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Abstract

Differentiation is an important inference method in
Bayesian networks and intervention is a basic no-
tion in causal Bayesian networks. In this paper, we
reveal the connection between differentiation and
intervention in Bayesian networks. We first encode
an intervention as changing a conditional proba-
bilistic table into a partial intervention table. We
next introduce a jointree algorithm to compute the
full atomic interventions of all nodes with respect
to evidence in a Bayesian network. We further dis-
cover that an intervention has differential seman-
tics if the intervention variables can reach the evi-
dence in Bayesian networks and the output of the
state-of-the-art algorithm is not the differentiation
but the intervention of a Bayesian network if the
differential nodes cannot reach any one of the evi-
dence nodes. Finally, we present experimental re-
sults to demonstrate the efficiency of our algorithm
to infer the causal effect in Bayesian networks.

1 Introduction

Bayesian networks capture uncertain knowledge naturally
and efficiently, and belong to the family of probabilistic
graphical models. They are widely used in various fields
such as signal processing, information retrieval, sensornets
and pervasive computing, natural language processing, and
computer vision.

Causal Bayesian networks are another kind of directed
acyclic graph, which conveys causal information as well as
the traditional conditional independencies, and permits one to
infer the causal effects. In causal Bayesian networks, inter-
ventions are usually interpreted as an external agent setting
a variable to a certain value, which contrasts with an agent
just passively observing variables’ values. Goldszmidt and
Pearl [Goldszmidt and Pearl, 1992] denoted the intervention
of a variable in a causal Bayesian network as do(V; = v¥), or
do(vf) for short.

In this paper, we will use capital letters (e.g. A) for net-
work parameters, lowercase letters (a) for any values taken
by the corresponding network parameters, and lowercase let-
ters with superscripts (a*) as generic symbols for specific val-
ues taken by the corresponding network parameters. For ease
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of illustration, we also denote |V;| as the number of possible
values for a network parameter V;. Thus V; has |V;| atomic
interventions do(v¥) (k = 1,...,|V;|). Each such interven-
tion do(vF) is called an action.

Pearl [Pearl, 2009b] introduced two methods to represent
the intervention in causal Bayesian networks. One is a mu-
tilated graph, which is obtained by deleting all links from
its parent nodes to the intervention node V; (Figure 2(a)).
The other is an augmented network, which is obtained by
adding a hypothetical intervention link F; — V; in the
network(Figure 2(b)). Using the mutilated graph, for the
Bayesian network shown in Figure 1, P(d|do(B = 1)) can
be computed as follows.

P(d|do(B = 1)) >~ P(a)P(cla)P(d|B = 1,c)P(elc)

ace

Z P(a)P(cla)P(d|B =1,c) Z P(el|c)

> P(a)>” P(cla)P(d|B = 1,¢) 0

The prediction P(d|B = 1) can be computed by using
classical methods like variable elimination. A Bayesian net-
work consists of two parts, the network structure and the con-
ditional probability tables (CPTs). Pearl changed the network
structure to represent the external intervention. In this paper,
we encode the external intervention from another perspective
by replacing CPTs with partial intervention tables without
changing the network structure. For an action do(vF), we set
P(vF|lu) = 1 and P(viju) = 0 for I # k, and the CPT of
V; becomes a partial intervention table. We will give formal
definition for this concept in Section 3.

Pearl’s method computes V;’s atomic interventions do(v¥)
(k 1,---,|Vi]) by inferring the Bayesian network |V;]
times. Using the partial intervention table, we can compute
all these atomic interventions by inferring the Bayesian net-
work only once. Assume that all variables in the Bayesian
network shown in Figure 1 are binary. If one intervenes and
assigns a value to B, he has to, according to Pearl’s method,
use two probabilistic inferences for do(B = 1) and do(B =
0). However, we can employ only one Bayesian network
inference to simultaneously compute both do(B = 1) and
do(B = 0). The combination of do(B = 1) and do(B = 0)
together is called a full atomic intervention, whose definition
is given in Section 3. Our first main contribution is to pro-
pose a new representation model of the intervention by using



Op Oc¢
A | B | P(bla) A | C ] P(ca)
111 0.14 1|1 0.18
110 0.86 10 0.82
011 0.89 011 0.72
01]0 0.11 010 0.28
Op
B | C | D] P(dbe)
1|1]1 0.88 Op
0.4 T[1[0] 012 |[C[E] Plelo)
A[P@ |[T[0[ 1] 022 |[T[1] 034
1] 034 110]0 0.78 10| 0.66
0.66 011 0.05 0|1 0.59
Of1]0 0.95 00| 041
001 0.15
0]101]0 0.85

Figure 1: A Bayesian network with five nodes

the partial intervention tables, and design a novel and effi-
cient approach to calculating interventions based on this new
representation model.

Bayesian networks have two classical inference methods,
i.e. variable elimination and jointree. Let e denote the evi-
dence. We propose a jointree based algorithm to compute the
full intervention for all network parameters with respect to
P(e). This is our second main contribution.

Differentiation is one of inference methods in Bayesian
networks and is conducted on a multi-linear function f called
network polynomial, which has the property that f(e) =
P(e) for each given evidence e [Darwiche, 2003]. The cal-
culation of the differentiation of f is similar to how we
obtain partial derivatives in classical mathematics. Dar-
wiche [Darwiche, 2003] proposes an efficient framework
for computing the first derivatives with respect to all net-
work parameters. Moreover, the partial derivative has ap-
plications to sensitivity analysis [Chan and Darwiche, 2002;
20041, by identifying the minimal changes of parameters in
order to satisfy probabilistic query constraints. It can be also
applied in the learning of network parameters from data. The
details will be reviewed in Section 2.

The first derivative % can be computed over the

Bayesian network in Figure 1 as follows.

a(f(éﬁ) - %: P(a)P(cla)P(d|b,c)P(elc)
= P(a)Y_ Pcla)P(dlb,c) } _ Plele)
= P(a))_ P(cl)P(dlb,c) 2)
We find Eq. (1) can be derived from Eq. (2). Thus action

is computed from the derivative function while prediction is
inferred from the original function, and action and prediction
can be regarded as velocity and displacement, respectively.
Usually, velocity is more stable than displacement. Similarly,
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Pearl [Pearl, 2009b] found causal relationship is more stable
than probabilistic relationship. However, if the intervention
variables cannot reach the evidence variables, the distribution
of evidence variables is independent of the intervention vari-
ables. We find the causal influence cannot be derived from
the differentiation in this case. For example, 88%}()‘2) can be

computed by using Park and Darwiche’s method [Park and
Darwiche, 2004] as follows.

OP(c)

OP(bla) ;P(G)P(C\a)P(dw, ¢)P(elc)

P(a)P(cla) Z P(d|b, c) Z P(e|c)
d e

P(a)P(cla)

3)
However, we observe that 833%2) = 0 while P(c|do(B =

1)) = >, P(a)P(c|a). So we show that the output of Park
and Darwiche’s jointree algorithm is not the differentiation
but the intervention of Bayesian networks in this case. Our
third contribution is to reveal the connection between the in-
tervention and the differentiation.

The rest of this paper is organized as follows. We outline
Bayesian networks, their differential semantics and interven-
tions in Section 2. We introduce a new approach to represent
intervention in Section 3 and discover its differential seman-
tics in Section 4. Experimental results are reported in Section
5. The related work is discussed in Section 6, and we con-
clude our work in Section 7.

2 Preliminaries

In this section, we first outline the differentiation of Bayesian
networks and next briefly survey the intervention of Bayesian
networks.

2.1 The differentiation of Bayesian networks

A Bayesian network is defined as a pair BN = (G, ©). Here,
G = (V,E) is a directed acyclic graph, called the network
structure, where V denotes all nodes in G and an edge in
E denotes conditional dependence relationships between two
nodes. © is a set of CPTs, and one CPT is for each node in
G, called the network parameter. Moreover, a Bayesian net-
work implicitly represents the joint probability distribution of
its set of variables V. In Bayesian networks, every variable is
conditionally independent of its nondescendants given its par-
ents. Using the conditional independence property, the joint
probability distribution of a Bayesian network can be simpli-
fied. For example, Figure 1 shows a Bayesian network with
five nodes V= {A, B,C, D, E}. P(v) can be computed as

shown below.
P(v) HP(Ui\lli)
P(a)P(bla)P(c|a)P(d|b,c)P(e|c)

“4)

Here, u; is the parent of v;. Darwiche [Darwiche, 2003] de-
fined for each Bayesian network a unique multilinear func-
tion, denoted by f, over a set of evidence indicators A, and
a set of parameters P(v|u). Each term of f corresponds to



an instantiation of the network variables. Therefore, f has an
exponential number of terms. The term corresponding to in-
stantiation v is the product of all evidence indicators and net-
work parameters that are compatible with the instantiation.
The network polynomial of a BN is defined as follows:

f= Z H P(v|u) A,

vV ou~v

where ~ denotes the compatibility relation among instantia-
tions (that is, vu ~ v says that instantiations vu and v agree
on values of their common variables). The value of network
polynomial f at evidence e, denoted by f(e), is the result of
replacing each evidence indicator A, in f with 1 if v is con-
sistent with e, and with O otherwise. In order to differentiate
Bayesian networks, Darwiche [Darwiche, 2003] compiled the
network polynomial into an arithmetic circuit. The circuit is
arooted, directed acyclic graph with two types of leaf nodes,
Ay and P(v|u), and its other nodes are multiplication and ad-
dition operations. Parameter variables are set according to the
network CPTs while indicator variables are set according to
the given evidence. Once the circuit inputs are set, it can be
evaluated using a bottom-up pass, which proceeds from the
circuit inputs to its output. Moreover, it can be differentiated
using a top-down pass, which computes the first derivative of
the circuit output with respect to every circuit input. Since
f(e) = P(e), Darwiche proved that the first derivatives with
respect to network parameters can be calculated below.

OP(e)  P(v,u,e)
P(vju)  P(vju)

A jointree [Shenoy and Shafer, 1986; Jensen and Andersen,
1990] for BN is a pair (7, C), where T is a tree and C'is a
function that maps each node i in the tree 7 into a label C;,
which is called a cluster. A jointree must satisfy three prop-
erties: (1) the cluster C; is a set of nodes from the BN; (2)
each family in the BN must appear in some cluster C}; (3) if
a node appears in two clusters C; and C';, it must also appear
in every cluster C';, on the path between C; and C;. The edges
of a jointree are called separators, which is denoted by S;;
and defined as C; N C;. The width of a jointree is defined as
the size of its largest cluster minus one. Given some evidence
e, a jointree algorithm [Pearl, 1988; Shenoy and Shafer, 1986;
Jensen and Andersen, 1990] propagates messages between
clusters. After passing an inward and an outward messages
for each cluster C;, one can compute its marginal P(C;, e).

Park and Darwiche [Park and Darwiche, 2004] further pro-
posed a differential semantics for jointree algorithms and
computed the first derivative with respect to P(v|u) in the
jointree. A jointree can implicitly encode an arithmetic cir-
cuit. Inward message propagation evaluates the circuit while
outward message propagation differentiates it. Suppose that
CPT O XU, is assigned to cluster C; which has variables C;.

Then:

,when P(v[u) # 0.

oP(e)

— 5
OP(vj|uy) ©)

(vjuy)

> 11

Ci\v;W; Jj

Mji H P(vk|uk)

k]

where P(vy|uy) ranges over all evidences and CPTs assigned
to cluster C; and Mj; denotes the message from C; to (.
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2.2 The intervention of Bayesian networks

The simplest type of external intervention is one in which a
single variable, say V;, is forced to take on some fixed value
v¥. Such an intervention is called atomic intervention. Pearl
[Pearl, 2009b] introduced two techniques to denote the inter-
vention in a Bayesian network. One is to describe an interven-
tion by a mutilated graph derived from the original Bayesian
network by removing all the incoming arcs to V; and setting
the CPT of V; as P(V; = v¥) = 1. In this case, interven-
tion essentially separates V; from its direct causes and V; be-
comes a root node. For example, if we want to compute the
intervention do(B = 1) in the Bayesian networks shown in
Figure 1, we should first delete the link A — B and then as-
sign P(B = 1) = 1. The graph resulting from this operation
is shown in Figure 2(a), and the resulting joint distribution on
the remaining variables will be

P(a,c,d,e|ldo(1)) = P(a)P(cla)P(d|c, B=1)P(e|c)

Using the mutilated graph, Pearl [Pearl, 2009a] revealed
that the distribution generated by an intervention do(V; = vF)
on a set V is given by the truncated factorization

P(’Uh... HP vj|uj
J#i

where P(vj|u;) are the pre-intervention conditional proba-
bilities. Thus the distribution of evidence e given the inter-

vention can be computed by
=>_ 11 Py)

P(e|do(v}
V\e j#i

An alternative way is to encode an intervention by an aug-
mented network [Pearl, 1993] which is generated by adding
to BN alink F; — V. For example, if we want to compute
the intervention do(B = 1) in the Bayesian networks shown
in Figure 1, we should add a link F; — B in the network.
The augmented network is shown in Figure 2(b), where Fj is
a new variable taking values in {do(v?).idle}, v¢ can be any
value of V; and “idle” denotes no intervention. Thus the new
parent set of V; in the augmented network is Uy = U, U{F}},
and it is related to V; by the following conditional probability

S Vim 15 Vi1 - - - 5 Up|do(vF

(6)

P(v;|u;) if F; =idle,
P(vﬂu‘j):{ 0 if F; = do(v{) and V; # v,
1 if F; = do(v?) and V; = v.
Then the causal effect of the intervention do(v{) can be given
by
P(v1,...,05|08) = Pa(v1,...,0,|F; = do(vf))

where P, is the distribution specified by the augmented net-
work BN® = BN U {F; — V;} and P(v;|u), with an arbi-
trary prior distribution on F;.

3 A novel approach to computing the
intervention

In this section, we introduce a new model to represent the in-
tervention without changing the network structure, and pro-
pose a jointree based approach to calculating the intervention
by using this novel representation model. We first give the
following definition.



®—) ©

® ®
(a) a mutilated graph (b) an augmented network
Figure 2: Network representation of the action of “setting
B=1”

Definition 3.1 Given an intervention do(vF), the partial in-
tervention table (PIT in short) of V; demonstrates the inter-
vention probability, P’ (vF|u;), w.r.t do(vF), which is calcu-
lated as below.

W TN 1 lsz = 'UZI‘C,
P(v7 |ui) = { 0 otherwise. 7
For example, if we want to compute the action do(B = 1)

in the Bayesian networks shown in Figure 1, then P(B =
1) = 1 and P(B = 0) = 0. Thus we can change ©p to

©’3(B = 1) as shown below.
OB = 1)
A | B | P'(bla)
1|1 1
1]0 0
0|1 1
0|0 0

A PIT representation of an intervention is obtained by sim-
ply replacing the CPT of each intervention variable by its cor-
responding PIT without any changes to the network structure.

Theorem 3.1 The PIT representation is correct in terms of
calculating the intervention.

Proof. We prove this by showing that the causal effect,
P(e|do(vF)), will be the same when calculated by using the
CPTs of the mutilated-graph representation and the PITs of
the PIT representation respectively. Using Pearl’s mutilated
graph, we get the following causal effect.

ZHP vjluy)

v\e j#i

P1 e|d0

Using our partial intervention table, we compute the fol-
lowing causal effect.

Py(e|do(vf)) = P'(vilu) [ P(v;]uy)
v\e VE)
Since P’(v;|u) = 1, Pi(e|do(vF)) = Py(e|do(vF)). Thus

the theorem is proved. [

For example, if one intervenes and sets B = 1, then we can
derive by using P'(B = 1]a) = 1 as follows.

D P(a,c,d,e|ldo(B = 1))
P(a)P(cla)P'(B = 1|a)P(d|c, B =1)P(e|c)
P(a)P(cla)P(d|c, B=1)P(e|c)

So we can get the same result as Pearl’s method. Next, we
give the following definition for the full atomic intervention.
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Definition 3.2 A full atomic intervention of V; consists of
all atomic interventions of V; each of which is w.r.t a pos-
sible value of V;. It is denoted as do(V;) and contains

do(v}), ..., do(v}"").

K]

For example, if one wants to compute the interventions
do(B = 1) and do(B 0) in Figure 1, he has to com-
pute P(a,c,d,eldo(B = 1)) and P(a,c,d,e|do(B = 0))
one by one according to Pearl’s method. However, we can
simultaneously compute do(B = 1) and do(B = 0) using
the following technique. First, since P(B = 1) = 1 and
P(B = 0) = 1, we change Op to a full intervention table
©'5(B) as shown below.

O3(B)
A B P'(bla)
1|1 1
110 1
011 1
01]0 1
We next compute P(a, ¢, d, e|do(B)) as follows.

P(a,c,d,eldo(B)) = P(a)P(c|a)P’(bla)P(d|c,b)P(elc)

Since we compute the post-intervention distribution of a
full atomic intervention, we should make a distinction be-
tween do(B = 1) and do(B = 0). Thus we should keep
the intervention variable and its parent variables in the result.
Let Vars(©y;) denote all network variables in Oy,. Since
{A,B} C Vars(©4UBOcUBp UBE) and P (bla) = 1, it
can yield

P(a,c,d,eldo(B))

P(a)P(cla)P(d|c,b)P(elc)  (8)

Using the PIT presentation, we can compute each full atomic
intervention by one Bayesian network inference, e.g, Eq. (8).
While using Pearl’s methods, a full atomic intervention for
node V; requires |V;| Bayesian network inferences.

The jointree algorithm is widely utilized for performing
Bayesian network inferences. The following theorem illus-
trates a method to compute the full atomic intervention by
using the jointree algorithm.

Theorem 3.2 In a jointree constructed over G, the full
atomic intervention of every node V; with respect to P(e) in
cluster Cy can be computed below.

o1 if'V; can reach e,
Pleldo(Vi)) = { ¢! %
Here, ‘I>1 = Z{cl,e}\{ui,e} P’(vi|u¢) Hj M]'l Hk;;ﬁi P(vk\uk),
and @2 =3 (o, epe P/ (vilus) [T; Mji [T, P(vku).
Proof. 1. If node V; can reach e, we can use the jointree
algorithm to compute the full intervention as follows.

P(e|ldo(V;)) = Z HP(”j|“j)
V\{v;,e} j#i
= Y Pluw) [[P@;y)
V\{v;,e} J#i
— Z P’(xi|u7;)HMleP(vk\uk)
Ci\{vi.e} J ki



Here, C] denotes {C7, e}.

2. If node V; cannot reach e, we can use the jointree algo-
rithm to compute the full intervention as shown below.

P(e|do(V;)) Ple)

> P'(iw) [ [ P(vj[uy)

v\e j#i

Z P'(z;]u;) Hsz H P(vi|ag)

{Ci.e}\e J ki

The proof is then done. [

Using Theorem 3.2, we propose Algorithm 1 to compute
the full atomic intervention of all nodes w.r.t evidence in
Bayesian networks. We now explain the main aspects of the
algorithm. We first compile a jointree by the network struc-
ture and P(e). Then the jointree passes messages toward its
root. According to Theorem 3.2, we can use a cached factor
®, to compute the full atomic interventions of all nodes in
cluster C; with respect to P(e) in some order 7; if a cluster
C; has received messages from all its neighbors in the out-
ward phase. After computing the full atomic intervention of a
node V;, our algorithm updates ®;. In this way, we need not
compute the full atomic intervention of its next node from
scratch but from the cached factor each time. All clusters can
compute the full atomic interventions in parallel to accelerate
the process.

Algorithm 1 FullDo

Input: e: a set of evidences
Output: the full atomic intervention of all network variables
compile the jointree;
messages are passed toward the root;
messages are passed away from the root;
for (each cluster C;) do
receive messages from its all neighbors;
select an intervention order ; in the cluster;
for (each node V; € ;) do
if (V; is the first node) ®; = 0;
use Theorem 3.2 and ®; to compute P(e|do(V}));
update ®;;
end for;
: end for;
: return (the full atomic interventions of all variables);

A A o e

The time complexity of our algorithm for computing the
full intervention in Bayesian networks is O(n - exp(w) + n? -
[ - exp(wy)), where n is the number of network variables, w
is the network treewidth, n; is the number of network vari-
ables in the biggest cluster, [ is the number of clusters for
the jointree and w; is the biggest network treewidth of all
clusters. Using Pearl’s Eq. (6), we implement a jointree al-
gorithm called Do to compute the causal effect of the full
atomic interventions of all nodes in a Bayesian network. The
time complexity of Do is O(n-exp(w)+m-n?-1-exp(w)),
where m is the maximum value of |V;| (i = 1,---,|V]).

4 The differential semantics of intervention

We recompute % shown in Eq. (3). We call node B as
differential node and first compute P(c) as shown below.

P(e)

Z P(a)P(bla)P(c|la)P(d|b,c)P(e|c)
a,b,d,e

> " P(a)P(cla) Y P(bla) > P(dlb,c)
a b d

> P(ele)

> P(a)P(c|a)

This is because first ) P(e

c) =1,next ), P(d|b,c)

1 and finally ), P(bla) = 1. Since P(c)
OP(c 9 P(a)P(cla
S Pla)P(cla), sps = 2Za Bl — o Thus

P(e|c), P(bla) and P(d|b, ¢) have no contribution to aaPFE[S‘C()l) .

We observe that nodes E/, B and D cannot reach node C.
From this finding, we give the following theorem.

Theorem 4.1 If a differential node V; cannot reach any one

of the evidence nodes e, then % =0.

Proof. Shachter [Shachter, 1986] had proved that any node
which cannot reach any one of the evidence nodes e has no

contribution to the marginal probability in a Bayesian net-
work. Thus % =0.0

So the outputs of the jointree algorithm [Park and Dar-
wiche, 2004] is not differentiation of Bayesian networks in
this case. We then reveal the differential semantics of inter-

vention in Bayesian networks and begin with the differentia-
tion of P(e) with respect to a differential node V;.

Lemma 4.1 If V; can reach e in a Bayesian network, we can
compute the first derivative of P(e) with respect to P(v;|u;)
using the following formula:

OP(e)
o = 2, Plilu) [T Ploluy)
OP(v;|u;) 11
{v;.U;.e} YE)
Proof. We prove the theorem as follows.
OP(e) _ aZv\eHP(”j|uj)
OP(v;|u;) OP(v;|u;)
_ OP(uiluy) 3y e P (vilwi) [T, Pvjluy)
B AP (vi|u;)
= Y P ][] Py
V\{v;,u;,e} J#i

Hence the lemma is proved. [J
We reveal the following connection between the first
derivative and atomic intervention of Bayesian networks.

Theorem 4.2 In Bayesian networks, a full intervention has
the following differential semantics.

_ore)
P(e|do(V;)) { P(l:;j P (v:[U;)

if V; can reach e,
else.
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Proof. 1. From Lemma 4.1, we know if V; can reach e,

s = v oeney P (wilud) [T, P(vjuy)

OP(v;|W;)
Next we can derive P(e|do(V;)) as follows.

Vi) > 1 Pwluy)
V\{v.e} i
> Plwifu) [ Pvsluy)
V\(or.e} i
OP(e)
8P(vz|u,)

P(e|do(

2. According to Shachter [Shachter, 1986] theorem, if node
V; which cannot reach any one of the evidence nodes, then
V; has no contribution to the marginal probability of e in a
Bayesian network. Thus P(e|v;) = P(e) whenever P(v;) >
0. If we intervene on node V;, we change its CPT into a PIT.
Since we do not change the network structure, P(e|v;) =
P(e) whenever P(v;) > 0. O

Using Theorem 4.2, we can derive the following Corollary.

Corollary 4.1 In Bayesian networks, an atomic intervention
has the following differential semantics.

opP(e) .
P(eldo(v})) = { Su, grce gy i Vicanreache
LetV, = v

P(e) else.
42.

So far we highlight the relationship between atomic inter-
ventions and first derivatives. Intuitively, there should be sim-
ilar relationship between multiple interventions and higher-
order derivatives. For example, if both B and C are interven-
tion variables, the post-intervention distribution would be

P(d, e|do(B) ZP P(elc)

the corresponding second derivative
8%P(d,e
W%P()C‘a) = P(a)P(d|b,c)P(e|c). We can see that the
two also have similar connections. Due to space limitation,
we do not include the discussions in this paper.

. Corollary 4.1 directly follows from Theorem

P(d|b, )

On the other hand,

S Experiments

To test our algorithm, we study its performance in real
Bayesian networks. We implement our FullDo and Do based
on BNJ [kdd, 2006]. The experiments were conducted on
a PC with Intel core2, 1.8GHz, 4.0G memory and Linux.
We compute the full atomic intervention of the real world
Bayesian networks, which are selected from the benchmark
[ace, 2003]. The statistics of these networks are summarized
in Table 1, where > |V;| denotes the number of values for all
network variables in a Bayesian network and |/m/| represents
the average number of values for each network variable.
Since both FullDo and Do are based on the jointree algo-
rithm, we first compile the jointree for them and use Compile
to denote the compilation phase of FullDo and Do. We next
compute the full atomic intervention of all nodes with respect
to evidence variables and use FullDo-1 and Do-I to repre-
sent the time for computing the full atomic intervention of all
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Table 1: Statistics for the Bayesian networks

Network #Nodes | #Arcs | > [Vi] | |m]
alarm 37 46 104 2.8
blockmap_05_01 700 1183 1400 2
blockmap_05_02 855 1461 1710 2
blockmap_05_03 1005 1729 | 2010 2
diabetes 413 602 4682 | 11.3
fs-04 262 388 524 2
hailfinder 56 66 223 4
mastermind_3_8_3 1220 2068 2440 2
muninl 189 282 995 5.3
munin2 1003 1244 | 5376 54
munin3 1044 1315 5603 54
munin4 1041 1397 5647 54
pathfinder 109 195 448 4.1
pigs 441 592 1323 3
Students_03_02 376 647 752 2
water 32 66 116 3.6

nodes in the outward phase by using our method and Pearl’s
method respectively. From Table 2, we can see that FullDo
performs better than Do for all Bayesian networks. This is
because our FullDo computes the full atomic intervention of
each node by a single Bayesian network inference while Do
computes each atomic intervention by one Bayesian network
inference. In order to compute the full atomic intervention of
each node V;, Do has to employ |V;| Bayesian network infer-
ences. Comparing |m| in Table 1 with the ratio of FullDo-1
to Do-I in Table 2, we further observe that the speedup ra-
tio is positively correlated with |/m| but less than |m|. The
reasons are as follows. Since it can independently compute
every atomic intervention of a node, Do computes each full
atomic intervention in a parallel way. Moreover, the interme-
diate results of our algorithm are larger than those of Do.

6 Related Work

Differentiation and evaluation are two inference methods in
Bayesian networks. Evaluation is widely studied in Bayesian
networks. Russell et al. [Russell ef al., 1995] originally
studied the derivatives with respect to network parameters.
Castillo et al. [Castillo et al., 1997] initially introduced the
network polynomial to denote the Bayesian networks. Af-
ter compiling the network polynomial into arithmetic circuits,
Darwiche [Darwiche, 2003] performed inference in Bayesian
networks by evaluating the circuits in a bottom-up manner
and computed the first derivatives with respect to network pa-
rameters by differentiating the circuits in a top-down man-
ner. Park and Darwiche [Park and Darwiche, 2004] further
introduce a jointree algorithm to compute the first derivatives
and studied the relationship between circuit propagation and
jointree propagation. They found that an arithmetic circuit is
implicitly encoded in a jointree. However, we find that the
outputs of their jointree algorithm [Park and Darwiche, 2004]
are not the differentiation but the intervention of the Bayesian
networks if a differential node V; cannot reach the set of ev-
idence nodes e. Accordingly, the output of arithmetic circuit



Table 2: The performance of FullDo vs. Do (msec)

Network Compile | FullDo-1 | Do-1
alarm 7.7 3.2 4.5
blockmap_05_01 495 37.8 50.1
blockmap_05-02 780 48.9 63.4
blockmap_05_03 857 51.2 66.6
diabetes 40 31.8 167.9
fs-04 18.8 2.6 3.4
hailfinder 10.5 3.1 5.8
mastermind_3_8_3 703 28.2 37.7
muninl 613 74.5 219.1
munin2 70.3 38.9 108.1
munin3 92.3 53.8 142.8
munin4 107.5 65.2 182.4
pathfinder 38 13.3 28.6
pigs 34.2 11.2 17.7
students_03_02 70.3 13.8 19.9
water 21.2 7.1 12.1

is not the differentiation but the intervention of a Bayesian
network in this case

In causal networks, there are two ways to represent the in-
tervention. One is graphs as models of intervention and the
other is interventions as variables [Pearl, 1993]. The do(z)
was first used in Goldszmidt and Pearl [Goldszmidt and Pearl,
1992] and has become popular. Pearl [Pearl, 2009b] encoded
the intervention by changing the network structure. In this
paper, we study the intervention in two novel ways. One
way is that we encode an atomic intervention as changing a
CPT into a partial intervention table. The other way is that
we reveal the connection between the differentiation and in-
tervention. Pearl [Pearl, 2009b] discovered that statisticians
read structural equations as statements about E(Y'|z) while
economists read them as E(Y|do(z)). We find that statisti-
cians directly compute the result from the observation while
economists compute the result by differentiating the observa-
tion. Thus, statisticians and economists use the observation
from different perspectives.

7 Conclusions

Bayesian networks are a very general tool that can be used for
a large number of artificial intelligence problems: reasoning,
learning, planning, perception and etc. Causal Bayesian net-
works can represent and respond to external or spontaneous
changes. Any local reconfiguration of the mechanisms in the
environment can be translated, with only minor modification,
into an isomorphic reconfiguration of the network topology.
In this paper, we show that action is the derivative of the
observation while prediction directly computes from the ob-
servation. Thus, there is one step between causal effect and
prediction just like the relationship between velocity and dis-
placement. Moreover, there are two ways to encode interven-
tion. One is Pearl’s method to change the network structure,
and the other is our technique to alter the network parame-
ters (CPTs). As a future work, we will reveal the relationship
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between multiple interventions and higher-order derivative of
Bayesian networks.
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