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Abstract

Computing the set of optimal solutions for a multi-
objective constraint optimisation problem can be
computationally very challenging. Also, when so-
lutions are only partially ordered, there can be a
number of different natural notions of optimality,
one of the most important being the notion of Pos-
sibly Optimal, i.e., optimal in at least one scenario
compatible with the inter-objective tradeoffs. We
develop an AND/OR Branch-and-Bound algorithm
for computing the set of Possibly Optimal solu-
tions, and compare variants of the algorithm exper-
imentally.

1 Introduction

Many real-world problems involve multiple and sometimes
non-commensurate objectives that need to be optimised si-
multaneously. Multi-objective Constraint Optimisation (MO-
COP) is a general framework for such problems. Solutions
are compared on a number p of (real-valued) objectives, so
that each complete assignment to the decision variables has
an associated multi-objective utility value, represented by a
vector in IRP. User preferences regarding tradeoffs between
objectives can be expressed and reasoned about, as shown in
[Marinescu et al., 2013], where it is assumed that the user’s
preferences are represented by a weighted sum of the objec-
tives. The authors show how to compute the undominated so-
lutions, where a solution Z is dominated by another solution ¢/
if in every consistent scenario, ¥ is at least as good as &, and
in at least one scenario, ¥ is better. However, it is arguable
that this is not always the most natural notion of optimality.
Alternatively, one could look to compute the possibly opti-
mal solutions, which are the solutions which are optimal in at
least one scenario.

In this paper we show how a MOCOP algorithm can be de-
veloped for computing the possibly optimal solutions, which
will very often form a considerably smaller set than the set of
undominated solutions. We analyse the properties that allow
optimality operators to be computed in a modular way using
branch-and-bound algorithms, using a search involving both
OR-nodes and AND-nodes, and show that these properties
hold for computing the possibly optimal solutions, as well
as the undominated solutions. We consider several different
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methods for pruning search, and analyse experimentally how
the performance varies, when varying the algorithm, the op-
timality task and the number of tradeoffs.

Section 2 gives the background for MOCOP based on
tradeoffs. In Section 3 we take an abstract view of optimality
operators, and give the key conditions for computation using
AND/OR branch-and-bound search. Section 4 describes in
more detail the techniques used in the algorithm for the com-
putation of the possibly optimal solutions. The results of the
experimental testing of the algorithm is given in Section 5,
and Section 6 concludes.

Proofs are included in a longer version of the paper avail-
able online [Wilson et al., 2015].

2 Preliminaries

2.1 Multi-objective Constraint Optimisation

Consider a problem with p objectives. A utility vector Ui =
(u1,...,up) is a vector with p components where each u; €
IR represents the utility (or value) with respect to objective
i €{1,...,p}. We assume the standard pointwise arithmetic
operations, namely 4+¥ = (u1+v1,. .., up+vy) and gx i =
(g x u1,...,q X up), where g € IR.

A Multi-objective Constraint Optimisation Problem (MO-
COP)is atuple M = (X, D, F), where X = {X;,..., X,,}
is a set of variables taking values in finite domains D
{D1,...,D,}, respectively, and F = {fy,..., f.} is a set
of utility functions. A utility function f;(Y) € F is defined
over a subset of variables Y C X, called its scope, and as-
sociates a utility vector to each assignment of Y. The scopes
of the functions imply a primal graph characterized by a cer-
tain induced width [Dechter, 2003]. The objective function is
F(X) = >, fi(Y:), which we want to maximise. A solu-
tion is a complete assignment & = (x1, ..., ;) and is char-
acterized by a utility vector & = F(Z). Hence, the solution
space of M is only partially ordered and the comparison of
solutions reduces to that of their corresponding p-dimensional
vectors.

DEFINITION 1 (weak Pareto order) Let i,v € IRP so that
4= (u1,...,up) and ¥ = (v1,...,v,). We define the binary
relation > on RP by i > 0 <= Vi e {l,...,p},u; > v;.

Given u,v € RP, if u = v then we say that « dominates
¥. As usual, the symbol - refers to the asymmetric part of =,



namely & > ¢ if and only if @ = ¥ and it is not the case that
¥ = 4. Given finite sets U, V' C RP, we say that U dominates
V,denoted U »= V,if Vi € V Jil € U such that i = .

Reasoning with tradeoffs

Suppose we have learned some preferences of the decision
maker (DM), i.e., a set © of pairs of the form (@, ¥) meaning
that the decision maker prefers multi-objective vector « to ¥.
These can be viewed as a general kind of tradeoff between
the objectives. We will use this input information to deduce
further preferences, based on the assumption that the user’s
model is a weighted sum of the objectives (thus being a sim-
ple form of a Multi-attribute Utility Theory (MAUT) model
[Figueira er al., 2005]).

Let W be the set of vectors in IRP with all components
non-negative and summing to 1. Elements of WV are known
as weights vectors. Each weights vector @ € VV induces a
total pre-order 3=z on IRP by, for @, ¥ € IRP, @ =5 ¥ if and
only if @ - & > 0 - U, where e.g., W -4 = Y &+ _, w;u.

We assume that the user’s preference ordering over multi-
objective vectors IR? is equal to = for some weights vector
w € W. For @ € W and preference pair (@, ¥), we say that
o satisfies (@, 0) if @ =5 0, i.e., if &+ @ > @ - ¥. We also say,
for set of pairs O, that « satisfies © if «w satisfies each pair in
O; let W(O), the set of (consistent) scenarios, be all such .
If we knew the weights vector @, the problem would reduce
to a single-objective problem. However, all we know is that
W € W(O). This leads to the induced preference relation
=o defined as follows: @ =g ¥ if and only if ¥ =z U for all
W € W(O). Thus « is preferred to ¢ if and only if the prefer-
ence holds for every consistent scenario. The associated strict
relation >g is given by 4 =g U <= U =o Y and U ¥¢ U.
When © is empty, =g is just the Pareto ordering.

Undominated and Possibly Optimal solutions

In [Marinescu et al., 2013], methods were developed for com-
puting the set of solutions whose utility vectors are undom-
inated with respect to =g, i.e., the solutions & such that for
all solutions ¥, it is not the case that F(3) =¢ F(Z). (If
O is empty, the undominated solutions are therefore just the
Pareto-optimal solutions.) However, there are other natural
notions of optimality, in particular, being possibly optimal,
i.e., optimal in at least one scenario. Thus & is possibly opti-
mal if there exists some scenario @ € W(©) such that for all
solutions ¥, F(¥) =gz F(¥). Typically, this will be a smaller
set of solutions, although some solutions are possibly opti-
mal without being undominated; for example, if © is empty,
a solution with maximal value of the first objective will be
possibly optimal, since it is optimal in scenario (1,0,0,...),
but may not be undominated, e.g., if it’s Pareto dominated
by a solution with equal value in the first objective and bet-
ter values in other objectives. Pareto-optimal solutions which
are also possibly optimal are sometimes called supported so-
lutions.

Example 1 Figure 1 shows a MOCOP instance with 5
bi-valued variables {Xo, X1, X2, X5, X4} and 3 utility
functions {f1, fo, fs}. Its corresponding primal graph is
depicted in Figure 1(b). The Pareto set of the problem
contains 8 solutions with associated undominated utility
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Figure 1: A MOCOP instance with 2 objectives.

vectors: (3,24), (8,21), (9,19), (10,16), (11,14), (12,12),
(13,8) and (14,6). Of these all are possibly optimal except
(10, 16), (11,14), and (13,8), the latter not being supported
solutions. For example, (8,21) is possibly optimal because
it is optimal in scenario (0.5,0.5), with the weighted utility
of (0.5 x 8) 4+ (0.5 x 21) = 14.5. Vector (10,16) is not
possibly optimal since in every scenario it is worse than
either (9,19) or (12,12). Specifically, (10,16) =z (9,19)
only if 10wy + 16wy > w1 + 19wy, ie., w1 > 3we, which,
since wy = 1 — wy, is if and only if wy > 3/4. Similarly,
(10,16) =gz (12,12) only if wy < 2/3, so there is no W
that satisfies both conditions. Suppose that the decision
maker reveals that he prefers (1,0) to (0, 1), which implies
a unit of the first objective is more valuable than a unit of
the second objective to the decision maker. Thus we have
© = {((1,0),(0,1))}, which implies that w1 > wo in all
scenarios (w1, w2) € W(O), and thus wy > 0.5. Vector
(3,24) is now dominated by (8,21), since (3,24) =z (8,21)
only if bw; < 3wy, and so (8,21) >z (3,24) for
all W € W(O). The »=g-undominated elements are then
{(8,21), (9,19), (10, 16), (11,14), (12, 12), (13,8), (14,6)},
and the possibly optimal ones are
{(87 21)7 (9’ 19)’ (12’ 12)7 (14’ 6)}‘

2.2 AND/OR Search Spaces for MOCOPs

Significant recent improvements in search for solving MO-
COPs have been achieved by using AND/OR search spaces,
which often capture problem structure far better than stan-
dard OR search methods [Marinescu et al., 2013; Marinescu,
2009; Dechter and Mateescu, 2007]. The AND/OR search
space is defined using a pseudo tree of the primal graph which
captures problem decomposition, as follows.

DEFINITION 2 (pseudo tree) A pseudo tree of an undirected
graph G = (V, E) is a directed rooted tree T = (V,E'),
such that every arc of G not included in E' is a back-arc in
T, namely it connects a node in T to an ancestor in T. The
arcs in E' may not all be included in E.

Given a MOCOP instance M = (X,D,F) with primal
graph G and pseudo tree T of G, the AND/OR search tree S
based on T has alternating levels of OR nodes corresponding
to the variables, and AND nodes corresponding to the val-
ues of the OR parent’s variable, with edge weights extracted
from the original functions F (for details see [Dechter and
Mateescu, 2007; Marinescu, 2009]). Each node n € St is
associated with a value v(n), defined as the set of utility vec-
tors corresponding to the optimal solutions of the conditioned
subproblem rooted at n. The node values can be computed re-
cursively based on the values of their successors. The size of



Figure 2: Weighted AND/OR search tree.

S is exponential in the depth of the pseudo tree [Dechter and
Mateescu, 2007]. Figure 2 shows the AND/OR search tree of
the MOCOP instance from Figure 1, relative to the pseudo
tree given in Figure 1(c). The utility vectors displayed on the
OR-to-AND arcs are the edge weights corresponding to the
input utility functions. An optimal solution tree correspond-
ing to the assignment (Xo = 0,X; = 1, Xy = 1, X5 =
0, X4 = 0) with utility vector (3, 24) is highlighted.

2.3 Multi-objective AND/OR Branch and Bound

One of the most effective methods for solving MO-
COPs is the multi-objective AND/OR Branch-and-Bound
(MOAOBB) algorithm [Marinescu, 2009; Marinescu et al.,
2013]. MOAOBB traverses the AND/OR search tree in a
depth-first manner while maintaining at the root node s the
set v(s) of best solution vectors found so far. During node ex-
pansion, the algorithm uses a heuristic function A(-) to com-
pute an upper bound set f(7”) on the set of optimal solutions
extending the current partial solution tree 7", and prunes the
subproblem below the current tip node n’ if f(7”) is dom-
inated by v(s) (i.e., v(s) »= f(T”)). The node values are
updated recursively in a bottom-up manner, starting from the
terminal nodes in the search tree — AND nodes by summa-
tion, OR nodes by maximisation (union followed by remov-
ing dominated vectors).

The efficiency of MOAOBB greatly depends on the accu-
racy of the heuristic function. We used in our experiments
the multi-objective mini-bucket heuristic [Marinescu, 2009]
which was enhanced recently in [Marinescu et al., 2013]. A
control parameter, called ¢-bound, allows a tradeoff between
accuracy of the heuristic and its time-space requirements.

3 Optimality Operators

We consider here an abstract notion of optimality. For set
of alternatives or decisions A, OPT(A) is intended to be the
set of optimal ones, with respect to some particular notion of
optimality; we’ll consider specific notions of optimality later,
in Section 3.3.

3.1 Axioms and Properties

DEFINITION 3 Let D be a finite set. We say that OPT is an
Optimality Operator' over D if OPT is a function from 2P

!These properties have been explored for social choice functions
(which assume that OPT(A) is always non-empty), including, for
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to 27 satisfying the following three conditions, for arbitrary
A,BCD.

(1) OPT(A) C A;
(2) If AC B then OPT(B) N A C OPT(A);
(3) IfOPT(B) C A C B then OPT(A) = OPT(B).

The axioms imply that OPT is idempotent. The following
property, known as Path Independence in the social choice
function literature [Moulin, 1985], is another important con-
sequence of the axioms.

Union Decomposition: We say that function OPT : 27 —
2P satisfies the Union Decomposition property if for any
A, B C D, OPT(AU B) = OPT(OPT(A) U B) (which
is then equal to OPT(OPT(A) U OPT(B))). This property
will be important for the use of iterative algorithms, such as
branch-and-bound algorithms, to compute OPT(T") for some
set T'. It shows that if we want to compute OPT(T"), we can,
if we wish, replace a subset A of 7' by OPT(A), without
changing the result: OPT(T") = OPT(OPT(A)U (T — A)).

Additive Decomposition: = The branch-and-bound algo-
rithms we will use in Section 5 make use of AND/OR
search, where the AND nodes use an additive decomposi-
tion. Suppose that D is a subset of IRP for some p
1,2,.... We say that OPT : 2P — 27 satisfies the
Additive Decomposition property if for any A, B C D,
OPT(A + B) = OPT(OPT(A) + B) (which is then equal
to OPT(OPT(A) + OPT(B))). This property is necessary
for the correctness of our AND/OR search approach. Let us
say that OPT is translation invariant if for any A C D and
b e D, OPT(A+b) = OPT(A) + b. Proposition 1 shows
that translation invariance is a sufficient condition for the Ad-
ditive Decomposition property.

PROPOSITION 1 Suppose that D is a subset of IRP for some
p=1,2,..., and let OPT be an Optimality Operator over D
that is translation invariant. Then OPT satisfies the Additive
Decomposition property.

3.2 Incremental Computation of OPT(T)

In this section we consider some Optimality Operator OPT
(see Definition 3), and define algorithms for computing
OPT(T), given an input set of decisions 7. The set of de-
cisions 7" may be very large, and in the combinatorial case
might, for instance, be obtained using a backtracking search
algorithm.

function INCREMENTALO(T)
Q:=10
foracT
if o € OPT(QU {a}) then 2 := OPT(Q U {a})
end for
return ()

The axioms in Definition 3 imply the correctness of the al-
gorithm. In fact, given Property (1) from Definition 3, the

instance, their relationship with path independence (union decom-
position); see the survey article [Moulin, 1985], and also [Wilson et
al., 2015] for details.



algorithm is correct if and only if OPT is an Optimality Op-
erator if and only if OPT satisfies union decomposition.

PROPOSITION 2 Let OPT be an Optimality Operator based
on universal set D.  Assume that T C D. Then
INCREMENTALO(T') = OPT(T).

In INCREMENTALO, when we find that « € OPT(Q U
{a}), this may mean that some elements of 2 are not in
OPT(Q2 U {a}). Computing OPT(2 U {a}) can be ex-
pensive (and a good deal more expensive than just testing if
a € OPT(QU{a})). A variation of this algorithm is to delay
the application of the OPT operator until the end, or only to
apply it some of the time. The union decomposition property
implies that these variations still correctly compute OPT(T").

3.3 A Framework for Different Notions of
Optimality

In many decision making situations, there isn’t a clear or-
dering on decisions. There can often be a set of different
scenarios, each compatible with the preference information
we have, with a different ordering on decisions in each sce-
nario. In such a setup there are a number of different natu-
ral ways of defining the set of optimal solutions. We use a
formalism for this setup from [Wilson and O’Mahony, 2011;
O’Mahony and Wilson, 2013].

We define a multiple-ordering decision structure (MODS)
Gtobeatuple (D, S, {i=5: s € S}), where D is a non-empty
finite set, known as the set of decisions, S (the set of scenar-
i0s) is a non-empty set (that can be finite or infinite), and, for
each s € S, relation =4 is a total pre-order on D. The strict
part of =, is written as >, and the corresponding equiva-
lence relation is written =,. Thus, for o, 6 € D, o =, B if
and only if « =4 S and 8 =5 «, and o - ( if and only if
a = fand B % a.

Some basic notions associated with MODS G: We make
the following definitions, relative to some MODS G
(D, S,{=s: s € S}), and where « and (3 are some arbitrary
elements of D.

e We say that « necessarily dominates (3, written o =y 03,
if forall s € S, a =, . Thus =y is the intersection of
=soveralls € S.

e We define > to be the strict part of = .

e We define = to be the equivalence relation associated
with = . If & = 5 then we say that « and (5 are neces-
sarily equivalent (sometimes abbreviated to equivalent).

= is the intersection of =, over all s € S.

Consider an arbitrary subset 1" of the set of decisions D.
There are quite a number of different ways of defining the set
of optimal decisions in 7.

POg(T) is the set of possibly optimal elements in 7T, i.e.,
elements that are optimal in some scenario. Thus POy is the
setof « € T'suchthatds € S, VB € T: a =, B.

CSDg(T): For o € T, o € CSDg(T) if and only if it
can strictly dominate any non-equivalent decision in T, i.e.,
for all 5 € T such that 5 # «, there exists s € S such that
a =5 . CSDg are the decisions that are undominated in 7'
with respect to > .
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CDg(T): Foraw € T, a € CDg(T) if and only if o can
dominate any other decision in T, i.e., if and only if V3 € T,
ds € S:ax=sp.

This defines functions POg, CDg and CSDg from 27 to
2P When the intended choice of G is clear, we’ll abbreviate
POg(T) to just PO(T), and similarly, for the other classes.
We also define POCSD(T') = PO(T')NCSD(T"). We always
have: POCSD(T") C PO(T),CSD(T) C CD(T).

PROPOSITION 3 For any multiple-ordering decision struc-
ture (MODS) G, the operators POg, CDg, CSDg and
POCSDg are all Optimality Operators.

Multi-objective instance of MODS

We can generate a MODS G’ for multi-objective reasoning
with tradeoffs (see Section 2). Let D be the set of utility vec-
tors generated by all solutions of a MOCOP. Given input pref-
erences O, define G’ to be (D, W(0), {i=5: & € W(O)}).
(For each W € W(©), the total pre-order =z on IRP in-
duces a relation on D, which, for convenience we also call
=s.) The necessarily dominates relation %>, is then just
=o. Therefore, for a given set of solutions with associated
set of multi-objective vectors D, the set CSDg/ (D) are the
=o-undominated vectors in D. Also, POg (D) is the set of
possibly optimal utility vectors.

In our combinatorial setting, each solution Z is associated
with a multi-objective vector 4. We extend the different no-
tions of optimality to solutions. For example, we say that Z is
possibly optimal if and only if @ is possibly optimal.

It follows easily that in this setting PO, CSD, POCSD
and CD satisfy Translation Invariance, because we always
have @ =5 U <= 4+ U =g U+ 4. We thus have by
Propositions 1 and 3 the following result, which is key for the
correctness of the AND/OR branch-and-bound algorithm.

PROPOSITION 4 Operators POg:,, CSDg,, POCSDg: and
CDg' are Optimality Operators and satisfy Union Decom-
position and Additive Decomposition.

4 Computation of Possibly Optimal Solutions

We discuss how to adapt the AND/OR branch-and-bound al-
gorithm for computing the set of possibly optimal solutions.
The behavior when processing an OR-node is based on the
INCREMENTALO algorithm, the correctness of which is im-
plied by Propositions 2, 3 and 4. (If there were no AND-
nodes, as in a more standard branch-and-bound algorithm,
then INCREMENTALO gives the structure of the algorithm.)
The correctness of the behavior at the AND nodes follows
from the Additive Decomposition property (Proposition 4).
Note that these results apply for the optimality operator CSD
as well, thus justifying the correctness of the approach in
[Marinescu et al., 2013].

4.1 Checking PO Condition

A basic component of the algorithm INCREMENTALO(T') is
repeated checking of a condition of the form @ € PO(Q U
{u}). We have that @ is in PO(2 U {@}) if and only if there
exists some W € W(O) such that for all ¥ € Q, & - 4 >
W - U. The constraints defining WW(O) are linear inequalities,
so checking if 4 is in PO(Q U {@}) amounts to checking if a



set of linear inequalities has a solution. Let C[@; 2] be this set
of linear inequalities (on vector of variables ).

For Algorithm INCREMENTALO(T'), whenever we find
that @ € PO(Q2 U {u}), it can be useful to store an associ-
ated scenario " that makes i optimal in QU {i}, as this can
help the efficiency of the next stage.

When we find that @ € PO(Q U {@}), we next need to
compute PO(Q U {@}). This involves eliminating elements
of {2 that are no longer possibly optimal, because of adding .
Consider any element ¥ of 2. When this was added we stored
an associated scenario 17 (see above) which then made ¥ op-
timal w.r.t. the then-current set of decisions. We first check
to see if ¥ - wW? > @ - W'. If so, then ¥ is still optimal within
Q U {@} in scenario w”. Otherwise, we test the consistency
of the set of linear constraints C[7; QU {«}]. If this has no so-
lution then we delete ¢ from (2. If this has a solution « then
we keep ¥ in ©, but reset w7 to be .

4.2 Use of Bounds in Branch-and-Bound

Algorithm

The algorithm from [Marinescu ef al., 2013] constructs an
upper bound set at each node of the search tree. The upper
bound set is a set I of utility vectors such that for any com-
plete assignment & extending the current partial solution tree,
there exists an element  in U with i =¢ ¥, where ¥ is the
utility vector associated with z.

For computing possibly optimal elements we can also use
such an upper bound set, defined in exactly the same way.
The results of [Marinescu et al., 2013] suggest it is best to
use a small upper bound set.

The idea behind the search tree pruning is that we can back-
track at this node if for each @ € U, @ ¢ PO(Q U {a}),
where () is the current set of tentatively possibly optimal util-
ity vectors. This is because this implies that for any complete
assignment Z extending the current search tree node, with as-
sociated utility vector ¢, we have ¢ ¢ PO(QU {7}), and thus
Z is not a possibly optimal solution. We consider different
sufficient conditions for @ ¢ PO(Q U {&}).

Sufficient Condition (1): Checking @ ¢ PO(Q U {«}) di-
rectly, by checking the consistency of the associated set of
linear constraints (see Section 4.1). A disadvantage of this is
that it can involve a very large number of linear constraints;
in particular, there is a constraint for each element of 2.

Sufficient Condition (2): We check if @ ¢ CD(Q U {a}).
It can be seen that this is equivalent to testing if there ex-
ists some ¥ € €, such that @ ¢ PO({7, u}). That is, we
prune if for all ¥ € U, there exists some ¢ € () such that
i ¢ PO({¥,@}). The condition @ ¢ PO({¥, @}) amounts to
checking the consistency of a smaller set of linear constraints.
Sufficient Condition (3): We choose some very small num-
ber € > 0, and let us write the vector (e, ..., ¢€) in IR? as €.
We check if there exists some ¥ € (), such that ¢ =g 4 + €.
This can be performed using the methods in [Marinescu et
al., 2013], in particular the method involving compilation of
=o-dominance using matrix multiplication.

Sufficient Condition (4): We check if there exists some ¢ €
Q, such that ¥ = 1, i.e., ¥ Pareto-dominates 1i.
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The following result implies that the pruning given by (1)
is at least as strong as that given by (2), which is at least as
strong as that given by (3). (Pruning with Condition (4) will
typically be weaker than using Condition (3), but this will not
always hold.)

LEMMA 1 [f there exists some U € €, such that ¥ >=¢ U + €
then there exists some U € ) such that @ ¢ PO({¥, u}).

If there exists some U € ) such that @ ¢ PO({¥, U}) then
u ¢ PO(QU {u}).

5 Experiments

In this section, we evaluate empirically the performance of
the proposed branch-and-bound algorithm on three classes
of MOCOP benchmarks: random networks, vertex coverings
and combinatorial auctions [Marinescu er al., 2013]. We con-
sider the random generator from [Marinescu et al., 2012] for
generating consistent random tradeoffs, namely pairwise or
binary tradeoffs (K') and 3-way tradeoffs (7") for 2, 3 and 5
objectives. We implemented all algorithms in C++ and the
experiments were conducted on a 2.6GHz quad-core proces-
sor with 4 GB of RAM.

For all our experiments we use the similar upper bound
bounding schemes presented in [Marinescu er al., 2013].
Specifically, MOAOBB denotes the multi-objective AND/OR
Branch-and-Bound from [Marinescu, 2009]. In addition, B=b
(PLUB) is the extension of MOAOBB that uses the Pareto
least upper bound to reduce the upper bound set to at most b
(> 1) utility vectors, for both the Pareto and tradeoffs cases,
while B=b (LP) is the extension of MOAOBB that uses an LP
based method to compute the upper bound sets, for the trade-
offs case only (see also [Marinescu er al., 2013]). For random
networks we allow the upper bounds to have at most B = 5
elements, and for vertex covering and combinatorial auctions
we use the upper bounds with at most B = 2 elements. For
reference, we also ran a baseline OR branch-and-bound algo-
rithm called MOBB [Marinescu, 2009]. All these algorithms
can be used to solve the CSD, PO and POCSD tasks.

Comparison of AND/OR versus OR search: In Figure 3
we compare algorithms MOAOBB and MOBB for computing
the PO sets on random networks with 5 objectives, K = 6
pairwise and 7' = 3 three-way tradeoffs. We plot both the
number of problem instances solved (top) and the CPU time
(bottom), as a function of problem size (number of variables).
We see clearly that AND/OR search is superior to regular OR
search, solving many more problems. The results obtained
on vertex covering and combinatorial auctions had a similar
pattern, and therefore are omitted for space reasons.

Comparison of sufficient conditions for pruning: Figure
4 shows the comparison between different sufficient condi-
tions for pruning for vertex coverings with 5 objectives. The
number of pairwise and 3-way tradeoffs are fixed to 5 and 2,
respectively. Results are averaged over 50 problem instances.
The time limit for solving each problem instance was 20 min-
utes. We can see that sufficient condition (3) is the fastest and
is able to solve a larger number of problems. We noticed that
using condition (1), the algorithm expands less nodes, which
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Figure 3: Number of problem instances solved (top) and
CPU time in seconds (bottom) as a function of the num-
ber of variables for random networks with 5 objectives and
(K = 6,T = 3) tradeoffs. Time limit 20 minutes.

implies that it prunes more effectively than the other suffi-
cient conditions. However, because of the additional compu-
tational overhead, condition (1) is slower than (3).

Impact of the number of tradeoffs: Figure 5 shows the
impact of the number of pairwise tradeoffs K for vertex cov-
ering problems with 130 variables and 5 objectives and for
fixed number of 3-way tradeoffs (7" = 1). Results were based
on 100 problem instances and each instance was given a 20
minute time limit. As K increases, we can see that the al-
gorithm solves more problems and consequently the running
time of the algorithm decreases substantially. We observed
similar results for the other two families of problems.

Comparison between the CSDs, POs and POCSDs: Fig-
ure 6 compares cardinalities of the sets CSD, PO and
POCSD for combinatorial auctions with 3 objectives, ver-
tex coverings with 5 objectives and random networks with 5
objectives, respectively. The number of pairwise and 3-way
tradeoffs are fixed as follows: (K = 2,7 = 1) for auctions,
(K = 5,T = 2) for vertex coverings, and (K = 6,7 = 3)
for random networks. Results were obtained on 50 randomly
generated problem instances from each benchmark. How-
ever, we report the average cardinality and CPU time over
those instances that were solved for all three optimality op-
erators. For computing CSDs we take the approach from
[Marinescu et al., 2013]. We can notice that as the number
of variables increase POs become much smaller than CSDs,
for instance, for problems with 100 variables, POs are al-
most 4 times smaller than CSDs. We also observed that the
average ratio |CSD|/|PO| over the problem instances solved
by both the algorithms is approximately linear in the num-
ber of variables (results were omitted for lack of space). On
the other hand, computing POs is slower because of the re-
peated checking of the more expensive optimality condition.
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(K =5,T = 2) tradeoffs. Time limit 20 minutes.
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Figure 5: Number of problems solved (top) and CPU time
in seconds (bottom) as a function of the number of pairwise
tradeoffs (K) for vertex covering problems with n = 130 and
5 objectives (1" = 1). Time limit 20 minutes.

Finally, we see that the POCSD sets, which are almost the
same size as the corresponding PO ones, can be computed al-
most as fast as the CSD ones. This is important because the
decision maker can be presented with the POCSD sets first
before making any decision or eliciting more tradeoffs.

6 Conclusion

We showed how an AND/OR search algorithm can be used
for computing the possibly optimal solutions for multi-
objective constraint optimisation problem involving trade-
offs. Our experimental results indicate that the approach
scales to moderately-sized problems. The set of possibly op-
timal solutions is often considerably smaller than the set of
undominated solutions, which can be helpful for a decision
maker. Although the former set is somewhat slower to com-
pute, computing the intersection set is almost as fast.

Our notion of possible optimality is related to the convex
coverage sets introduced by [Roijers er al., 2013; 2014] in
the context of multi-objective coordination graphs. The algo-
rithms proposed there are based on variable elimination and
therefore limited to problems having relatively small induced
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tradeoffs, respectively. Time limit 20 minutes.

widths, unlike our branch-and-bound search scheme which
scale up to much more difficult problem instances.

Having taken a very general approach to optimality opera-
tor, showing what properties are required for the correctness
of iterative search algorithms, our work opens up the poten-
tial for AND/OR branch-and-bound (as well as more standard
OR branch-and-bound) being used for other kinds of optimal-
ity operators, and other forms of preference input.
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