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Abstract
Recently, several Web-scale knowledge harvesting
systems have been built, each of which is compe-
tent at extracting information from certain types
of data (e.g., unstructured text, structured tables
on the web, etc.). In order to determine the re-
sponse to a new query posed to such systems (e.g.,
is sugar a healthy food?), it is useful to integrate
opinions from multiple systems. If a response is
desired within a specific time budget (e.g., in less
than 2 seconds), then maybe only a subset of these
resources can be queried. In this paper, we ad-
dress the problem of knowledge integration for
on-demand time-budgeted query answering. We
propose a new method, AskWorld, which learns
a policy that chooses which queries to send to
which resources, by accommodating varying bud-
get constraints that are available only at query (test)
time. Through extensive experiments on real world
datasets, we demonstrate AskWorld’s capability in
selecting most informative resources to query within
test-time constraints, resulting in improved perfor-
mance compared to competitive baselines.

1 Introduction
Over the last few years, several large knowledge bases (KBs),
such as NELL [Mitchell et al., 2015], Yago [Suchanek et al.,
2007], Freebase [Bollacker et al., 2008], have been developed.
These KBs include thousands of predicates (e.g., City, Coun-
try, cityLocatedInCountry(City, Country), etc.) and millions
of instances (facts) of these predicates (e.g., cityLocatedIn-
Country(London, UK)). While some of these KBs are user
contributed (e.g., Freebase), some others are constructed from
semi-structured data (e.g., Yago), or from unstructured Web
data (e.g., NELL). While many of these KBs may be consid-
ered as repositories of facts which are updated periodically,
techniques such as OpenEval [Samadi et al., 2013] which can
extract such facts on an on-demand basis have also been de-
veloped. Together, we shall refer to these KBs and on-demand
extractors as Knowledge Resources (KRs) in the rest of the
paper.

Given the heterogeneity of source data and extraction al-
gorithms involved, these KRs can contain complimentary or

often conflicting facts. Moreover, the degree of these differ-
ences and expertise of each KR may vary from one predicate
to another. Hence, to satisfy the knowledge need of an end
user or application [Samadi et al., 2012], a single KR is not
sufficient and it is necessary to integrate evidence from all
these different KRs and return a consolidated response. In
other words, we need a Knowledge-On-Demand (KoD) ser-
vice which is able to aggregate opinions from all these diverse
KRs taking their respective complementarity, conflicts, and
expertise into account.

Ideally, given an input query such as “Is City(Buenos Aires)
true?”, we would like the KoD service to aggregate opin-
ions from all available KRs. Response time from a KR may
vary depending on the predicate, especially for on-demand
extractors such as OpenEval. In many applications of practical
significance, the final response is desired within a specified
time budget, and so polling all available KRs is infeasible,
unfortunately. Thus, the KoD service has to devise a policy
to decide on which subset of KRs to poll as a function of the
query predicate and the specified time budget. We emphasize
that the time budget may vary depending on the tolerance
limits of the agent using the KoD service, and we would like
the policy to be able to incorporate this gracefully, returning a
more accurate response when more time budget is available.
Also, the polling policy needs to be prepared a-priori (as there
may not be time to learn the policy on the fly).

Additionally, we would like to point out that predicates in
the KRs often have coupling relationships among them. For
example, hasMayor(Buenos Aires) might help us infer that
City(Buenos Aires) is indeed true. Thus, a non-query predicate,
hasMayor, may help us derive a more accurate response for the
query predicate, City. As we shall see in Figure 2 (Section 5.1),
significantly more accurate responses are obtained when KR
opinions on non-query predicates are also aggregated. While
this is promising, this also makes the problem of identifying
the right polling policy more challenging as it dramatically
increases the number of polling possibilities.

While some aspects of the problems mentioned above have
been studied in previous research which we shall review in
Section 2, to the best of our knowledge, no previous research
has tackled all the issues simultaneously, and definitely not
in the context of a KoD service. We bridge that gap in this
paper and propose AskWorld, whose architecture is shown
in Figure 1. Given a user query with associated time budget,
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Query: Is City(Buenos 
Aires) true?

(max. wait time (budget): 2s)

Response: Yes, City(Buenos 
Aires) is true.

(response time: 1.98s)

AskWorld

Knowledge 
Integrator

Knowledge Resource 1 (YAGO)

Knowledge Resource 2 (Freebase)

Knowledge Resource N (OpenEval)

Budget Policy
Executor

. 

. 

.

Figure 1: Architecture of the AskWorld system. Given a
user query (e.g., UnHealthyFood(sugar)?) and a time-budget
within which this query must be answered (e.g., 2sec above),
the Budget Policy Executor selects a subset of the available
knowledge resources (KRs) to poll (shown by solid lines in
the figure; dotted lines connect knowledge resources that are
not used to answer this particular query at the specified time
budget). Responses from the KRs are integrated by the Knowl-
edge Integrator and the final response is returned to the user
within the specified time budget.

Budget Policy Executor (BPE) module of AskWorld selects
the subset of available KRs to poll, such that the ultimate
response can be provided within the specified time budget.
Responses from the KRs are integrated by the Knowledge
Integrator module and returned to the user. In this paper, we
make the following contributions:
• We present AskWorld, a novel Knowledge-on-Demand

(KoD) service that aggregates opinions from multiple knowl-
edge resources to return the most accurate response to a
query.

• AskWorld is designed to provide a best-effort response
within the time-budget specified at query time by the user
or the application. To the best of our knowledge, AskWorld
is the first KoD system of its kind that is flexible enough to
handle varying test-time budget constraints without model
retraining. AskWorld achieves this by posing the problem
as learning a policy in a Markov Decision Process (MDP).

• Through extensive experiments on real-world datasets, we
observe that AskWorld significantly outperforms the state-
of-the-art baselines, demonstrating its effectiveness.

2 Related Work
To explain the relation between AskWorld and the previous
work, we can think of KoD as a classifier, with each predicate-
specific confidence from a KR becoming a feature. In this
classification setting, the cost incurred during feature compu-
tation, and the cumulative cost is upper bounded by a user
specified limit. In this section, we briefly describe related
research on cost-sensitive feature acquisition and draw their
connection to AskWorld.

There is much previous work in the literature focusing on
cascaded classifiers. The main idea behind these works is to
train a cascade of classifiers which reject a set of test examples
using inexpensive features at a very early stage. Early work on
the cascaded classifiers focused on real-time object detection
systems and assumed that all the features have the same fea-
ture cost [Viola and Jones, 2001; Bourdev and Brandt, 2005;

Zhang and Viola, 2007]. Raykar et al. [Raykar et al., 2010]
extended the cascaded algorithms by jointly training different
stages (i.e., classifiers) and reflecting the tradeoff between cost
and accuracy during training. Unlike Raykar’s work that pre-
assigns features to cascade stages, Xu et al. [Xu et al., 2014]
proposed Cronus technique that makes the order of the feature
extraction part of the training process. In contrast to Cronus
which optimizes the cascade stages globally, Xu et al. [Xu et
al., 2012] proposed a stage-wise regression technique, called
Greedy Miser, which outperforms Cronus approach by strictly
incorporating the feature cost into the weak learners. Similar
to these work but using reinforcement learning, Karayev et al.
[Karayev et al., 2013] proposed an approach that dynamically
selects features which optimizes the cost-accuracy tradeoff.
These techniques indirectly handle the input budget-constraint
during the training by considering a hyper parameter that de-
fines the trade-off between cost and accuracy. Hence they do
not guarantee to provide a response within the input budget
during the test time. AskWorld aims to overcome this short-
coming by being flexible enough to handle varying test-time
budget without model retraining.

The idea of using multiple classifiers with different ex-
pected costs has been also studied by other researchers. Xu
et al. [Xu et al., 2013] proposed a cost-sensitive tree of clas-
sifiers [Tan, 1993] to reduce the average test time of classifi-
cation (including feature acquisition cost) while maximizing
the accuracy. Gao and Koller [Gao and Koller, 2013] pre-
sented an active classification process which builds a rich
family of base classifiers during training, and iteratively se-
lects base classifiers whose opinions should be integrated to
classify the input test instance. Azari et al. [Azari et al., 2004;
2012] proposed an optimization algorithm to optimize the
net expected value of features, computed as the difference
between the expected value and cost. These learning algo-
rithms optimize either the expected cost without considering
the exact input budget constraint, or only consider the trade-off
between cost and accuracy during training, which make them
inapplicable for the setting in which AskWorld operates.

The prior research most relevant to ours is the method
presented in [Weiss and Taskar, 2013], where reinforcement
learning techniques are used to learn a policy for feature se-
lection under a specified test-time budget. Even though a
relaxation to handle varying test-time budgets is presented in
the same paper, it is not clear if any test-time budget can be
handled within the relaxed version of their model. Kanani
and McCallum [Kanani and McCallum, 2012] also presented
a similar reinforcement learning approach, but the budget is
used only during the policy execution. It is worth mentioning
that our work is also loosely related to some other work in
task allocation in crowdsourcing systems [Karger et al., 2011;
Chen et al., 2013] and in information retrieval systems [Arnt
et al., 2004]. Due to space constraints, we don’t delve into the
details of their techniques.

3 Problem Statement
Let (p, x,B) be a user query, where p is a predicate from an
ontology O, x is a candidate instance, and B is a response time
budget (e.g., (isCity, Buenos Aires, 2sec)). We want AskWorld
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Algorithm 1 AskWorld: Query Evaluation for Knowledge-on-
Demand
Input: 〈p, x,B, Q, h〉 /* p: predicate, x: instance to be evaluated, B: input budget,

Q: Budget policy learned during training h: knowledge integrator function. */
1: /* Step 1: BudgetPolicyExecutor */
2: t← 0; B0 ← B;K0 ← {}
3: S0 ← 〈K0,B0〉
4: while Bt > 0
5: // use budget policy Q to select next resource-predicate pair, 〈r, p′〉, to poll
6: a〈r,p′〉 ← argmaxa〈r,p′〉

Q(St, a〈r,p′〉)

7: Poll resource r ∈ R to validate if x is an instance of predicate p′

8: // note that p′ is not necessarily equal to p
9: Kt+1 ← Kt ∪ {〈r,p′(x)〉} // update poll response set

10: Bt+1 ← Bt − c(r, p′) // update residual budget
11: St+1 ← 〈Kt+1,Bt+1〉 // update state
12: t← t+ 1
13: end while
14:
15: /* Step 2: KnowledgeIntegrator */
16: Build feature vector x′ and indicator vector z from the result of polls inKt

17: return y∗ = arg maxy∈{true,false} h(x′, y, z)

to validate whether x is a true instance of p by classifying
it within the time budget B to one of the labels from Y =
{false, true}. AskWorld may poll a set of knowledge resources
(KRs), R, to determine whether x is an instance of p or of
any other predicate from the ontology O, and aggregate all the
responses. The poll (p′, x, r) checks the opinion of resource
r ∈ R, on whether x is an instance of predicate p′ ∈ O
and costs c(r, p′) time (note that p′ is not necessarily equal to
p). We assume that c(r, p′) remains constant during train and
query time. To simplify our explanation, we assume that we
have a set of polling queries K = {〈r, p′〉 | r ∈ R, p′ ∈ O},
i.e., all possible combinations of knowledge resources in R
and predicates in O.

Given a user query, the main challenge here is to learn a
policy that identifies a subset of resource-predicate polling
queries K ⊆ K so that the most accurate response is provided
within the response time budget. Also, the policy should
be able to handle varying query-time budget (subject to a
maximum upper bound) without the need of retraining.

4 Our Approach: AskWorld
In this section, we describe the AskWorld system.

AskWorld (Algorithm 1) consists of two steps. In step
1, given a query and a time budget, AskWorld iden-
tifies the subset of knowledge resources to poll using
BUDGET POLICY EXECUTOR (BPE) (Section 4.1); and in
step 2 it aggregates the responses obtained from step 1 us-
ing KNOWLEDGE INTEGRATOR (Section 4.3) and returns the
final result to the user.

4.1 Markov Decision Process (MDP) Formulation
of BUDGET POLICY EXECUTOR (BPE)

We cast the budget-sensitive query evaluation problem as solv-
ing a Markov Decision Process (MDP),M, represented as a
tupleM = 〈γ,S,A, T ,R〉 where γ is a discounting factor.
The remaining components of the MDP are described below:

States (S): Each state, St = 〈Kt,Bt〉 ∈ S, of the MDP
represents intermediate knowledge acquired, whereKt ⊂ K is
the set of knowledge resource-predicate polling queries issued
by AskWorld and responses received, and Bt is the residual

budget allowed to be used starting from state St. During query
time, the agent starts executing the MDP policy starting from
S0 = 〈{},B〉, where {} indicates that no polling response
(feature) has been acquired and B is the input budget.

Actions (A): Each action a〈r,p′〉 ∈ A corresponds to a
resource-predicate tuple 〈r, p′〉 which indicates which knowl-
edge resource r to poll to validate if x is an instance of predi-
cate p′. By taking the action a〈r,p′〉, we acquire the response
from resource r at the cost of c(r, p′).

Transition function (T ): The transition function,
T (St, a〈r,p′〉,St+1), is defined as following:

T (St, a〈r,p′〉,St+1) =

 1 if Bt+1 = Bt − c(r, p′) ≥ 0
& 〈r, p′〉 ∈ Kt+1,

0 otherwise
(1)

where Bt is the remaining budget that we are allowed to use
starting from state St. Intuitively, Equation 1 says that the
probability of moving from state St to St+1 by taking ac-
tion a〈r,p′〉 is equal to 1 if the cost of a〈r,p′〉 is less than the
remaining budget Bt and if the query 〈r, p′〉 is part of Kt+1.

Why include budget in the transition function?
The alternative option, similar to [Weiss and Taskar, 2013], is to incorporate the
budget constraint as part of the reward function. For example, when a transition
is invalid (i.e., we are out of budget), the value of the reward function would be
either a large negative value or zero. This approach has two main disadvantages: (i)
defining the reward to be negative for the invalid transitions may affect the learning
process since the expected reward value of a state can be potentially penalized as
the agent receives negative value for the states that it is not able to move to, and
(ii) defining the reward of the invalid transitions to be equal to zero also makes it
impossible for the agent to differentiate between states that are not reachable and
those that have the expected reward of zero. By defining the budget constraint as
a part of the transition function, we avoid both these problems since the agent is
not able to traverse to states that require more budget than the remaining budget
Bt. Thus, unlike [Weiss and Taskar, 2013]’s approach which may find a policy
that violates the input budget, our approach always finds a policy that satisfies the
input budget constraint.

Reward function (R): The reward function R is defined
as the value of the information added by each action a ∈ A
given current state St. More precisely,
R(St, a,St+1)

=

{
1
|Ψ′|

∑
(xi,yi)∈Ψ′ h̄(xi, yi, zt+1)− h̄(xi, yi, zt) t 6= 0

0 t = 0

(2)

where Ψ′ is the set of evaluation data (subset of the input
training data Ψ) in the form of Ψi = (xi, yi). zt is defined
as a binary vector where |zt|= |K|. The jth element of zt
is equal to 1 if the value of query 〈r, p〉 appears in the state
St (as part of Kt), and otherwise it is equal to 0. Vector z
can be seen as an indicator vector used as input of a predic-
tor (knowledge integrator, Section 4.3) function. Function
h̄(x, y, z) is defined in terms of h(x, y, z). Function h(x, y, z)
is a predictor function which returns the confidence value of
predicting label y ∈ Y for the input instance x using queries
indicated by vector z. The function h̄(x, y, z) is defined as
follows:

h̄(x, y, z) = h(x, y, z)−max
y′ 6=y

h(x, y′, z) (3)

Function h̄ returns the maximum difference in the confidence
value of classifier in predicting the true label compared to all
the other labels in Y .
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Intuitively, Equation 2 says that each time that we poll
〈r, p〉, the reward that we receive is equal to the change in
the margin of our predictor h, averaged over all the training
data points. In other words, the reward function measures
the value of the knowledge that we acquire from each of
the resources. If the value of R(St, a,St+1) > 0, then it
means that the selected action increases the confidence value
of our predictor in predicting the true label compared to the
other labels, and if R(St, a,St+1) < 0, it means that it is
decreasing the confidence value. Ideally, we would like to
choose a polling query that increases the confidence of our
prediction when moving from state St to St+1.

Given a deterministic policy Π and a sequence of states
S0, ...,Sn computed from Π, we defineRΠ as the reward that
we receive by the following policy determined by Π. Then,

RΠ =
∑

(xi,yi)∈Ψ′

h̄(xi, yi, zn)− h̄(xi, yi, z0) (4)

Equation 4 says that the reward that we receive from following
policy Π is equal to the difference between the confidence
value of the predictor h when using the acquired queries in
state Sn and the queries in state S0.

Predictor Function: To build the predictor function
h(x, y, z), we use Support Vector Machines (SVM). The SVM
is trained by assuming that all the polling query responses (fea-
ture values) are acquired for all the training instances. For any
new instance where some of the feature values are missing
(i.e., zero elements in the z vector), we use the prior value for
the missing feature as the average feature value over all the
training data (assuming the size of positive and negative data
are equal). Thus, each feature of the SVM corresponds to a
response to a polling query in K, thereby making its feature
space |K|-dimensional.

Theorem 1 (Property of MDP) In the MDPM, for every
two policies Π and Π′ which respectively map states 〈{},B〉
and 〈{},B′〉 (B 6= B′) to some actions, S(Π) ∩ S(Π′) = ∅,
where S(Π) and S(Π′) are the sets of all the states that can be
generated by policies Π and Π′, respectively.

The proof of Theorem 1 is omitted for space reasons, but
is available in [Samadi et al., 2015]. Intuitively, Theorem 1
says that the policies we learn for the different initial budgets
are independent of each other. In other words, there is no
advantage of simultaneously learning policies for the different
initial budget values. In the next section, we explain how to
address this problem by abstracting states in the MDP.

4.2 Solving MDP
Depending on the number of predicates in the ontology O and
the resources in R, the state space can be significantly large.
In this section, we present two approaches to solve the MDP
whose performances are compared in Section 5.
1. AskWorld (V*): Abstracting MDP and Solving It Using
Value Iteration: We abstract the state space ofM to a smaller
space. The resulting MDP is denoted by M̄. The abstraction is
done by the following ways: (i) defining the remaining budget
in each state to be within an interval, instead of being equal to
an exact budget amount, and, (ii) reducing the size of polling
queries in K to a smaller set K̄.

To define the budget interval for each state, we assume
that BU is the upper bound on the budget that we receive
during query time. The size of each interval is defined to be
equal to δ and we have BU

δ distinct intervals. In the abstract
MDP, each state is defined as St = 〈Kt, [BLt ,BUt ]〉, where
the second element is the budget interval, BLt = k × δ, and
BUt = (k + 1)× δ. The reward function in the abstract MDP
is the same as the original MDP.

The transition function for the abstract MDP depends on the
budget interval defined in each state, the cost of the actions,
and the value of the budget that we receive during the query
time. For example, assume that during the test time, we are in
a state where the budget interval is [40, 60], δ = 20, and we
are executing action a〈r,p〉. If the true remaining budget is 40
and c(a〈r,p〉) = 5, then we move to a state where the budget
interval is [20, 40], however if the remaining budget is 50, we
then move to a state where the budget interval is [40, 60] (in
both these cases 〈r, p〉 is added as one of the queries in the
state). The problem is that we don’t know the exact budget
that is given during the test time while learning a policy for
the MDP. To address this issue, we assume that different bud-
get values are equally likely to be given during test time, and
then define different probabilities for transitioning to differ-
ent states, e.g., in our example, we move to the state with
budget interval [20, 40] with probability c(a〈r,p〉)

δ = 0.25 and
move to the state with budget interval [40, 60] with probability
δ−c(a〈r,p〉)

δ = 0.75. This example helps us to formally define
the transition function.

To define the transition function, we know that the cost of
each action a〈r,p〉 can be written as c(a〈r,p〉) = δ × k + m,

where k = b c(a〈r,p〉)δ c. Therefore, m = c(a〈r,p〉)− δ × k. So,
the transition function for the abstract MDP can be defined
as,

T (St, a〈r,p〉,St+1) =



m
δ

if BUt+1 = BUt − (k + 1)× δ
& BLt+1 = BLt − (k + 1)× δ
& a〈r,p〉 ∈ Kt+1 & BLt+1 > 0

δ−m
δ

if BUt+1 = BUt − k × δ
& BLt+1 = BLt − k × δ
& a〈r,p〉 ∈ Kt+1 & BLt+1 > 0

0 otherwise
(5)

where the budget intervals of states S and S ′ are respectively
defined by [BLt ,BUt ] and [BLt+1,BUt+1].

Abstracting the state space in MDP not only benefits us by
reducing the number of states, but also creates shared states
between the policies learned for the different budget values.

Theorem 2 (Property of Abstract MDP)
In the abstract MDP M̄, if δ ≥ BU

|Ā| and c(a) > 0 for all the
actions a, then for any two initial states S0 and S ′0 with different
budget intervals, S(S0) ∩ S(S ′0) 6= ∅, where S(S0) and S(S ′0)
are the sets of all the states that are reachable from states S0 and
S ′0, respectively.

The proof of Theorem 2 is omitted for space reasons, but is
available in [Samadi et al., 2015].

In addition to abstracting the budget, we also need to re-
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duce the number of polling queries in K to a smaller set
K̄. Different feature/variable extraction techniques that have
been studied in the machine learning community [Blum and
Langley, 1997] can be used to construct K̄. Among these
techniques, we use feature ranking using weights from linear
SVM classifier which has been shown to be an effective ap-
proach for feature selection [Guyon et al., 2002]. The SVM is
trained using the training data set and the topK ranked polling
queries are chosen to be included in K̄. In our experiments,
we drop all polling queries with zero weight and keep the rest
as part of K̄.

Given the abstract MDP, we can directly learn a policy using
the value iteration algorithm. Instead of calculating the policy
as the optimal action to be taken from each state, we save the
value of Q(S, a〈r,p〉)

for all the states S and actions a〈r,p〉, and calculate the
optimal policy during the test time given at each state. This
allows us to make sure that the action that we are choosing
is always within our remaining budget. For example, during
the test time, if we are in a state where the budget interval is
[0, 10] but the actual remaining budget is equal to 4, we should
prune selecting actions that require budgets higher than 4.

Our approach to abstract the MDP and solve it using the
value iteration algorithm needs tuning a few parameters such
as the value of δ. In addition, even with the abstraction, the
size of the state space could still be huge when the ontology is
very large. Although in the experimental results we show that
by solving the abstract MDP we could significantly outper-
form other baseline approaches, in the next section we explain
how to approximate the value iteration algorithm using Q-
learning with linear function approximation which might be
more suitable for applications with a very large ontology.
2. AskWorld (PQL): Q-Learning with Linear Function
Approximation: An alternative approach to solve the MDP is
to approximate the policy using the temporal-difference, or TD
Q-learning, with function approximation [Sutton and Barto,
1998; Lagoudakis et al., 2003]. In the standard setting of TD
Q-learning with linear function approximation, the Q-function
is represented as a weighted combination of a set of features
as follows,

Qθ(S, a) =
∑
i

θiφi(S, a)

where φi(S, a) are the features defined over state S and action
a, and θi are the set of weights to learn. To learn the parameters
θi, we follow the standard setting [Sutton and Barto, 1998;
Lagoudakis et al., 2003], where an online algorithm is used to
update the values of θi and reduce their temporal differences
between successive states.

4.3 KNOWLEDGE INTEGRATOR

Using the training data Ψ, we first train the predictor h(x, y, z)
(e.g., SVM classifier) and then calculate the Q values using ei-
ther the state abstraction or function approximation techniques.
Given a trained predicator h and the Q function, we follow the
policy defined by Q starting from state 〈{}, B〉. On reaching
the last state, denoted by Sn, the label for x is calculated as:

y∗ = arg max
y∈Y

h(x, y, zn)

Figure 2: Precision-Recall curve comparing performance of
AskWorld when using Query Predicate vs. All Predicates.

5 Experimental Results
For the experiments in this section, we use 25 categories ran-
domly chosen from all the categories that are in common be-
tween Freebase [Bollacker et al., 2008] and NELL [Mitchell
et al., 2015] knowledge bases. For each predicate, 200 random
instances are provided as seed examples to train AskWorld,
and these are partitioned into two sets: classifier-training and
policy-training. The classifier-training set is used to train the
SVM classifier and the policy-training set is used to solve the
MDP (used as part of the reward function) or to find greedy
ordering for the baseline approaches. 50 instances are also ran-
domly chosen as the test data for each predicate: 25 positive
and 25 negative examples. The negative examples are chosen
from other predicates in the FreeBase ontology. We com-
pare AskWorld to multiple baseline approaches using standard
performance metrics of precision, recall, and F1 score.

For the knowledge resources in R, we use three different
knowledge acquisition techniques that are developed as part
of the NELL project. The first one is CMC which looks for
certain orthographic features in the query entity’s name. The
next resource is the NELL KB itself, which is built using
several sub-components. We use CKB as the third resource.
While the NELL KB has high precision and low recall, CKB is
its noisy version (low precision), but covers many more facts
(high recall). Queries against CKB tend to be slower as it has
higher coverage. Please note that the performance of these
resources significantly vary across predicates, and thus given
an instance, it is not always clear which resource to query
and how to combine their result. This is especially important
in settings with runtime budget constraints that prohibit the
exhaustive query of all the resources.

5.1 Does polling KRs for non-query predicates help?
One of the contributions of this paper is to show that the
accuracy of a knowledge-on-demand system improves by ag-
gregating opinions of different KRs for all the predicates in
the ontology, compared to when we only poll KRs for the
query predicate.

Figure 2 shows the precision-recall curve comparing the
setting when only the query predicate (referred to as Single
Predicate) is allowed compared to the setting when we poll
KRs for all predicates in the ontology (All Predicates). All
results are averaged over all 25 target predicates. The result of
different queries are aggregated using a trained SVM classifier.
The result shows that the precision of our system is improved
by around 25% absolute when we aggregate opinions of KRs
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for all the predicates in the ontology compared to the single
predicate approach, e.g., the precision is improved from 0.64
to 0.81 at the recall value of 0.75.

5.2 Are budget-sensitive policies able to select
effective polling queries?

Note that the All Predicates setting in the previous section is
slower than the Query Predicate approach since it requires
polling KRs for all the predicates in the ontology. This leaves
us with the question of how quickly we can achieve the same
result as the All Predicates setting while using minimum bud-
get. The first baseline that we consider is Random, where
given a query-time budget, we randomly choose which re-
sources and predicates to poll until running out of the budget.
The values returned for different polling queries are given as
an input to the trained SVM classifier, with missing values
in the input of the classifier represented by zeros. Random+
is similar to Random, except that missing feature values are
represented by prior values calculated during training.

We also compare AskWorld to three different greedy-based
algorithms. Single Greedy+ ranks queries in the greedy order
based on their information gain. For each predicate in the
ontology, the algorithm finds one ordering for polling queries
in K. SVM is used to measure the information gain for each
query using the evaluation dataset. During query-time, given
a new query, the algorithm polls resources by following the
greedy ordering until running out of time budget. Multiple
Greedy algorithm is similar to Single Greedy+, except that it
iterates over different potential budget values and finds a sep-
arate greedy ordering for every predicate and for every such
budget value. It also trains a separate classifier for each budget
value. Greedy Miser is a learning-based approach presented
by [Xu et al., 2012], which we consider as a representative
of the state-of-the-art. Greedy Miser uses step-wise regres-
sion [Friedman, 2000] which minimizes a loss function that
explicitly trades off the feature cost and the accuracy. The out-
put of the learning algorithm is an additive classifier which is
a linear combination of a set of regression trees. GreedyMiser
is trained with the same training data as other algorithms.
Note that GreedyMiser handles the input budget-constraint
indirectly using a λ parameter which defines the tradeoff be-
tween cost and accuracy. We tuned λ over the range of values
suggested in [Xu et al., 2012], and used the optimal value of
λ = 0.06 for the experiments in this section. For other param-
eters, we use a learning rate of 0.1, depth of 2 for each decision
tree (depth of higher than 2 makes GreedyMiser inapplicable
for small budget values), squared loss function, and a total of
300 regression trees in the final additive classifier.

AskWorld (PQL) shows the result of Parametric Q-
Learning (PQL) approach where the features for the linear
approximation function are chosen as follows. First, each
query in q ∈ K is associated with two boolean features: one
which indicates if q is acquired as part of the knowledge of the
MDP state, and the other indicates if q is selected as an action
from the state. This allows us to represent both arguments of
Q(S, a) function in the linear approximation function. The
remaining budget in the state is also represented by one fea-
ture. We have tried other choices such as merging actions
and states’ features, representing the remaining budget by a

Figure 3: F1 scores comparing different systems against vary-
ing query-time budgets (in milliseconds). AskWorld(V*), the
proposed system (top plot in the figure), outperform all other
baselines.
set of boolean variables etc. However, the other alternative
approaches either decreased or did not change performance.
The result for AskWorld (V*) is obtained by abstracting MDP
using δ = 5, ordering queries using their information gain,
and selecting top k% of features with non-zero information
gain. In our experiments, we choose k = 50% which results in
approximately 15M states in the MDP. Since AskWorld (V*)
is trained only on a subset of queries, we may acquire all the
queries using the learned policy and still have some leftover
budget. In this case, we follow the greedy policy and acquire
knowledge using queries that have not been already sent.

F1 curves comparing these systems are presented in Fig-
ure 3. Comparing the results for Random and Random+ in
Figure 3, both algorithms perform equally, except that F1
score of Random algorithm is lower at the beginning. The
main reason that Random algorithm is performing poorly at
the beginning is that there are many zero elements in the fea-
ture vector of the classifier and therefore the constant value in
the linear regression function of the SVM plays an important
role in biasing the classification result.

Comparing the results of the two greedy algorithms, we can
see that Multiple Greedy outperforms Single Greedy+ since
it learns different greedy orderings and learns separate SVM
classifier for different budget values. Since Multiple Greedy
approach requires iterating over the different budget values, its
applicability is limited when the upper bound on the test time
budget is very large (does not scale as the budget increases).

The figure also shows the result for the state-of-the-art ap-
proach: Greedy Miser [Xu et al., 2012]. Comparing the re-
sult of the Greedy Miser with Single Greedy and Multiple
Greedy algorithms, we can see that Greedy Miser performs
poorly at the beginning (budget values less than 400), but then
outperforms the other baselines for larger values of budget.
GreedyMiser is using different classification technique (cas-
cade of decision trees) and does not achieve the same F1 score
as other approaches at higher budget levels.

From Figure 3, we observe that AskWorld(V*), our pro-
posed approach, performs better than all the baselines. In
contrast to Multiple Greedy approach, AskWorld is capable
of handling varying query-time budgets (up to a specified
upper bound) without retraining. Comparing the results of
Greedy Miser and AskWorld(V*), we observe that AskWorld
significantly outperforms Greedy Miser for smaller as well as
higher values of the query budget, while achieving comparable
performance at mid-level budgets.
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6 Conclusion
In this paper, we present AskWorld, a novel system which
is capable of providing knowledge-on-demand. We show
that the accuracy of knowledge acquisition improves when
the system is allowed to issue polling queries correspond-
ing to non-query predicates in the Ontology. Even though
this relaxation results in an explosion of polling possibilities,
AskWorld is able to select the most informative ones within
runtime budget constraints. To the best of our knowledge,
AskWorld is the first knowledge-on-demand system of its kind
which is capable of handling varying test-time budgets with-
out model retraining. Through extensive experiments on real
world datasets, we demonstrate AskWorld’s capability in se-
lecting most-informative queries within query-time runtime
constraints, resulting in improved performance while achiev-
ing reduced model footprint.
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