Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

Mining Expert Play to Guide Monte Carlo Search
in the Opening Moves of Go

Erik Steinmetz and Maria Gini
Department of Computer Science and Engineering
University of Minnesota
{steinmet|gini } @cs.umn.edu

Abstract

We propose a method to guide a Monte Carlo
search in the initial moves of the game of Go. Our
method matches the current state of a Go board
against clusters of board configurations that are de-
rived from a large number of games played by ex-
perts. The main advantage of this method is that
it does not require an exact match of the current
board, and hence is effective for a longer sequence
of moves compared to traditional opening books.

We apply this method to two different open-source
Go-playing programs. Our experiments show that
this method, through its filtering or biasing the
choice of a next move to a small subset of possi-
ble moves, improves play effectively in the initial
moves of a game.

1

In the last decade a new approach to playing games which are
not amenable to traditional tree search algorithms has arisen.
This approach uses a stochastic method, called Monte Carlo
search, to evaluate nodes in a game tree. The principle of
stochastic evaluation is to score a node in a game search tree,
not by using a heuristic evaluation function, but by playing
a large number of test games using randomly chosen moves
starting at the node to be evaluated out to the end of the game.
In this paper we introduce SMARTSTART, a method which
improves Monte Carlo search at the beginning of the game of
Go, where its search tree is at its widest and deepest. This
method uses expert knowledge to eliminate from consider-
ation moves which have not been played by professional Go
players in similar situations. We create a multi-element repre-
sentation for each board position and then match that against
clusters of professional games. Only those next moves which
were played in games in the closest cluster are allowed to be
searched by the Monte Carlo algorithm. This is a very fast
filter because the clusters of the professional games are cal-
culated ahead of time. By pruning a large proportion of the
options at the very beginning of a game tree, stochastic search
can spend its time on the most fruitful move possibilities. Ap-
plying this technique has raised the win rate of a Monte Carlo
program by a small, but statistically significant amount.

Introduction

801

2 Prior Work on Computer Go

Go is a two-player, perfect information game played by plac-
ing black or white stones on a 19 by 19 grid of lines, with
the black and white players alternating turns. The object of
the game is to surround or control the territory on the board.
Once placed, the stones are not moved around on the board
as are chess pieces, but remain in place until the end of the
game, or until they are removed by capture. A player may
elect not to place a stone by passing on their turn. The game
ends when both players have passed in succession and the
winner is the player who controls the most territory. There
are two scoring systems, Chinese and Japanese, but they both
produce equivalent results, with a possible one stone variance
[Masayoshi, 2005].

There has been a large number of efforts over the years to
create a computer Go playing program which can play at the
level of a professional Go player, with many programs still
competing to claim top honors. Through the nineties devel-
opment of Go software proceeded slowly using variations of
traditional techniques and reached approximately the level of
a medium-strength beginner.

Because the growth of the game tree is much larger than
that of chess, and more importantly because of the difficulty
in creating reasonable evaluation functions, most early Go
programs used an architecture first used in [Zobrist, 1970]
that depended on having different code modules supply sug-
gested moves and related urgency scores to the main program,
which then chose among this limited set of moves.

In recent years, much effort has been spent on applying
Monte Carlo techniques to Go [Browne et al., 2012]. This
was first proposed by Briigmann in 1993 [Briigmann, 1993],
and completes games with random move sequences to the
end of the game many thousands of time from a given po-
sition. A move choice is then evaluated based on the outcome
of this random sampling of games. Although initial results
were poor, the quality of this style of algorithm progressed
rapidly to the point that a program named MoGo utilizing
Monte Carlo methods was able to defeat a professional player
on a 19 x 19 board, albeit with a large handicap advantage.

2.1 The architecture of Monte Carlo Go programs
Monte Carlo methods to evaluate game positions are based
on playing a large number of sample games to completion
beginning from the position to be evaluated, choosing random

legal moves until the end of the game, where a winner for that
playout is determined. In an unbiased Monte Carlo search for
Go, the moves chosen in these playouts comply to the rules
of no suicide, and no playing into a ko, but otherwise are
selected at random from the open intersections on the board.
The candidate moves are then scored by counting the number
of times the random games resulted in a win vs. the number of
losses. Another method of scoring a candidate move involves
not just the number of random games won and lost, but also
the amount (number of stones) by which these games were
won or lost [Yoshimoto et al., 2006].

In its simplest form, also known as flat Monte Carlo, all
possible moves from the current position are evaluated with
an equal number of playouts. Flat Monte Carlo evaluation
does produce results, but is handicapped by a number of
shortcomings. Because so many playouts are spent on excep-
tionally suboptimal moves, it does not scale well. Addition-
ally, there are situations in which an incorrect move will be
more likely chosen even as the number of playouts increases,
due to the lack of an opponent model [Browne, 2011].

In Monte Carlo Tree Search (MCTS), moves of a playout
are given nodes and added to a game tree. Due to memory
constraints, only the first move played outside of the existing
tree during a playout is given a node and added to the tree.
When the result for a playout is determined, each node in the
tree that led to that result has its score modified by the win
or loss. Nodes keep track of the number of times played, the
number of times each next move was played, and the number
of recorded wins from each next move. When selecting a
move during a playout, the selection policy from an in-tree
node is usually different than the selection policy from an out-
of-tree node. The out-of-tree move selection policy, called
the default policy, is often a random selection, limited only
by the legality of the move. The in-tree move selection policy
in basic MCTS is to choose the move with the best-so-far win
rate, thereby causing the more favorable parts of the tree to
be examined in more depth than others.

A modification to the MCTS algorithm that is now widely
used has an extra variable to assist the selection of the in-tree
moves [Kocsis and Szepesvari, 2006]. This method, called
Upper Confidence Bounds Applied to Trees (UCT), chooses
moves by iterating through the scoring of candidate moves as
with the normal Monte Carlo algorithm but uses the number
of times successor nodes in the tree are encountered along
with the their win rate as a modification to the basic in-tree
selection policy. If a move has only been tried a few times,
its winning rate will have a low confidence, and so in order
to increase the confidence of the winning rate, the odds of
selecting these moves are increased by an additional factor so
that they will be explored more often.

An additional modification, called RAVE for rapid action
value estimation, scores moves not just based on playing at
the current position (of the node being scored) but using a
formula based on playing that move at any point during the
game. This is known as the all-moves-as-first heuristic [Gelly
and Silver, 2011]. One of the best programs currently play-
ing, MoGo, was the first to be built upon this basis.

Other modifications include integrating domain dependent
knowledge [Bouzy, 2007] and heuristic methods [Drake and

802

Uurtamo, 2007] along with a system for polling different
Go programs for move choices [Marcolino and Matsubara,
2011]. Biasing in-tree node selection based on learned pat-
terns [Michalowski ef al., 2011] has improved play and mod-
ifying just the out-of-tree playouts includes using a lookup
table based on individual move sequences from winning play-
outs [Drake, 2009] and was improved by removing from the
table those sequences which were subsequently played in a
losing playout [Baier and Drake, 2010].

2.2 Opening books in Computer Go

One of the ways in which computer chess programs have suc-
ceeded in reaching grand master levels is through learning the
opening moves of a game from human experience. Chess
masters discovered and developed over the years the most
powerful sequences of opening moves, so one of the fastest
ways for a student of chess to improve their game was to study
these opening books and memorize the *best” move given the
current position. Computer chess programs, like well-studied
humans, can therefore be loaded with these opening book li-
braries, and may simply look up the best move for a particular
position. With the ability to do a table-lookup of the ’correct’
move at the beginning of the game, chess programs have been
spared the arduous task of running a search at the beginning
of the game when the game tree is at its widest and longest.
In the game of Go, although there are well-known patterns
of play in the opening moves and numerous books regard-
ing opening strategy [Ishigure, 19731, opening books with
the depth and breadth of those in chess have not arisen due
to the large number of possible top-quality opening move se-
quences. If one limits the scope of the moves to one corner of
the board, however, a set of literature exists explaining move
sequences called joseki ("fixed stones” in Japanese). These
are mini opening books concerning only a small section of the
board, typically a corner. In [Baier and Winands, 2011] both
full board matching and joseki (corner) matching are used to
modify the MCTS search tree and playouts of a Go program,
with some improvements to the winning rate of their platform
program. This method required an exact match of either the
entire board or of one of the corners to the selection of stored
positions. When a match does occur, the next move from the
matched game or games is not directly chosen, but instead
used to either filter choices in an MCTS search or, more suc-
cessfully, to bias the choices in an MCTS search tree.

3 Proposed Approach

We have created the SMARTSTART method to act as a gen-
eralized opening book, providing higher quality moves in the
initial play of the game without requiring an exact full or par-
tial board match to known games.

We first record the moves chosen during games between
professional players for each board position of the initial
moves of the games. We then group these records, within
each move number, into a small number of clusters based on
the similarity of the board positions. Each cluster so created
contains a list of all the next moves chosen in the records of
that cluster. During play, we determine which cluster is clos-
est to the current board situation and utilize the next moves in
that cluster to guide the Monte Carlo style algorithm.

3.1 Problems with Opening Books

The way an opening book works in the code of a computer
Go program is that sequences of moves are placed into a
database so that they can be looked up by the board posi-
tion that would exist after each of the moves in the sequence.
So for a sequence of six moves, A B C D E F, the algorithm
would find this sequence if it was looking at a board with just
move A on it, or a board after moves A and B, or the board
as it would look after moves A, B, and C, and so on. If the
lookup succeeds, the next move in the sequence is then the
move of choice from the opening book. For example, if it is
move 5 with black to play (since black always moves first in
Go) and the board matches the board state that would exist
after the moves A B C D, then the move E is the one which
will be chosen by the opening book. For the first move of the
game onto an empty board, one of the sequences (often the
longest) is designated as the choice to be made.

For any given board state, there is at most one entry in the
opening book. However, there are many variant sequences
that begin similarly, as opponent play cannot be controlled.
The sequence A B C D E F may be accompanied by another
sequence that begins the same but then branches such as A B
CGH,orAIJKLM.

Once a play has been made outside of any of the sequences
contained in the opening book it is no longer possible to find
a move which will match, and so the opening book will no
longer be consulted.

Opening books exist in many computer Go programs, in-
cluding some with very long sequences of 30 moves. If two
programs play each other using the same opening book, the
first moves of the game are then completely deterministic,
consisting of exactly the moves in the sequence designated to
make the first, empty-board, move. When a program with an
opening book plays against one with no opening book, how-
ever, the actual number of moves used from the book is quite
small, and play leaves the book very quickly. This can mean
that the presence of a traditional opening book has very little
effect on play against a non-opening book opponent.

In testing we found that black with an opening book play-
ing against an opponent with no opening book used only the
first move in 84% of the games and used only the first and
third moves in 12% of the games. Playing white with an
opening book against an opponent with no opening book re-
sulted in using no moves from the book 6% of the time and
only one move from the book 76% of the time. We tested
a version of Fuego in two tournaments, once with an open-
ing book, and once without, against a version of Pachi with
no opening book. We found that the opening book was not
able to provide a statistically significant improvement to play
(see Table 1). With a null hypothesis that the opening book
in Fuego does not change Fuego’s ability to win, we found a
two-tailed p-value of 0.86, which does not allow us to reject
the null hypothesis.

3.2 Using Professional Play in the Opening Game
to Improve Monte Carlo Tree Search

In this paper we show how the play of MCTS-based com-
puter players can be improved in the opening moves of Go

803

Table 1: Fuego vs. Pachi 10. 10,000 games per tournament.

As Black|As White| Cumulative|p-value
Fuego with no
Opening Book | 30-3% | 41.1% | 38.7% -
Fuego with
Opening Book 36.0% | 41.6% 38.8% | 0.862

by SMARTSTART, our technique to utilize a full board pat-
tern match against clusters of positions derived from a large
database of games played by top-ranked professional players.
While an opening book requires a perfect match of the current
board in play against a position found in a database, SMART-
START matches the current board with the nearest cluster of
positions in a database. By matching against clusters of sim-
ilar moves instead of seeking a perfect match, our method is
guaranteed to find some match, and the solutions found are
more general.

Instead of choosing a single move on a board with a perfect
match to an opening book position, SMARTSTART constrains
the Monte Carlo search tree during the initial moves of the
game to only those moves played by professionals in games
most closely matching the position of the game in question.

During a Monte Carlo search, all legal moves are consid-
ered at each turn during a playout. This means that at the
beginning of the game, the search will consider all 361 initial
locations on the board for move 1 (ignoring symmetry), then
360 for move 2, and so on. The engine must then play out
a number of games to the end of the game for each of these
possibilities in order to evaluate them.

Because so many different moves are being considered that
are not at all viable, the MCTS engine is spending a signifi-
cant amount of effort on needless playouts, and occasionally
picks moves which are easily recognized as ineffective even
by novice players.

Our work involves limiting the search by considering only
those moves that have been made by professional players in
the same or similar situations. This approach is different from
using an opening book in two ways: we are not using an exact
match of the board, and we are not directly picking the move
with a match, only reducing the search space of the Monte
Carlo engine and letting it conduct its playouts to determine
which next move has the best chance of winning.

The scale of this reduction at the beginning of the game can
be substantial. For example, if we consider a game after eight
moves a normal search for the next black move would start
sub-trees at all open intersections on the board, (19 x 19 —8),
which is 353 different possibilities. When using 64 clusters,
the average number of next moves played by professionals
in each of the clusters after move 8 is about 34. By only
considering these moves, we reduce the number of next move
possibilities to only 34 options, a ten-fold reduction.

4 Design of SMARTSTART

To find a match for a board, we consider each of the points
on the board to be two elements, giving each board situation
a score in a 722 (2 x 19 x 19) element vector. Each ele-
ment of the vector represents either the presence or absence

of one color of stone at one of the intersections on the board.
Thus element one would represent a white stone in the upper
left corner of the board, while element two would represent a
black stone in the same location. By using two elements for
each location, one for black and one for white, board situa-
tions where black and white stones are swapped do not appear
to be similar, or too dissimilar, as they do when a single loca-
tion is considered a single element in the vector.

In order to find similar game positions in games played
by professional human players, we have scored professional
games from a large database and then clustered these together
based on their similarity.

4.1 Database Creation

A sample of games spanning from 1980 to 2007 from a large
database of full 19 x 19 board professional level Go games
was used as the basis for finding patterns in opening play. We
created results from a 1046 game sample of the commercially
available Games of Go on Disk collection. Each professional
game produced 8 entries in a database for each move in the
game up through move twelve or twenty, for a total of 96 or
160 entries per professional game. FEight entries were used
for each board position due to the eight-way symmetry of the
Go board. Any given position can be rotated through the four
sides, and additionally mirrored over an axis. Each of these
entries contains the position on the board, and the move that
was played by the professional in response to that position.
The number of entries in the database was increased eightfold
rather than rotating a current move through the eight symme-
tries at runtime in order to avoid the rotation cost during the
runtime phase. The same number of comparisons will take
place at runtime with either architecture.

Each rotation of each move of each professional game was
entered in the database as a 722 element vector of ones or ze-
roes as described above. In order to best facilitate quick and
accurate matching, the database has been divided into sepa-
rate databases for each move number. Because move number
one is always black, and move number two is always white
and so on, each of the databases will have groupings most
appropriate to the given move. That is, if we are looking for
the best move number 8, there should already be seven stones
played on the board (barring some very early capture). The
database of board positions that will be searched against in
this case is precisely the set of board positions after move
number 7. The advantage of a divided database is that we can
be assured that only the most similar board positions are be-
ing searched. Finally, for each move number, we took all the
entries (8368 for the 1046 game sample) and clustered them
into a much smaller (64 to 256) number of clusters.

4.2 Clustering of Database Games

The entries from the professional games for each move num-
ber were clustered into a small number of groups based on
the similarity of the entries as measured by the cosine of the
normalized position vectors. A perfect match will be 1. The
number of groups (clusters) is chosen before the clustering,
and we experimented with using 64, 96, 128, 160, 192, 224,
and 256 clusters. Note that because of the eight-fold sym-
metry the number of clusters is eight times the number of

804

different scenarios.

Using small tournaments of a program modified with
SMARTSTART we found only a small variation in the win-
ning ratio when changing the number of clusters, and so used
the 64 cluster and 96 cluster databases in this work. Both the
number of entries in the database and the number of clusters
affect the number of next moves (the move suggestions) sup-
plied by each of the clusters. If the number of clusters is very
low, it is more likely that in each cluster there are many differ-
ent next moves. This makes the prediction of the next move
more difficult.

The clustering was accomplished with the Cluto program
[Karypis, 2006]. This program provides two different ways
of creating clusters. A top-down partitioning method be-
gins with all entries in a single cluster and then goes through
multiple rounds of bisecting the current clusters until the de-
sired number of clusters is reached. A bottom-up agglom-
erative method begins with all entries in their own clusters
and then repeatedly merging nearby clusters until the desired
number of clusters is reached. When the number of items to
be clustered is large and the number of clusters is also large,
these two methods end with very similar results, with a slight
edge for partitioning [Zhao and Karypis, 2002]. Therefore
we chose the top-down bisection method. For the similarity
measure we used the commonly adopted cosine measure.

For each of the clusters created by Cluto, we created a sin-
gle cluster entry in our comparison database to be used dur-
ing play. These entries consist of the normalized vector repre-
senting the cluster’s center, along with a list of the next moves
played during the games that are included in that cluster, and
the frequencies of those next moves.

We have looked at the accuracy of these clusters by con-
sidering how often they contain a next move which predicts
the next move found in other games taken from the GoGoD
database. We selected a random sample of approximately
8000 games which were not used in constructing our clusters,
and then at each position in those games found the closest
cluster as explained in the next section. We consider a suc-
cess to be when the cluster contains, as one of its next moves,
the move actually played in the observed sample game.

We found that the success rate decreased as the move num-
ber increased. We also found that the success rate decreased
with an increasing number of clusters. These results are
shown in Figure 1. Since the average number of games per
cluster also decreased with increasing number of clusters, it
is not surprising that our success rate would also decrease.

While it is an advantage to have a smaller number of next
moves in each cluster so that our filtering or biasing has a
greater influence, it can be a disadvantage because it becomes
somewhat less likely that your cluster will contain the ’cor-
rect’ move. Since even with a larger number of next moves
we are filtering out or biasing against a very large number
of unacceptable moves, we elected in our experiments to first
look at using a smaller number of clusters and their larger sets
of next moves. As mentioned above, we found with small
samples very little difference between using fewer or larger
numbers of clusters.

64 Clusters

96 Clusters

128 Clusters
160 Clusters.
192 Clusters
224 Clusters
256 Clusters

100
I

80
I

40 60
I I

0

Next Moves in Matched Cluster (%)
2

0
I

5 10

Move Number

Figure 1: Percentage of next moves found in closest cluster.

4.3 Finding a move during play

At each point during a search where the MCTS algorithm
was searching through the initial moves of the game, both
for candidate moves, and during playouts to evaluate the can-
didate moves, we limited the options of the program to those
moves that had been played by professional players in the
games contained in the nearest cluster to the current posi-
tion. The position of the game board being evaluated in the
search is expressed as a 722 element vector of ones and ze-
roes identical to the scoring of the professional games before
creating the clusters. We then compare this vector to each
of the vectors representing a cluster center in the compari-
son database. In order to compare the two scores, current
position and cluster center, the cosine of these two vectors
is calculated. Whichever cluster has a cosine closest to the
value one is the nearest. The cluster whose center was nearest
to the given position was then selected to provide the candi-
date next moves. These candidate next moves from the games
contained in the nearest cluster were then used to modify the
MCTS process.

We looked at two ways to modify the MCTS search: filter-
ing and biasing. In filtering the choice both in and out of the
search tree is limited so that only the moves from the clus-
ter’s list are allowed to be chosen. Thus instead of looking
at all the possible moves (over 300 at the beginning of the
game) the algorithm considers the few (usually ten to forty)
allowed by the filter. In the biasing method we change the
in-tree node selection by modifying the statistics of the pre-
ferred moves. Used in [Gelly and Silver, 2007] and often
called ’priors’ for prior knowledge, this technique seeds the
selection statistics with virtual win and visit counts. As nodes
in the tree are created, instead of beginning with O wins from
0 visits, they are biased by beginning with, for example, 40
wins from 40 visits. Using this method means that although
all possible moves are open for consideration by the MCTS
algorithm, the moves selected by SMARTSTART are given a
strong preference since they will appear to have already won
a large number of playouts.

The positions that were considered were those up to move
twelve. We also explored using the knowledge up to move
twenty, but found that the overall win rates actually declined.
This corresponded with a similar decrease in the quality of
the clusters that had been produced: after move twelve the

805

No SmartStart
64 Clusters.
96 Clusters.
128 Clusters

860
I

x+po

Playouts / sec
820 840
L L
x
x
x
+po
+or>
xoD+
B D>+

&P

800
I

780
I

Move Number

Figure 2: SMARTSTART Speed in playouts/s.

tightness of the clusters and the clarity with which they can
be distinguished from other clusters gradually decreased.
The computational overhead of creating a position’s score
and finding the closest cluster for the initial moves was small
but increased with the number of clusters. As measured by
playouts per second, comparing to 64 clusters was less than
2% slower while 128 clusters was less than 5% slower at their
worst, which was the first few moves when the most compar-
isons would take place. The speeds are shown in Figure 2.

5 Results

We tested our method by incorporating it into a pair of strong
open-source engines and compared win rates of modified
and unmodified versions of these programs versus other Go-
playing programs. For exploring the different implementation
parameters mentioned above and for part of the following re-
sults we used the Orego [Drake, 2012] program, written in
Java. We played Orego against the older, non Monte Carlo
Go program Gnugo [Bump and Farnebiick, 2008]. We also in-
corporated our method into the stronger Fuego [Enzenberger
et al., 2010] program, written in C++, and played it against
another very strong open-source MCTS Go program called
Pachi [Baudi§ and Gailly, 2011].

5.1 Statistics

One of the problems with trying to study the end results of Go
is the large number of games that must be played in order to
detect a difference in playing strength. In any situation where
the results are binary such as win-loss records of games, the
formula for the 95% normal approximation of the binomial

confidence interval is p £+ 1.96+/p(1 — p)/n where p is the
probability of a win and n is the number of trials in the sam-

ple. This means that 95% of the time an experiment is run
the actual result will be within the confidence interval of the
value seen in the sample seen by the experiment. Given this
formula a very large number of games must be played to de-
termine a reasonably precise value of the software’s playing
ability . For example, to get an approximately 2% confidence
interval when the winning rate is about 50% requires 10,000
games. In our experiments we have used 14,000 game tour-
naments in order to provide a 95% confidence interval of ap-
proximately 1.65% (p &= 0.825%).

5.2 Experimental Parameters

We first incorporated our SMARTSTART technique into the
Monte Carlo style ”Orego” program. The two versions of
Orego, with and without SMARTSTART, were matched up
against Gnugo 3.8 at skill level 10. The games were played
running both the Orego and Gnugo programs on the same ma-
chine, moderated by the *gogui-twogtp’ script [Enzenberger,
2012]. This script communicates with each program using
Go Text Protocol (gtp) and accumulates the results of all the
games played. Both versions of Orego played with the num-
ber of playouts per turn fixed at 8,000. The version of Orego
with SMARTSTART was played with SMARTSTART invoked
through move twelve using a database containing 96 clusters.

Since the Fuego program is a stronger computer Go en-
gine, we also ran both the normal Fuego and a SMARTSTART
Fuego against an opponent, in this case the open source pro-
gram Pachi v.10. Fuego played with the number of playouts
set to 16,000. These tournaments utilized a database divided
into 64 clusters for each of the games’ first twelve moves.

Our Fuego testing was divided into two different tourna-
ments. In the first tournament the professional responses were
used, as they were in the Orego tournaments, to filter the
moves available to the Fuego engine, both during the in-tree
decision process, and during the playouts.

In the second tournament, the matching responses were
used to bias in-tree nodes. From a given position represented
by a tree node, the moves which had been chosen by pro-
fessionals were given a bias of 40 victories out of 40 games
played. This bias causes the Monte Carlo algorithm to favor
exploring those nodes over those without the bias.

All the games in all the tournaments were run using Chi-
nese scoring rules and a 7.5 point komi on a 19 x 19 board.

5.3 Orego vs. Gnugo Results

In our tournaments of Orego vs. Gnugo 3.8, we played 14,000
games of unmodified Orego against Gnugo, and 14,000
games of SMARTSTART Orego against Gnugo. In both of
these tournaments, half the games were played with Orego as
black, and half the games with Orego as white.

The win rates of Orego and Orego with SMARTSTART are
shown in Table 2. With the 14,000 game tournaments and the
given winning rates, we have a one-sided p-value of 0.0119.
This means that there is only a 1.19% chance that the SMART-
START Orego winning rate is equal to or less than the unmod-
ified Orego winning rate. Thus we have a statistically signif-
icant improvement in the winning rate achieved by applying
the SMARTSTART method to Orego.

Table 2: Win Rates of Orego vs Gnugo. SMARTSTART Fil-
tering applied through move 12.

As Black|As White| Cumulative| p-value
Unmodified
Orego 40.76% | 40.06% | 40.41% -
SMARTSTART
Orego 43.04% | 40.44% | 41.74% | 0.0119

5.4 Fuego vs. Pachi Results

In the Fuego vs. Pachi tournaments, we started by matching
up Fuego with our SMARTSTART algorithm configured for
filtering. 14,000 games were played with this configuration,
and 12,000 games were played with an unmodified version
of Fuego vs. Pachi. 14,000 games each were played using
the Fuego engine modified with our SMARTSTART algorithm
providing a bias of 40 wins instead of filtering.

The unmodified and SMARTSTART versions of Fuego were
all limited to 16,000 playouts per move. The unmodified ver-
sion of Fuego was run with its opening book disabled.

The win rates are shown in Table 3 along with the p-value
for the null hypothesis that the SMARTSTART Fuego version
is equal or weaker than the unmodified Fuego. Thus in apply-
ing SMARTSTART both as a filter and as a bias we obtained a
small but statistically significant increase in winning rates.

Table 3: Win Rates of Fuego vs. Pachi 10. SMARTSTART
Filtering and Bias applied through move 12.

As Black|As White| Cumulative| p-value
g‘;ii‘;nggfgo?f 50.88% | 57.66% | 54275% | -
Fuego with
SMARTSTART | 54.16% | 56.54% | 55.35% | 0.0424
Filtering
Fuego with
SMARTSTART | 53.97% | 57.71% | 55.84% | 0.0058
Bias 40

6 Conclusions and Future Work

By applying the SMARTSTART technique to two different
open-source programs, Orego and Fuego, we were able to
create statistically significant improvements in the winning
rates of both of these programs over their opponents. This
was true for using the SMARTSTART knowledge either as a
filter or as a large bias.

Continuation of this work will include testing the effects
of SMARTSTART when the number of playouts per move is
larger through the entire game, and applying the system to
the Pachi go engine. Additional testing of different numbers
of clusters will be conducted to more thoroughly examine the
effects of large versus small numbers of clusters, including
increasing the number of clusters with the move number to
represent the greater possibilities available at each move. Fi-
nally we will also explore the effects of using larger samples
of expert games to create the clusters.

Acknowledgements

Partial funding for this work was provided by the National
Science Foundation under Grant No. OISE-1311059 and the
Japanese Society for the Promotion of Science through its
Summer Program SP13052. We gratefully thank Professor
Emeritus Koyama and Professor Matsumoto of the Software
Engineering Lab at the Nara Institute of Science and Tech-
nology for hosting and support during the 2013 summer pro-
gram, along with their continued advice and assistance.

References

[Baier and Drake, 2010] Hendrik Baier and P. D. Drake. The
power of forgetting: Improving the last-good-reply policy
in Monte Carlo Go. Computational Intelligence and Al in
Games, IEEE Trans. on, 2(4):303-309, Dec 2010.

[Baier and Winands, 2011] Hendrik Baier and Mark H. M.
Winands. Active opening book application for Monte-
Carlo Tree Search in 19x19 Go. In Patrick De Caus-
maecker, editor, Proc. 23rd Benelux Conference on Arti-
ficial Intelligence, pages 3—10, 2011.

[Baudis and Gailly, 2011] Petr Baudi$ and Jean-loup Gailly.
Pachi: State of the art open source Go program. In Ad-
vances in Computer Games 13, Nov 2011.

[Bouzy, 2007] Bruno Bouzy. Associating domain-dependent
knowledge and Monte Carlo approaches within a Go pro-
gram. Information Sciences, Heuristic Search and Com-
puter Playing 1V, 175(4):247-257, 2007.

[Browne et al., 2012] C.B. Browne, E. Powley, D. White-
house, S.M. Lucas, PI. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton. A
survey of monte carlo tree search methods. Computa-
tional Intelligence and Al in Games, IEEE Transactions

on, 4(1):1-43, March 2012.

[Browne, 2011] Cameron Browne. The dangers of random
playouts. ICGA Journal, 34(1):25-26, 2011.

[Briigmann, 1993] Bernd Briigmann. Monte Carlo Go.
http://www.ideanest.com/vegos/MonteCarloGo.pdf, Octo-
ber 1993.

[Bump and Farnebick, 2008] Daniel
and Gunnar Farnebick.
http://www.gnugo.org/software/gnugo, 2008.

Bump
Gnugo.

[Drake and Uurtamo, 2007] Peter Drake and Steve Uurtamo.
Heuristics in Monte Carlo Go. In Proc. 2007 Int’l Conf. on
Artificial Intelligence (IJCAI), 2007.

[Drake, 2009] Peter Drake. The last-good-reply policy for
Monte-Carlo Go. International Computer Games Associ-
ation Journal, 32(4):221-227, 2009.

[Drake, 2012] Peter Drake. Orego.
http://sites.google.com/a/Iclark.edu/drake/research/orego,
2012.

[Enzenberger et al., 20101 M. Enzenberger, M. Miiller,
B. Arneson, and R. Segal. Fuego - an open-source
framework for board games and Go engine based on
Monte Carlo Tree Search. Computational Intelligence and
Al in Games, IEEE Trans. on, 2(4):259-270, Dec 2010.

[Enzenberger, 2012] Markus Enzenberger.
http://gogui.sourceforge.net, 2012.

[Gelly and Silver, 2007] Sylvain Gelly and David Silver.
Combining online and offline knowledge in uct. In Pro-
ceedings of the 24th international conference on Machine
learning, pages 273-280. ACM, 2007.

[Gelly and Silver, 2011] Sylvain Gelly and David Silver.
Monte-Carlo tree search and rapid action value estimation

Gogui.

807

in computer Go.
1875, 2011.

[Tshigure, 1973] Tkuro Ishigure. In the Beginning. Ishi Press,
1973.

[Karypis, 2006] George Karypis. Cluto a Clustering ToolKit.
http://www.cs.umn.edu/ karypis/cluto/, October 2006.

Artificial Intelligence, 175(11):1856—

[Kocsis and Szepesvari, 2006] Levente Kocsis and Csaba
Szepesvari. Bandit based Monte-Carlo planning. In
ECML-06. Number 4212 in LNCS, pages 282-293.
Springer, 2006.

[Marcolino and Matsubara, 2011] Leandro Soriano Marcol-
ino and Hitoshi Matsubara. Multi-agent Monte Carlo Go.
In 10th Int’l Conf, on Autonomous Agents and Multiagent
Systems, AAMAS ’11, pages 21-28, 2011.

[Masayoshi, 2005] Shirakawa Masayoshi. A Journey in
Search of the Origins of Go. Yutopian Enterprises, 2005.

[Michalowski et al., 2011] Martin Michalowski, = Mark
Boddy, and Mike Neilsen. Bayesian learning of gener-
alized board positions for improved move prediction in
computer Go. In Proc. 25th Conf. on Artificial Intelligence
(AAAI), 2011.

[Yoshimoto et al., 2006] Haruhiro Yoshimoto, Kazuki
Yoshizoe, Tomoyuki Kaneko, Akihiro Kishimoto, and
Kenjiro Taura. Monte Carlo Go has a way to go. In 21st
Nat’l Conf. on Artificial Intelligence (AAAI-06), pages
1070-1075, 2006.

[Zhao and Karypis, 2002] Ying Zhao and George Karypis.
Evaluation of hierarchical clustering algorithms for docu-
ment datasets. In Proceedings of the eleventh international
conference on Information and knowledge management,
pages 515-524. ACM, 2002.

[Zobrist, 1970] A. L. Zobrist. Feature Extraction and Rep-
resentation for Pattern Recognition and the Game of Go.
PhD thesis, University of Wisconsin, 1970.

