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Abstract
Automatic algorithm configurators are important
practical tools for improving program performance
measures, such as solution time or prediction ac-
curacy. Local search approaches in particular have
proven very effective for tuning algorithms. In se-
quential local search, the use of predictive models
has proven beneficial for obtaining good tuning re-
sults. We study the use of non-parametric models in
the context of population-based algorithm configu-
rators. We introduce a new model designed specif-
ically for the task of predicting high-performance
regions in the parameter space. Moreover, we intro-
duce the ideas of genetic engineering of offspring
as well as sexual selection of parents. Numerical
results show that model-based genetic algorithms
significantly improve our ability to effectively con-
figure algorithms automatically.

Many algorithms have parameters that greatly affect their
performance. These parameters allow algorithms to adapt to
different usage scenarios and provide end users with greater
flexibility in customizing software specifically for their needs.
However, finding good parameters is difficult and time-
consuming because each evaluation of the algorithm being
configured is expensive, often taking from seconds or hours
to assess a single input (of which there are many).

In comparison, typical local search approaches for standard
benchmark problems are able to evaluate tens of thousands
of solutions per second. Two types of configurators have
emerged: non-model-based and model-based approaches.
Non-model-based techniques generally rely on either an ex-
perimental design methodology, such as the case in CALI-
BRA [Adenso-Diaz and Laguna, 2006] and I/F-Race [Birat-
tari et al., 2010], or a meta-heuristic as ParamILS [Hutter
et al., 2009] or GGA [Ansotegui et al., 2009]. In contrast,
model-based approaches like SMAC [Hutter et al., 2011]
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use machine learning in order to predict good parameteriza-
tions based on samples of the parameter space. We propose
GGA++, an automatic algorithm configurator that harnesses
the power of model-based approaches within a non-model-
based genetic algorithm framework.

1 Gender-based Genetic Algorithm
Configuration (GGA)

GGA [Ansotegui et al., 2009] is a genetic algorithm-based
approach to general algorithm configuration which has been
used in practice for a wide array of applications, such
as tuning solvers in SAT [Kadioglu et al., 2010]/Max-
SAT [Ansótegui et al., 2014], machine reassignment [Malit-
sky et al., 2013a] and mixed-integer programming [Kadioglu
et al., 2010]). We describe the key components of GGA, but
refer readers to [Ansotegui et al., 2009] for further details.
Overview: GGA accepts a parameterized algorithm to be
configured (called the target algorithm), a set of algorithm
inputs, and a performance metric to be optimized. The per-
formance metric can be the execution time of an algorithm
or some value computed by the algorithm, for example, the
result of a simulation or accuracy of a prediction. GGA then
runs its specialized genetic algorithm that executes the target
algorithm with different parameters in order to find a good
setting. Once GGA has reached the target number of genera-
tions, the best parametrization found so far is returned.
Population: A core idea in GGA is the partitioning of the
population into a competitive and non-competitive popula-
tion. The competitive population is directly evaluated on
the target algorithm, whereas the non-competitive population
simply acts as a source of diversity. This allows GGA to use
strong intensification procedures on one part of the popula-
tion while remaining diverse enough to avoid local optima.
Selection: A tournament-based selection mechanism is used
for evaluating the competitive population. Tournaments are
run on disjoint subsets of parameterizations in parallel on a
subset of the instances. When tuning runtime, as soon as a
set percentage of the parameterizations in a tournament are
finished, all other participants in the tournament can be ter-
minated. This saves significant amounts of CPU time that
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Figure 1: The GGA recombination operator.

would otherwise be spent evaluating bad parameterizations.
Genome representation: GGA represents parameterizations
using an AND-OR tree in order to capture the dependencies
between parameters. A node in the tree is a parameter or
an AND node that binds multiple parameters together. Sev-
eral sample trees are shown in Figure 1. In these particular
trees, the root node is a categorical parameter that activates
the left branch when it takes the value 0, and the right branch
when it takes the value 1 (think of a parameter that chooses
which subroutine is used, with parameters in the left subtree
affecting only subroutine ’0’ and parameters only affecting
subroutine ’1’ in the right tree).
Recombination and mutation: The crossover operator in
GGA takes two genomes, one from the competitive and
one from the non-competitive population. The competitive
genome is a tournament winner, while the other genome is
drawn uniformly at random from the non-competitive popu-
lation. The crossover process is shown in Figure 1, and it
can be viewed as a hybrid of the traditional multi-point and
uniform crossovers that considers parameter dependencies.

GGA performs mutation simply by selecting random pa-
rameter settings and replacing them with values drawn from
either a Gaussian (for discrete and continuous parameters) or
a uniform (for categorical parameters) distribution.

2 Non-Parametric Models for Predicting
High-Performance Parameter Regions

GGA evaluates a parameter setting by running the target al-
gorithm with the parameter setting on a collection of training
instances. That is, we conduct a black box optimization with
an extremely expensive to run black box. One idea to im-
prove optimization performance is to reduce the high costs of
querying the black box directly. To this end, the idea of trying
to learn a so-called “surrogate model” that is faster to evalu-
ate and that “approximates” the actual black box has been in-
troduced. The so-called response surface methodology [Box
and Wilson, 1951], e.g., fits a second degree polynomial to
the observed black box output and then optimizes over that
polynomial to predict an optimal input for the black box.

A state-of-the-art sequential local search algorithm config-
urator that uses a surrogate model is SMAC [Hutter et al.,
2011]. SMAC directly evaluates algorithm performance for
some initial parameter settings and then uses this experience
to train a random forest that predicts expected algorithm per-
formance over the parameter inputs. Importantly, SMAC also

computes the model’s variance/uncertainty in its predictions.
As a next point for direct evaluation of the algorithm on the
training inputs, SMAC chooses a parametrization for which
the model predicts high performance plus uncertainty. The
model is re-trained using this information, along with sev-
eral random parameterizations that are also directly evalu-
ated. A new parametrization is then chosen based on the up-
dated model, and this process is repeated until the designated
CPU time for configuration is exhausted.

The use of variance in SMAC is very important. First, this
leads to an improvement of the model itself by favoring points
where the model has little “confidence” in its own predictions.
Secondly, a vanilla random forest can never return predictions
that exceed the most highly rated prior experience. Conse-
quently, if variance was not used to score new parametrization
candidates the system could repeatedly re-evaluate the same
parameter settings.

3 Surrogate Models for Genetic Algorithms
The core idea of this paper is to study the use of surrogate
models in genetic algorithms for algorithm configuration. In
particular,

1. How can surrogate models help find high-quality solu-
tions faster in the context of a population-based local
search approach?

2. Are there surrogate models that are more suited for pre-
dicting high-performance parameterizations?

There is already work on combining evolutionary
and genetic algorithms with model-based approaches
(e.g., [Rasheed and Hirsh, 2000; Jin, 2011]). These hybrids
employ vanilla machine learning models as surrogates. They
consider the various uses of surrogates within genetic algo-
rithms and decide when to re-train the model. In this work
we devise specialized surrogate models and tightly integrate
them within a genetic algorithm.

The core operation that defines the next fitness evaluations
in a genetic algorithm is the crossover, possibly in combi-
nation with mutation. Usually, the crossover method is ran-
domized in some fashion. We introduce the idea of using a
surrogate model for predicting offspring performance and to
“genetically engineer” offspring that are expected to perform
better. Note that changing the way new parameterizations are
introduced into the population can have a drastic effect on the
trajectory of the entire search, as this modifies the delicate
balance of exploration vs. exploitation. Within GGA, the
question then becomes what percentage of offspring should
be selected by the model and what percentage should be pro-
duced by the existing crossover operator, and how sufficiently
high levels of diversity in the gene pool can be maintained.

Another idea we introduce is that of model-based “sexual
selection.” As outlined above, GGA maintains two popu-
lations, one that competes for the right of mating, and one
within which individuals mate with equal probability. Based
on the assessment of a surrogate model, winning competitive
individuals could choose a mating partner based on some def-
inition of their “attractiveness.”

Regarding the second question posed above, based on the
developments in algorithm portfolios, where non-parametric,
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or at least low-bias models, have led to the currently best
performing approaches [Xu et al., 2012; Malitsky et al.,
2013b], we consider random forest regression to train our sur-
rogate model. However, off-the-shelf machine learning ran-
dom forests were developed to lead to good predictive per-
formance for all inputs to the function to be approximated.
For the purpose of predicting search regions that harbor high-
quality solutions, we are much more interested in predicting
areas where near-optimal inputs can be found and less so in
high-accuracy predictions throughout the search space. To
this end, we introduce a new splitting method for random
forests that aims at predicting high-quality solutions better
than general regression models.

According to the discussion above, the three core algorith-
mic contributions of this paper are 1. genetically engineer-
ing offspring, 2. selection of non-competitive mating part-
ners based on their attractiveness, and 3. building decision
trees (that will form random forests) with a bias towards bet-
ter predictive performance around function extrema.

3.1 Genetic Engineering
The core idea of genetic engineering1 offspring is very sim-
ple. Once two parents have been chosen to produce offspring
together, we aim at finding the combination of the parents’
genes that results in the fittest offspring as predicted by our
surrogate model. Therefore, what happens during genetic en-
gineering is a limited focused search in the restricted parame-
ter space spanned by the two parent genomes. These genomes
provide at most two specific values for each parameter to be
tuned, or a single value in the case that both parents agree
on the value. In general, even such a limited search over a
non-parametric model, such as a random forest, is hard:
Theorem 1. Given natural numbers n, k, maximizing a func-
tion {true, false}n → [0, 1] represented as a random forest
with k trees is APX-hard, even if the depth of all trees is lower
or equal to two and each variable appears in at most three
trees.

Proof. We first reduce Max-SAT to the problem of find-
ing a maximizing input for a random forest. The polyno-
mial construction works straight-forwardly as follows: For
each clause in the given SAT formula with k clauses over n
Boolean variables, we construct a decision tree. We sequen-
tially branch on the literals in the clause: If the literal eval-
uates to true, we connect to a leaf node with value 1. If it
evaluates to false, we move to the next literal in the clause. If
and only if the last literal is also in the clause that evaluates
to false, we connect to a leaf with value 0. Each tree there-
fore returns a value of 1 if and only if the respective clause is
satisfied, and 0 otherwise. The random forest, which returns
the average value of its constituent trees, thus gives the frac-
tion of clauses that evaluate to true under a given assignment.
Since Max-2SAT(3) is APX hard [Ausiello et al., 1999], we
get the result.

Note that this targeted search in the space that two points
span in the search space is reminiscent of the “Aufhebung”

1We stress that all of the topics pertaining to genetics here are no
more than a convenient analogy.

procedure that produces syntheses in dialectic search [Kadio-
glu and Sellmann, 2009]. One way to conduct such a search
heuristically is path-relinking [Glover et al., 2000], another
would be to start a full-fledged local search in the focused
search space.2 Since we are dealing with a very specific rep-
resentation of the objective function as a random forest, we
propose using a targeted sampling method.

For each tree in the forest, we gather all leaves that any po-
tential offspring of the two parents could fall into. This can
be done in linear time in the size of the given decision tree.
Now, for each leaf we randomly sample a number m of full
assignments to the parameters. Note that the leaf only con-
strains some parameters to be set to the value of one specific
parent, the others can be chosen at will. We then evaluate the
full assignment using the entire random forest. We repeat this
procedure for all reachable leaves in all trees, ultimately re-
turning the assignment that results in the maximum value as
returned by the forest.

Theorem 2. For a given m ∈ N, the procedure above runs in
time O(s2m), where s is the size of the given random forest.

Proof. The procedure requires at most s times m random for-
est evaluations. Since one evaluation requires linear time as
well, the total time is quadratic in the size of the given random
forest for any constant m.

As a final note, when genetically engineering a large per-
centage of new offspring there is a danger of losing popula-
tion diversity, as genetic engineering intensifies the search. To
alleviate this problem, we remove a slightly larger percentage
of the population in each generation and replace these indi-
viduals with new, randomly generated individuals. As usual
in GGA, these as well as the new offspring are assigned the
competitive or non-competitive gender uniformly at random.

3.2 Random Forests for Optimization Forecasting
The previously described algorithm for producing optimized
offspring works with any random forest. Off-the-shelf meth-
ods for training random forests are designed to approximate
the function to be learned well everywhere. For our purposes,
we do not require an approximation of the underlying func-
tion (in our case: target algorithm performance on the train-
ing instances given certain parameter inputs). We just need
the surrogate model to identify those areas of the parameter
space where we expect high-performance parameterizations.

When training the random forest, and in particular building
an individual decision tree, we consider an alternative split-
ting procedure that results in higher “resolution” of the tree in
areas where performance is high, and a less refined approx-
imation in areas where performance is low. More precisely,
we will focus on the top q = 10 percent of top-performing
examples in each split and try to separate the top performers
from the remaining parametrizations as best as possible.

To achieve this we need a valuation function for potential
split parameter-value pairs that scores those pairs the highest

2It is worth noting here that SMAC conducts a local search for
finding new candidates that combine good expected performance
with uncertainty in the surrogate model.
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for which the top performers are best separated from low per-
formers. One way to achieve this is to focus on the partition
that would contain more of the top q% of performers. Within
this partition, we want the ratio of high performances over
low performances to be maximized. To compute these high
and low performances, we consider the squared differences
of the high and low performing valuations compared to the
threshold performance vh of the qth percentile performance.

Formally, we denote the valued training observations at a
current node in the tree under construction as

E = {e1 = (p11, . . . , p
1
n, v

1), . . . , er = (pr1, . . . , p
r
n, v

r)},
such that vi ≥ vi+1 for all 1 ≤ i < r. Let h = d rq

100e,
T = {e1, . . . , eh}, and U = {eh+1, . . . , er}. For parameter
index 1 ≤ j ≤ n and splitting value s we set L = {ei =
(pi1, . . . , p

i
n, v

i)|pij ≤ s} and R = E \ L as the left and right
partitions of training examples if we were to split on parame-
ter pj and splitting value s.

To score the potential split, we now consider the following
values: lls =

∑
ei∈L∩U (v

h − vi)2, rls =
∑

ei∈R∩U (v
h −

vi)2, lts =
∑

ei∈L∩T (v
i− vh)2, rts =

∑
ei∈R∩T (v

i− vh)2,
ltn = |L ∩ T |, and rtn = |R ∩ T |. We then compute al =
ltn+lts
1+lls and ar = rtn+rts

1+rls . Finally, we set

score(pj , s) =


al ltn > rtn

min{al, ar} ltn = rtn

ar ltn < rtn

and split on the parameter-value pair that gives the maximum
score. Apart from the splitting procedure, we keep the train-
ing of the random forests exactly the same.

3.3 Sexual Selection
The third main algorithmic idea we contribute is the use of a
surrogate model like the one developed in the previous sec-
tion for sexual selection. In biology, the term refers to indi-
viduals of a population giving preference to mating with more
attractive partners as gleaned from external features that indi-
rectly indicate fitness and health [Wedekind et al., 1995].

In this analogy (and we would like to again stress that it is
just that: an analogy), our surrogate model has the same func-
tion as the external features: it indicates which mates might
be better partners for producing fitter offspring. The proce-
dure we will test in the next section works as follows: After
the competitive individuals have been selected in GGA, they
choose their partners from the non-competitive subpopulation
based on the estimated fitness of the partner.

To assess the latter, we obviously use the surrogate model.
If the top competitive individuals are to mate with k partners
in a given generation, then they each select k non-competitive
individuals in a probabilistic process where a mate is chosen
with higher probability the higher the non-competitive’s per-
formance as estimated by the surrogate model.

4 Experimental Results
When tackling a problem like automatic algorithm configu-
ration, where achieving any kind of performance guarantee
is in fact not just hard but undecidable, experimentation is

key. That is, to find out whether a method works in practice,
we put it to the test. In this section we first conduct a se-
ries of experiments on small black box optimization problems
to gain an initial understanding of whether genetic engineer-
ing is at all helpful within the context of genetic algorithms,
and what percentage of offspring ought to be engineered to
achieve the best overall results. We then quickly move on to
real-world algorithm configuration problems to determine the
impact of adding sexual selection, as well as to evaluate the
impact that different surrogate model optimization methods
have on the configuration performance. We conclude the ex-
periments with a comparison of the model-based GGA with
the unaltered configurators GGA and SMAC.

4.1 Potential of Genetic Engineering and
Diversification

As we have seen before, finding the best (as predicted by a
random forest surrogate model) offspring for two parents is
hard. Moreover, even if we could engineer offspring to per-
fection, the question arises whether optimizing new individu-
als in a genetic algorithm is beneficial at all. In this section we
try to answer these questions by focusing on low-dimensional
global optimization problems which allow us to perfectly en-
gineer offspring.

The use of genetic engineering within GGA poses a partic-
ular challenge in terms of balancing the search intensification
and diversification. It is possible that the engineering prema-
turely pushes the search into a local optimum. We therefore
devise the following experiment to shed light on the influence
of being greedy or relying on randomiziation within GGA.
We use GGA for global optimization while varying the per-
centage g of offspring that are engineered and the percentage
r of non-competitive individuals which are replaced by new
randomly generated individuals.

Given two parent genomes, a child is normally created
through a random process that mixes the AND-OR trees stor-
ing the parameter settings of each parent. To assess the ef-
fect of perfect genetic engineering (using a perfect surro-
gate model and perfect optimization), with a certain proba-
bility g we will replace this standard crossover operator with
a method that brute-force enumerates all possible combina-
tions of the two parents and evaluates them on the actual ob-
jective function.3 This allows us to find the best possible child
given a pair of parents.

To assess the importance of diversification in combination
with highly greedy recombination, we replace a percentage
r of the non-competitive population with completely ran-
domly generated genomes. This is a common strategy in, e.g.,
random-key GA approaches [Bean, 1994].

We assess the impact of genetic engineering and increased
diversification on the performance of GGA by using it for
globally optimizing ten 4 dimensional and ten 8 dimen-
sional black box optimization (BBO) functions as described
in [Hansen et al., 2009] from the COmparing Continuous Op-
timizers (COCO) software [Hansen et al., 2011]. The test

3We emphasize that due to the clearly exponential runtime of this
routine we use this for investigative purposes only!
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Population g
r

0.0 0.25 0.5 0.75 1.0

50

0.00 0.301 0.308 0.329 0.363 0.385
0.25 0.219 0.195 0.186 0.182 0.180
0.50 0.186 0.159 0.154 0.151 0.148
0.75 0.169 0.142 0.135 0.133 0.132
1.00 0.156 0.129 0.124 0.123 0.120

75

0.00 0.230 0.247 0.281 0.316 0.339
0.25 0.168 0.157 0.153 0.149 0.155
0.50 0.146 0.134 0.128 0.126 0.123
0.75 0.128 0.116 0.113 0.111 0.112
1.00 0.121 0.106 0.106 0.102 0.104

100

0.00 0.193 0.222 0.255 0.289 0.318
0.25 0.139 0.137 0.132 0.134 0.138
0.50 0.119 0.113 0.111 0.113 0.114
0.75 0.107 0.101 0.098 0.099 0.099
1.00 0.098 0.092 0.092 0.092 0.093

Table 1: Average score across 100 GGA executions of func-
tions 15 through 24 on dimensions 4 and 8 with varying g and
r probabilities. The number of generations is fixed at 50.

functions in COCO are highly non-convex and quick to eval-
uate, which provides a good initial testbed for evaluating dif-
ferent configurations of GGA.

We stress, however, that the BBO instances we consider
differ from automatic algorithm configuration in several im-
portant ways: First, real algorithms usually have a mixed set
of continuous, ordinal, and categorical parameters. More-
over, they frequently have tens, at times hundreds of parame-
ters. Finally, in algorithm configuration we are often forced to
approximate the performance of a target algorithm on a train-
ing benchmark for a given parameter setting by evaluating the
algorithm on varying subsets of instances.

We run GGA to minimize BBO functions 15 – 24 with 4
and 8 dimensions 100 times for each function/dimension pair
on different settings of g and r for different population sizes.
Table 1 shows the results of this experiment. As the opti-
mum value changes between functions and in some cases is
even unknown, before averaging results between functions,
we normalize the values between the best and worst observed
result, with 0 being the best objective found and 1 the worst.

As shown in Table 1, when the percentage g of genetical
engineering is set to 0, increasing the random replacement
probability r worsens the results of GGA significantly (the
top row of each population amount). This means that if GGA
follows its original crossover approach to generate new chil-
dren, randomly throwing out parameterizations from the non-
competitive pool and replacing them with random parameter-
izations is ill advised. However, as soon as g is increased,
the introduction of new random parameterizations is benefi-
cial, likely helping to compensate the greater intensification
by increasing the diversification of the non-competitive pool.

Most importantly, though, we observe that genetic engi-
neering really boosts performance. Even without increasing
r, increasing g to a point where all offspring is engineered
results in roughly twice the performance quality compared to
GGA’s standard operator. While we had originally assumed
that there was some mix of random and greedy crossover that
would yield the best results, the results clearly show that, to
maintain gene pool diversity, it is more favorable to inject
new random individuals rather than using some fraction of

random crossovers.

4.2 Configuring SAT Solvers
While encouraging, the experiments on BBO are not fully
indicative of the typical scenarios where algorithm configu-
ration is utilized. In practice, we do not have the luxury of
perfectly engineering offspring. Moreover, the performance
of the target solvers is much more erratic and can only be ap-
proximated through evaluations over multiple instances. Fur-
thermore, the number of parameters that need to be set can
span into the hundreds and vary among continuous, discrete
and categorical. In this section, we therefore evaluate our pro-
posed strategies on a real-world scenario, the tuning of two
highly sophisticated SAT solvers: glucose 4.0 [Audemard and
Simon, 2009] and lingeling (version ayv-86bf266) [Biere,
2014].

We choose these solvers for two main reasons. First, both
are high quality parameterized solvers that have performed
very well in SAT competitions. Secondly, we choose this pair
because glucose only has 8 adjustable parameters while lin-
geling has over 100. This disparity allows us to test our ap-
proaches in both extremes.

We evaluate the solvers on a collection of industrial in-
stances spanning the 2009 SAT Competition to the one in
2013. There are 727 instances total. For training, we eval-
uated each solver’s default configurations on all instances to
isolate the ones where the solver needed at least 30 seconds
to solve an instance, but could also finish it in under 300 sec-
onds. We ignore very easy instances as they can be handled
by a pre-solver. We also ignore very hard instances because
we want GGA to have a chance of solving an instance with-
out wasting time on something it will never solve. From
these subsets of instances we used 115 for training glucose,
and 50 for training lingeling. Subsequently, all instances not
used for training that could be solved by the default or any
parametrization found by the various configurators, including
both easy ones and those where the default parameters time
out, were used for testing.

Using GGA the allotted training time was set to 48 hours,
with the population size set to 100, the maximum number of
generations to 50, and the tournament size to 8. Both tun-
ing and evaluation are performed with a timeout of 300 sec-
onds on AMD Opteron 6134 processors with 64GB of RAM.
From the experiments with BBO we observed that engineer-
ing all offspring is beneficial when also diversifying the non-
competitive pool, and therefore, based on Table 1, we set
g = 1 and r = 0.5.
Surrogate Model Optimization: We compare three methods
for surrogate-model-based genetic engineering (GE) and the
original GGA. First, we evaluate an off-the-shelf random for-
est that randomly samples 100,000 possible children of any
two given parent genomes and selects the one predicted to
have the best performance, RF. Second, we evaluate a ran-
dom forest that practices the focused sampling search based
on the structure of the decision trees with 50 samples per leaf,
Structured. Finally, we consider again the focused sampling
approach but this time based on trees that were built giving
higher resolution to the high-performance regions of the pa-
rameter space, Targeted. These results are summarized in Ta-
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GE GE + Sexual Selection
glucose GGA RF Structured Targeted RF-S Targeted-S

Solved (%) 92.5 88.8 91.2 93.7 91.9 92.5
Average 79.3 86.5 89.77 84.4 84.34 82.5
Median 47.2 55.8 57.8 49.8 57.3 52.8

PAR1 95.8 110.5 101.8 97.9 101.9 98.8
PAR10 298.3 414.3 344.4 266.7 321.2 301.3

Varying Surrogate Models GE + Sexual Selection
lingeling GGA RF Structured Targeted RF-S Targeted-S

Solved (%) 89.8 72.2 82.4 93.5 92.6 90.7
Average 77.0 84.5 86.4 78.7 92.0 91.0
Median 44.2 62.8 60.2 50.3 76.8 74.8

PAR1 99.7 144.4 124.0 93.0 107.4 110.3
PAR10 374.7 894.4 599.0 268.0 307.4 360.3

Table 2: Comparison of varying GGA modifications for tun-
ing glucose and lingeling configurations on SAT instances

ble 2.
The table compares the algorithms on five metrics: per-

centage of instances solved, average time needed on instances
solved, median run time on instances solved, and the penal-
ized average runtimes PAR1 and PAR10 where the timeout
is included when computing the average time. In contrast
to “Average”, PAR1 counts timeouts but does not penalize
them. PAR10 counts timeouts as if the solver needed 10 times
the timeout. In the literature, the chief comparison is usually
the percentage of instances solved and the PAR10 score. We
therefore task all configurators to minimize PAR10.

Table 2 shows that employing an off-the-shelf random
forest in combination with a random sampling optimization
method does not improve the performance of GGA. Indeed,
the opposite is true: GGA’s performance deteriorates signifi-
cantly. The same is true, albeit to a lesser extent, when using a
structured sampling method based on an off-the-shelf random
forest which aims at predicting well across the board.

However, if the underlying surrogate model is created to
focus on areas of target function extrema, performance is
markedly improved. For the glucose solver, which has few
parameters, genetic engineering with the targeted surrogate
model still achieves an improvement of 1% in the number of
instances solved. On lingeling, which has many parameters,
genetic engineering determines a configuration of lingeling
that is able to solve about 4% more instances than the con-
figuration GGA finds. Note that these two high-performance
solvers have undergone rigorous manual tuning and therefore
improving their performance further is challenging.
Sexual Selection: Having shown that a good surrogate model
can offer noticeable improvements within GGA through ge-
netic engineering, the question becomes whether sexual se-
lection can give an additional boost to performance. Table 2
presents these results in the last two columns. Specifically,
we first add sexual selection to the approach using an off-
the-shelf random forest, RF-S. We also evaluate the perfor-
mance of genetic engineering with a specially modified for-
est, Targeted-S.

In both benchmarks, the proposed sexual selection strategy
on top of genetic engineering is detrimental compared to the
“Targeted” genetic engineering method in isolation. After the
BBO experiments showed that very aggressively engineering
offspring at all times was the best choice under perfect con-

ditions, this result came as a surprise. We believe that using
a surrogate model to indirectly evaluate the non-competitive
subpopulation de-facto creates competition in this part of the
population and thus undermines its ability to serve as diver-
sity store. More research is required to find out whether alter-
native methods for matching parents can work better.
State of the Art: We conclude our experiments by compar-
ing both GGA and SMAC with GGA++, which replaces the
randomized crossover operator with a genetic engineering ap-
proach based on a specially tailored random forests that focus
on accurately predicting high-quality regions of the parame-
ter space. GGA++ does not use sexual selection. For evaluat-
ing SMAC, we adjusted the wall-clock time to 48 hours (the
time needed by GGA to conduct 50 generations), and tuned 8
versions of the configurator for each training set, running the
best one on the final test data. In Table 3 we show the average
test results when configuring glucose and lingeling ten times
with each configurator.

As we observe, GGA++ shows improvements over the
non-model-based GGA as well as the model-based SMAC.
For glucose, GGA++ lowers the PAR10 score by over 5%
compared to SMAC. For lingeling, which has significantly
more parameters and thus offers more room for improvement,
GGA++ lowers the PAR10 score by almost 20%.

The performances on the training sets, while naturally
higher, followed a similar trend of GGA++ providing the best
performance. Furthermore, for lingeling a mere ten repeti-
tions are enough to claim statistical significance of the im-
provements achieved by GGA++ compared to both the de-
fault and SMAC. Note, however, that this significance is lim-
ited by the parameters of the experimentation, in particular
the specific solver tuned and train-test split considered.

5 Conclusion
We showed how training a surrogate model can improve the
performance of a gender-based genetic algorithm to create
a more powerful algorithm configurator. Specifically, we
showed how to integrate a surrogate model into the GGA con-
figurator, by genetic engineering as well as sexual selection,
whereby the former led to marked improvement whereby the
latter was detrimental. We also developed a new surrogate
model based on random forests that aims at higher resolution

glucose Default GGA SMAC GGA++
Solved (%) 86.9 86.5 87.0 87.9

Average 87.7 84.7 85.5 85.3
Median 71.0 71.2 72.1 68.4

PAR1 115.4 114.0 113.5 111.4
PAR10 468.7 479.5 464.7 438.2

lingeling Default GGA SMAC GGA++
Solved (%) 84.0 84.1 82.1 87.8

Average 95.4 93.7 87.1 95.6
Median 106.6 97.7 85.8 82.3

PAR1 128.2 126.7 125.4 120.5
PAR10 560.7 556.8 608.8 449.3

Table 3: Average performance comparison of state-of the art
configurators on SAT solvers glucose and lingeling
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approximations where the target function exhibits good per-
formance. Overall, this resulted in a new algorithm configura-
tor that outperformed both a state-of-the-art non-model-based
and a state-of-the-art model-based configurator when tuning
two highly performant SAT solvers.
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