid-
der i and position j, rij is the probability that i gets j such
that

∑
i∈N rij ≤ 1 and

∑
j∈M rij ≤ 1. Thus, the alloca-

tion xi =
∑
j∈M rijqj is the expected number of clicks that

bidder i gets from the allocated distribution.
In this paper, we restrict our attention to outcomes (x,p)

with the following properties: for all bidder i ∈ N , pi ≤ Bi
(budget feasible), xivi − pi ≥ 0 (individual rational) and
pi ≥ 0 (no positive transfer). So we omit the word “feasible”
for brevity in the remainder of this paper.

To formalize fairness, we adopt the following notion of
envy-freeness. A set of bidders S ⊆ N is said to be envy-
free in an outcome (x,p), if for any pair of bidders, i, j ∈ S,
i does not envy j, i.e., pj ≤ Bi implies xivi−pi ≥ xjvi−pj .
An outcome is envy-free if all bidders are envy-free in it.
Moreover, an auction is envy-free if its outcome for any in-
stance is envy-free. In order to get approximation schemes,
we also use a weaker notion of envy-freeness called relaxed
ε-envy-freeness. An outcome (x,p) is said to be relaxed ε-
envy-free if it is feasible and for any pair of bidders i, j ∈ N
such that pj ≤ Bi − ε, xivi − pi ≥ xjvi − pj − ε. We
consider two classical objective functions — social welfare,
and revenue. Given an outcome (x,p), the social welfare of
the outcome is

∑
i∈N vixi and the revenue is

∑
i∈N pi. We

say that an envy-free auction A is social-optimal (or revenue-
optimal) if for any instance, no envy-free auction can pro-
duce an outcome with higher social welfare (or revenue) than
A. Note that our social-optimal envy-free auction may obtain
lower social welfare than the optimal social welfare without
envy-freeness.

3 Deterministic Auctions
In this section, we describe our approach to designing social-
optimal or revenue-optimal deterministic auctions for budget-
constrained bidders. Before presenting our auctions, we show
several properties of envy-free outcomes.

Lemma 3.1 (Consistency). For any envy-free outcome, the
order of the allocation vector should be consistent with the
order of the payment vector. That is, for any two bidders i
and j, xi > xj ⇔ pi > pj and xi = xj ⇔ pi = pj .

Proof. We only show the proof for xi > xj ⇒ pi > pj ; sim-
ilar proofs can be derived for the other three cases. Assume
the opposite that, there exists two bidders i and j such that
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xi > xj and pi < pj . It is easy to see j will envy i since
pi < pj ≤ Bj by budget feasibility.

Intuitively, consistency means no bidder can get a better
position than another without paying more. Furthermore, the
bidders with the same budget can be characterized below.

Lemma 3.2 (Monotonicity). Suppose bidders i and j have
the same budget and i has higher value than j. Then i must
get a better position and pay more than j in any envy-free
outcome. That is, vi ≥ vj implies xi ≥ xj and pi ≥ pj .

Proof. Recall that the envy-free conditions for i and j are
vixi−pi ≥ vixj−pj and vjxj−pj ≥ vjxi−pi. By summing
these two inequalities, we have (vi−vj)(xi−xj) ≥ 0. Since
vi ≥ vj , we have xi ≥ xj . Furthermore pi ≥ pj follows from
the consistency (Lemma 3.1).

Although the above lemma reveals the structures of envy-
free outcomes for bidders with the same budget, we need the
following transitivity of envy-freeness to characterize bidders
with different budgets.

Lemma 3.3 (Transitivity). Suppose that for three bidders
i, j and k, Bi = Bj and vi ≥ vj . If xk < xj or (xk = xj and
vk ≤ vj), then {i, j} and {j, k} are envy-free implies {i, k}
is envy-free.

Proof. We first prove that i does not envy k. By consistency
and monotonicity, we have xi ≥ xj ≥ xk and pi ≥ pj ≥
pk. Due to the assumption that {j, k} is envy-free, we have
vj(xj−xk) ≥ pj−pk by rearranging the terms. Since vi ≥ vj
and xj ≥ xk, we get vi(xj − xk) ≥ vj(xj − xk) ≥ pj − pk.
So the utility of bidder i is vixi−pi ≥ vixj−pj ≥ vixk−pk.
Therefore, i does not envy k. It remains to show k does not
envy i. We consider two cases. (a) pj > Bk, then we have
pi ≥ pj > Bk. So the payment of bidder i exceeds bidder
k’s budget and the envy-freeness follows. (b) pj ≤ Bk: We
first show vj ≥ vk in this case. By rearranging the terms in
the envy-free conditions for j and k, we get vk(xj − xk) ≤
pj − pk ≤ vj(xj − xk). If xj > xk, we have vj ≥ vk
by the above inequality. Otherwise vj ≥ vk follows from the
assumption that xj = xk and vj ≥ vk. Then we have vk(xj−
xi) ≥ vj(xj − xi) ≥ pj − pi since vk ≤ vj , xj ≤ xi and
vjxj−pj ≥ vjxi−pi. By using the envy-freeness between j
and k and rearranging the terms in the above inequalities, we
have vkxk − pk ≥ vkxj − pj ≥ vkxi− pi. This shows that k
does not envy i.

The next lemma shows that, in envy-free outcomes, we can
restrict our attention to integer payments.

Lemma 3.4. Suppose (x,p) is an envy-free outcome for bud-
get constrained bidders. Then there exists a non-negative in-
teger price vector p′ such that (x,p′) is also an envy-free
outcome and p′i ≥ pi for all bidder i.

Proof. Recall that we assume all vi, Bi and qj are integers.
Given any outcome (x,p), let p′i = dpie, for any i ∈ N . It
is easy to check that (x,p′) still satisfies all constraints and
must be an envy-free outcome.

3.1 Proportional Bidder Types
Here we use the properties of envy-free outcomes to de-
sign a social-optimal envy-free auction for proportional bid-
ders. The bidders are called proportional if for any bidders
i, j ∈ N , Bi > Bj implies vi ≥ vj . Thus, we can order
the bidders such that i < j implies Bi ≥ Bj and vi ≥ vj .
For convenience, we define qj = 0 for all j > m and
Bn+1 = −1.
Lemma 3.5. In any envy-free outcome with proportional bid-
ders, bidder i’s minimum payment for getting position j is

pmin
ij , min

k>i
{Bk + 1 +

∑k−2

`=i
v`+1(qj+`−i − qj+`−i+1)}

Proof. Given any envy free outcome (x,p), we have for any
bidder i, pi ≥ min{Bi+1 +1, pi+1 + vi+1(xi−xi+1)} since
vi+1xi+1 − pi+1 ≥ vi+1xi − pi if pi ≤ Bi+1. The lemma
follows by using the above rule from bidder n to bidder 1
inductively. For the base case, we have pn ≥ 0. For the
inductive step, we have

pi ≥min{Bi+1 + 1, vi+1(xi − xi+1) + pi+1}
≥min{Bi+1 + 1, vi+1(xi − xi+1)

+ min
k>i+1

{Bk + 1 +
∑k−2

`=i+1
vl+1(x` − x`+1)}

=min
k>i
{Bk + 1 +

∑k−2

`=i
v`+1(x` − x`+1)}

≥min
k>i
{Bk + 1 +

∑k−2

`=i
v`+1(qj+`−i − qj+`−i+1)}

The equality comes from
∑k−2
`=i v`+1(x` − x`+1) = 0 when

k = i+1. The last inequality is from setting x` = qj+`−i for
all ` ≥ j that minimizes

∑k−2
`=i v`+1(x` − x`+1).

Our social-optimal auction for proportional bidders can be
described as Auction 1. Besides social optimality, we are able
to show that Auction 1 is also bidder-optimal. That is for any
instance I, no bidder can improve her utility vixi − pi in any
envy-free outcome.
Theorem 3.6. For instances with proportional bidders, Auc-
tion 1 is envy-free, bidder-optimal and social-optimal.

Proof. First, we show the outcome of Auction 1 is envy-free.
For any two bidders i and i′ such that i < i′, we use j and j′ to
denote the position they get in the outcome of Auction 1. It is
not hard to see that j < j′ and j−i ≤ j′−i′ from the process
of the auction. So it suffices to prove (a) viqj−pi ≥ viqj′−pi′

Auction 1: Auction for Proportional Bidders
Input: An instance I = (v,B,q)
Output: An outcome (x,p)
Initialize x = 0, p = 0 and i = 1;
for Position j = 1 to m do

if pmin
ij ≤ Bi then
Set xi = qj and pi = pmin

ij ;
Consider next bidder by increasing i by one;
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and (b) vi′qj′−pi′ ≥ vi′qj−pi if pi ≤ Bi′ . For the inequality
(a), let k > i′ be the bidder such that pi′ = pmin

ij (k). So
viqj − pi is at least

viqj − (Bk + 1 +
∑k−2

`=i
v`+1(qj+`−i − qj+`−i+1))

=
∑k−2

`=i
(v` − v`+1)qj+`−i + vk−1qj+k−i−1 −Bk − 1

≥
∑k−2

`=i
(v` − v`+1)qj′+`−i′ + vk−1qj′+k−i′−1 −Bk − 1

≥(vi − vi′)qj′ +
∑k−2

`=i′
(v` − v`+1)qj′+`−i′

+ vk−1qj′+k−i′−1 −Bk − 1

=(vi − vi′)qj′ + vi′qj′ − pi′ = viqj′ − pi′
For the inequality (b), since pi ≤ Bi′ , i′ − i = j′ − j. This is
because for any bidder ` between i and i′, we have p` ≤ pi ≤
Bi′ ≤ B` when Auction 1 tries to allocate position j + `− i
to bidder `. Then by a simple calculation, we can show that
pi equals to pi′ +

∑i′−1
k=i vk+1(qk+j−i − qk+j−i+1) ≥ pi′ +

vi′(qj−qj′). Envy-freeness follows by rearranging the terms.
Next we show Auction 1 is social-optimal. Suppose there

exists an envy-free outcome (x′,p′) such that some bidder
can get a better position than (x,p) outputted by Auction
1. Let i be the first bidder (with the smallest index) who
gets a better position. Let j be the position that i gets from
(x′,p′). By the process of Auction 1, for all position j′ such
that qj′ > qj , either j′ is allocated to a bidder preceding i
or pmin

ij′ > Bi. Thus, there must exist a bidder i′ who gets
a position j′ such that qj′ < qj in x′ and i′ < i, otherwise
i cannot get a better position. So vi′ ≥ vi and Bi′ ≥ Bi
by the order of bidders. Since (x′,p′) is envy-free, we have
vi′x

′
i′ − p′i′ ≥ vi′x

′
i − p′i and vix

′
i − p′i ≥ vix

′
i′ − p′i′

since j′ > j implies p′i ≥ p′i′ by Lemma 3.1 (Consis-
tency). By summing the above two inequalities, we have
(vi′ − vi)(x′i′ − x′i) ≥ 0. Since x′i′ = qj′ < qj = x′i, we
must have vi′ ≤ vi. Combine this with vi′ ≥ vi, we have
vi = vi′ . Thus we can modify (x′,p′) by swapping the al-
location and payment of bidder i and i′ without changing the
social welfare. By repeating this modification, we get Auc-
tion 1 is social-optimal.

Finally, we show Auction 1 is bidder-optimal. Assume
to the contrary that there exists another envy-free outcome
where some bidder can improve her utility. Let bidder i be
the first bidder who gets higher utility from (x′,p′) than that
from (x,p), the outcome of Auction 1. Let j and j′ be the po-
sitions that i gets from (x,p) and (x′,p′) respectively. Case
1: j′ ≥ j. By Lemma 3.5, p′i ≥ pmin

ij′ . So it suffices to show
that viqj−pi ≥ viqj′−pmin

ij′ . For any k > i, bidder i’s utility
viqj − pi is at least

viqj −
∑k−2

l=i
vl+1(qj+l−i − qj+l−i+1)−Bk − 1

=
∑k−2

l=i
(vl − vl+1)qj+l−i + vk−1qj+k−i−1 −Bk − 1

≥
∑k−2

l=i
(vl − vl+1)qj′+l−i + vk−1qj′+k−i−1 −Bk − 1

=viqj′ −
∑k−2

l=i
vl+1(qj′+l−i − qj′+l−i+1)−Bk − 1
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Figure 1: An illustration of Example 3.7. The left nodes
represent bidders with value and budget pairs. The right
squares are positions with qualities. The dashed arrows are
the bidder-optimal allocations while the normal arrows are
the social-optimal allocations.

By taking the minimum over all k > i, we prove viqj − pi ≥
viqj′ − pmin

ij′ . Case 2: j′ < j. Let bidder i′ be the bidder who
gets j′ in (x,p). By the arguments in the previous paragraph,
we have i′ < i and vi = vi′ . Let ui and u′i denote the utility of
bidder i in the outcome (x,p) and (x′,p′). Since i is the first
bidder who improves her utility, we have u′i′ ≤ ui′ = ui <
u′i which contradicts the envy-freeness of (x′,p′). Therefore
Auction 1 is also bidder-optimal.

Finally, we present an example to show if the bidders
are not proportional, no bidder-optimal auction always maxi-
mizes social welfare.
Example 3.7. Consider four bidders with v1 = 20, v2 = 40,
v3 = 30, v4 = 5, B1 = 2000 and B2 = B3 = B4 = 1400.
There are also six positions with qualities q1 = 100, q2 = 50,
q3 = 49, q4 = 48, q5 = 46 and q6 = 1. For convenience, we
use B that equals 1400 to denote the budget of bidder 2. In
order to compute the maximum social welfare, we consider
two cases: Case 1: p1 ≤ B. By using Auction 1, we are able
to show that the optimal allocation is x1 = q4, x2 = q2, x3 =
q3 and x4 = q5, which gives the social welfare 4660. Case
2: p1 > B. Suppose the allocation is x, we can show that
there exists a price vector p such that (x,p) is an envy-free
outcome if and only if (i) v3(x2−x3)+v4(x3−x4) ≤ B;(ii)
v1(x1 − x2) + v2(x2 − x3) + v3(x3 − x4) + v4x4 > B;
(iii) x1 ≥ x2 ≥ x3 ≥ x4. By using these conditions, we
can solve the social welfare maximization problem by simple
calculations. As a result, the optimal social welfare is 5475
with the allocation x1 = q1, x2 = q2, x3 = q3 and x4 = q6.

This example shows that there does not exist a bidder-
optimal and social welfare maximizing auction. To see this,
note that in Case 2 where social welfare is maximized, bid-
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der 1 can get utility at most 20 · 100 − 1410 = 590 (oth-
erwise bidder 2 will envy bidder 1). However, in Case 1,
we can compute an envy-free price vector for the bidders
p = (p1, p2, p3, p4) = (10, 60, 30, 0) such that (x,p) is an
envy-free outcome, where (x1, x2, x3, x3) = (q4, q2, q3, q5).
In this outcome, bidder 1 obtains utility 48 ·20−10 = 950 >
590. Hence, the social welfare maximizing outcome in this
instance is not bidder-optimal. In fact, one can show that
(x,p) is a bidder-optimal outcome for this instance. Simi-
larly, it is easy to see bidder 1 can manipulate her budget or
valuation to increase her own utility. That implies in this set-
ting no truthful mechanism can always output social-optimal
and envy-free outcomes.

3.2 All Bidder Types
In this section, we provide a polynomial-time approxima-
tion scheme (PTAS) for computing social-optimal or revenue-
optimal deterministic envy-free auctions where the notion of
envy-freeness has been relaxed slightly. More precisely, for
any fixed parameter ε, our auction is a relaxed εB-envy-free
and social-optimal auction that can be computed in time poly-
nomial in n and m. The general idea of our PTAS can be
described in four steps:

1. Partition the bidders into groups such that bidders with
similar budget are in the same group.

2. Use Lemma 3.2 (Monotonicity) to characterize the
structure of the bidders in the same group.

3. Use Lemma 3.3 (Transitivity) to establish the relations
between different groups.

4. Compute the approximately-optimal envy-free auction
via solving a dynamic programming.

For convenience, we say {i, k} is ε-envy-free when vixi −
pi ≥ vixk−pk−ε if pk ≤ Bi and vkxk−pk ≥ vkxi−pi−ε if
pi ≤ Bk and the outcome is feasible for bidder i and bidder k.
Given an instance I = (v,B,q) and a parameter ε ∈ (0, 1),
let W = {b | b = Bi for some bidder i or b is a multiple of
εB/n at most B}. Clearly, the size of W is at most n/ε+ n.

We describe the auction in detail as follows. First of all,
we round the bidders’ budgets down to a closest multiple of
εB, that is Bi − εB ≤ B′i ≤ Bi. Then we solve the in-
stance I ′ = (v,B′,q) instead of I = (v,B,q). For I ′,
we partition the bidders into groups such that the bidders in
the same group have the same budget. Clearly, the number
of groups is at most 1/ε. For simplicity of presentation, we
only present the auction as Auction 2 in which the bidders
can be divided into two groups. It is straightforward to gen-
eralize the auction to many groups. After that, we sort bid-
ders in each group with decreasing order of their valuations.
We use G1 and G2 to denote bidders in these two groups
and n1 and n2 be the size of G1 and G2 respectively. Let
R[i1, i2; j1, j2;w1, w2] be the optimal social welfare we can
get from the first i` bidders in each group ` when the i`th bid-
der in group ` gets position j` by paying w` for all ` = 1, 2.
For all i` = 0, . . . , n`, j` = 0, . . . ,m and w` ∈ [0, B] that
is a multiple of εB/n, we compute R[i1, i2; j1, j2;w1, w2] in
the following dynamic programming. Let bidder a` be the
i`th bidder in G` for ` = 1, 2. So we have xa` = qj` and

Auction 2: PTAS for Social-optimal Auctions
Input: An instance I = (v,B,q) and a value ε ∈ (0, 1)
Output: An outcome (x,p)
B ← maxi∈N Bi;
W ← {Bi}ni=1∪ {multiples of εB/n at most B};
Round Bi down to a multiple of εB for all i ∈ N ;
Partition N into groups such that bidders in the same
group have the same rounded budget;
/* We only present the auction for two groups. */
Sort bidders in each group with decreasing order of vi;
n` ← the number of bidders in group `;
Initialize R[0] = 0;
for i1 = 0 to n1 and i2 = 0 to n2 and i1i2 6= 0 do

for j1 = 0 to m and j2 = 0 to m do
for w1 ∈W and w2 ∈W in increasing order do
a` ← the i`th bidder in group ` with ` = 1, 2;
xa` ← qj1 and pa` ← w`;
if (a1, a2) are εB/n-envy-free and j1 6= j2 then

Compute R[i1, i2, j1, j2, w1, w2] by using (?);
else R[i1, i2, j1, j2, w1, w2] = −∞;;

SW← maxj1,j2,w1,w2
{R[n1, n2, j1, j2, w1, w2]};

Construct (x,p) by tracking back the computation of R;

pa` = w` for all ` = 1, 2. If (a1, a2) are not εBn -envy-free or
j1 = j2, R[i1, i2; j1, j2;w1, w2] = −∞.
Computation (?): If (a1, a2) are εB

n -envy-free and j1 6= j2,
consider two cases.
Case 1: xa1 < xa2 or (xa1 = xa2 and va1 < va2 ). We set
R[i1, i2; j1, j2;w1, w2] = maxj<j1,w∈W {R[i1 − 1, i2; j, j2;

w,w2] + qj1va1 |(b, a1) are εB
n -envy-free.} where b is the

(i1 − 1)th bidder in G1 with xb = qj and pb = w.
Case 2: xa1 > xa2 or (xa1 = xa2 and va1 ≥ va2 ) We set
R[i1, i2; j1, j2;w1, w2] = maxj<j2,w∈W {R[i1, i2 − 1; j1, j;

w1, w] + qj2va2 |(b, a2) are εB
n -envy-free.} where b is the

(i2 − 1)th bidder in G2 with xb = qj and pb = w.
At last, the optimal social welfare is

max
j1,j2,w1,w2

{R[n1, n2, j1, j2, w1, w2]}.

Moreover the outcome (x,p) can be derived by tracking back
the computation of R. It is not hard to see the same dy-
namic programming can be used to compute optimal revenue
by changing qj1va1 to w1. So the outcome (x,p) is the out-
put of our auction for the instance I. Note that Auction 2 can
be generalized when the number of groups is more than 2. So
when we mention Auction 2 in next theorems, we refer the
general auction for any number of groups. We summarize the
result in the following theorem.
Theorem 3.8. Given a parameter ε ∈ (0, 1), Auction 2 is a
relaxed εB-envy-free and social-optimal auction. Moreover,
the running time of the auction is O((n2m/ε)1/ε).

Proof. We first show that the outcome (x,p) outputted by
Auction 2 is relaxed εB-envy-free. Since B′i ≥ Bi − εB, it
suffices to show for any bidder i, k, vixi−pi ≥ vixk−pk−εB
if pk ≤ B′i by the definition of relaxed εB-envy-freeness. It
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follows from a slight modification of Lemma 3.3 (Transitiv-
ity) for ε-envy-free transitive: given the same assumption, if
i and j are ε1-envy-free and j and k are ε2-envy-free, we also
have j and k are (ε1 + ε2)-envy-free. This is because the bid-
ders in each group are considered in decreasing order of vi
and we check the εB/n-envy-freeness of the bidders that are
considered consecutively in Auction 2.

Then we show Auction 2 is social-optimal. More specif-
ically, no envy-free outcome can raise higher social welfare
than the outcome of Auction 2. Given an envy-free outcome
(x,p), we round pi up to p′i that is a value in W and round
Bi down toB′i that is a multiple of εB for all bidder i ∈ N . It
is not difficult to see that any pair of bidders are εB

n -envy-free
and p′i ≤ Bi. Hence the social welfare of (x,p′) is at most
the social welfare of the outcomes outputted by Auction 2 by
the optimality of the dynamic programming. So Auction 2 is
social-optimal.

Finally, we estimate the running time of Auction 2.
The total number of states in the dynamic programming is
(nm(n/ε + n))1/ε and for each state we need O(nm/ε) to
compute the entry. Therefore the overall running time is
(n2m(1 + 1/ε))1+1/ε ≈ (n2m/ε)1/ε when ε is small.

Corollary 3.9. Given a parameter ε ∈ (0, 1), Auction 2 can
be modified to a relaxed εB-envy-free and revenue-optimal
auction with running time O((n2m/ε)1/ε).

4 Randomized Auctions
In this section, we study envy-free randomized auctions and
present a PTAS for computing optimal envy-free outcomes.
Unlike the deterministic case, the allocation of a randomized
mechanism can be any real numbers. We also need that the al-
location vector x can be implemented by a distribution of de-
terministic allocation rules. Formally, this condition is called
the majorization condition, studied in [Feldman et al., 2008;
Goel et al., 2012]. That is, a randomized allocation can be
implemented iff the allocation vector is weakly majorized
by the quality vector, i.e.

∑k
i=1 xi ≤

∑k
i=1 qi, for all k =

1, . . . ,min{n,m} where {x1, . . . , xn} are the bidders’ allo-
cations and sorted in decreasing order. Note that the allo-
cations satisfying majorization condition form a convex set.
However the set of all envy-free outcomes is not convex.

Example 4.1. Consider two bidders with (v1, B1) = (1, 100)
and (v2, B2) = (2, 80) and one position with q1 = 100. Con-
sider the following two outcomes x1 = x2 = 50, p1 = p2 =
50 and x′1 = 100, x′2 = 0, p′1 = 100, p′2 = 0. It is easy to
check that both outcomes are envy-free. However there is no
pricing vector p such that (x+x′

2 ,p) is an envy-free outcome.

Although the set of feasible outcomes is not convex, we
are able to show that the set of all envy-free outcomes can be
represented by a union of n1/ε polytopes. Given an instance
I = (v,B,q) and a parameter ε ∈ (0, 1), let W be the set
of all multiples of εB that is at most B. We use d = 1/ε to
denote |W | and {w1, . . . , wd} to denote the set W where the
elements in W are ordered increasingly. For convenience, we
add w0 = −1 into W . Then we partition the set of bidders
into d groups {G1, . . . , Gd} such that for all bidder i in G`,

pi ∈ (w`−1, w`]. We use `(i) to denote index of the group
that i belongs to. We observe that the proofs of Lemma 3.1
and Lemma 3.2 do not use any fact about deterministic auc-
tions. So the lemmas also hold for randomized auctions. By
monotonicity, the number of all possible partitions for envy-
free outcomes is at most

(
n
d

)
≤ nd.

Given a partition G = {G1, . . . , Gd}, we are able to sort
the bidders such that i ≤ j implies pi ≥ pj . By consistency,
we also have pi ≥ pj implies xi ≥ xj . That is the majoriza-
tion condition can be represented by n linear inequalities
given the partition G. Moreover, the relaxed envy-freeness
can be expressed as vixi − pi ≥ vixj − pj if w`(j) ≤ Bi for
all i, j ∈ N since pj ≤ Bi − εB implies w`(j) ≤ Bi. Note
that the above conditions are also linear constraints given the
partition G. So the set of all feasible envy-free outcomes can
be represented by a polytope for a given partition. Let f(x, p)
be an objective function of (x,p), which is either the social
welfare

∑
i vixi or the revenue

∑
i pi. Given the partition G,

we can compute the optimal objective via solving the follow-
ing linear programming in polynomial time.

max f(x, p)
s.t. vixi − pi ≥ vixj − pj ∀i, j s.t. w`(j) ≤ Bi∑k

i=1 xi ≤
∑k
i=1 qj ∀k ≤ min{n,m}

pi ∈ (w`−1, w`] ∀` ≤ d and i ∈ G`
xi ≥ 0, pi ∈ [0, Bi] ∀i ∈ N

Theorem 4.2. Given an instance I = (v,B,q) and a pa-
rameter ε ∈ (0, 1), the randomized auction obtained via solv-
ing the above linear programming is a relaxed εB-envy-free
and social-optimal (or revenue-optimal) auction running in
time polynomial in m, 1/ε and n1/ε.

Proof. By the optimality of linear programming, it suffices
to show two claims. First, the solution computed by the lin-
ear program is relaxed εB-envy-free. Second, any envy-free
outcome is a feasible outcome in the linear program. The
first claim follows from the definition of relaxed εB-envy-
freeness. For the second one, note that an envy-free outcome
(x,p) is also relaxed envy-free. So the claim follows by di-
viding the bidders into groups according to p.

5 Conclusion
In this paper, we study the social welfare and revenue max-
imization problems in envy-free sponsored search auctions,
for budget-constrained bidders. Our main contribution is a
general approach to devise PTASs for maximizing social wel-
fare and revenue in both deterministic and randomized set-
tings. In addition, we provide an alternative understanding
of the effects of budgets on envy-free auction design. There
are several promising directions for future work. One of
them is to generalize our auctions to more general settings,
for instance matching markets and combinatorial auctions.
Another promising direction is to consider fairness issues in
some other settings such as TV advertising or labor markets.
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