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Abstract

Probabilistic systems are an important theme in AI
domain. As the specification language, PCTL is
the most frequently used logic for reasoning about
probabilistic properties. In this paper, we present a
natural and succinct probabilistic extension of µ-
calculus, another prominent logic in the concur-
rency theory. We study the relationship with PCTL.
Surprisingly, the expressiveness is highly orthogo-
nal with PCTL. The proposed logic captures some
useful properties which cannot be expressed in
PCTL. We investigate the model checking and sat-
isfiability problem, and show that the model check-
ing problem is in UP ∩co-UP, and the satisfiability
checking can be decided via reducing into solving
parity games. This is in contrast to PCTL as well,
whose satisfiability checking is still an open prob-
lem.

1 Introduction
Temporal logics are heavily used in theoretical computer sci-
ence and AI-related fields. Among those, modal µ-calculus
receives a lot of attraction ever since Kozen’s seminal work
[Kozen, 1983]. See for example, [Banieqbal and Barringer,
1987; Katoen, 1998; Walukiewicz, 2000; Berezin, 2002].
Moreover, various temporal logics including LTL [Pnueli,
1977], CTL [Emerson and Clarke, 1980], CTL* [Emerson
and Halpern, 1986] are extensively studied. It is known
that their expressiveness is strictly less [Dam, 1995] than
µ-calculus (aka. µTL), and their model checking algorithm
has been proposed: for CTL the problem can be solved in
polynomial time, whereas for LTL the problem is PSPACE-
complete [Sistla and Clarke, 1985].

Probabilistic systems, such as Markov chains and Markov
decision processes, are an important theme in AI domain.
To reason about properties for probabilistic systems, the
logic CTL was first extended with probabilistic quantifiers in
[Hansson and Jonsson, 1994] , resulting in the logic PCTL.
Intuitively, (aU≥0.9b) means that the probability of reaching

b-states along a-states is at least 0.9. At the same time, prob-
abilistic LTL and its extension PCTL* have all been studied.
As in the classical setting, model checking problem for PCTL
can be solved in polynomial time, whereas only exponential
algorithms are known for LTL [Couvreur et al., 2003]. There
have also been several attempts to extend µTL with proba-
bilities in the literature. As we shall discuss in the related
work, the extensions are either highly non-trivial in terms of
the complexity of the corresponding model checking and sat-
isfiability problems, or hindered from the restriction of fix-
point nesting.

We propose a natural and succinct extension of µTL in this
paper, and name it PµTL. The logic is acquired by equipping
the next operator with probability quantifiers, and keeping
other parts as standard µTL. We have for instance the for-
mula νZ.(a ∧ X≥0.8Z). We investigate the model checking,
expressiveness, and satisfiability problems of PµTL.

In detail, we first investigate the model checking problem
of PµTL upon Markov chains. It turns out to be a straightfor-
ward adaptation of the classical algorithms for µTL, and the
complexity remains in UP ∩ co-UP. We then give a compre-
hensive study on the expressiveness of PµTL by comparing
with PCTL, and prove that PµTL is orthogonal with PCTL in
expressiveness. However, for the qualitative fragments (i.e.,
probabilities may appear in a formula are only 0 and 1), we
show that qualitative PµTL is strictly more expressive (w.r.t.
finite Markov chains). On the other side, the satisfiability
checking is quite challenging: we exploit the notion of prob-
abilistic alternating parity automata (PAPA, for short), and re-
duce the Satisfiability problem into the Emptiness problem of
PAPA. Further, this is reduced to solving parity games, and it
is shown that both of these two problems are in 2EXPTIME.
This is in contrast to PCTL as well, whose Satisfiability
checking is still an open problem (cf. [Brázdil et al., ;
Bertrand et al., 2012]).

An illustrating example We introduce a running example
to motivate our work: Suppose there is a hacker trying to at-
tack a remote server. The hacker has a supercomputer at hand
and is trying to guess the password in a brute-force manner.
For simplicity, we assume the password is a sequence of l let-
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Figure 1: An illustration of the hacking process

ters, each of which is from ‘0’-‘9’, ‘a’-‘z’, and ‘A’-‘Z’. There-
fore, the total number of possible passwords is n = 62l. The
hacker let the supercomputer randomly generate a password,
and see whether the decryption succeeds. If yes, the hacker
wins; otherwise he tries with another one. However, if the su-
percomputer generates three wrong passwords in a row, it will
be blocked for a certain amount of time until it can start an-
other round of attacking — assuming that the password may
be changed during the blocked moment, hence it does not
make sense for the supercomputer to store all generated pass-
words. The whole process is illustrated in Fig. 1. Starting
from s1, we can see that the probability of eventually reach-
ing attacked, i.e., the hacker decrypts successfully, equal 1,
no matter how big l is (hence, the PCTL formula F≥1attacked
holds), and we may conclude that the system is unsafe — this
is of course against our intuition, as such system is considered
to be safe if l is big enough. However, as we will show later,
all PCTL formulae are not capable of expressing this prop-
erty. By making use of PµTL, such property of security can
be characterized easily as follows: νZ.(¬attacked ∧ X≥pZ))
with p = n−3/n−2, where ¬attacked denotes all other states in
Fig. 1 different from s5.

Motivation from AI perspective The presented logic has
the following potential application in AI domain:

• First of all, Markov chains and Markov decision pro-
cesses are the basic models in several areas of AI. As a
logic with semantics defined w.r.t. such models, it could
definitely be used in designating probability-relevant
properties upon them. Particularly, the properties that
could not be expressed by PCTL.

• Motion planing is an important topic in AI area, where
standard µTL has once been adopted [Bhatia et al.,
2011], because of its powerful expressiveness and the
decidability of its Satisfiability problem. Thus, we ex-
pect that PµTL could be used in stochastic motion plan-
ning — since, PµTL is a decidability-preserving exten-
sion of µTL.

• Fixpoints play an important role in mathematics and
computer science. In AI area, it is used to designate
non-terminating behaviors of intelligent systems, such
as maintenance goals [Singh, 1998]. Fixpoints act as the
elementary ingredients in PµTL, hence such logic can
also be used in such a situation.

Related work Probabilistic extensions of µTL have been
studied by many authors: e.g., µ-calculi proposed in [Mor-
gan and McIver, 1997; Huth and Kwiatkowska, 1997; de Al-
faro and Majumdar, 2001; McIver and Morgan, 2002; 2007;
Mio, 2012b] interpret a formula as a function from states to
real values in [0, 1], whose semantics is different from PµTL.
A further extension of µ-calculus was proposed in [Mio,
2012a], which is able to encode the full PCTL. However,
the model checking and Satisfiability algorithms are still
unknown for these calculi and are “far from trivial” [Mio,
2012b]. The other probabilistic µ-calculus was introduced
in [Cleaveland et al., 2005] along with a model checking al-
gorithm for it. Moreover, it is able to encode PCTL formulae
as well. However, that calculus only allows alternation-free
formulae (cf. [Emerson and Lei, 1986]).

Very recently — and independently —, Castro, Kilmurray,
and Piterman present another extension by adding fixpoints to
full PCTL [Castro et al., 2015]. The calculus they introduced
is more expressive than logics PCTL and PCTL*. Moreover,
it is also easy to see that it is a proper super logic of our logic
PµTL as well. They show the model checking problem is in
NP ∩co-NP. We note that some examples in our paper are
similarly investigated in [Castro et al., 2015]. Since the logic
in [Castro et al., 2015] subsumes PCTL, its Satisfiability
problem is also left open. However in this paper we show Sat-
isfiability of PµTL could be reduced to solving parity games,
which makes this problem solvable in 2EXPTIME.

2 Preliminaries
In this paper, we fix a countable setA of atomic propositions,
ranging over a, b, a1 etc, and fix a countable setZ of formula
variables, ranging over Z,Z1 etc.

A Markov chain is a tuple M = (S ,T, L), where S is a finite
set of states; T : S × S → [0, 1] is the matrix of transition-
probabilities, fulfilling

∑
s′∈S T(s, s′) = 1 for every s ∈ S ; and

L : S → 2A is the labeling function. A pointed Markov chain
is a pair (M, s) where M is a Markov chain (S ,T, L) and s ∈ S
is the initial state.

An (infinite) path π of M is an infinite sequence of states
s0, s1, . . ., such that si ∈ S and T(si, si+1) > 0 for each i.
A basic cylinder cyl(s0, s1, . . . , sn) of M is the set of infinite
paths having s0, s1, . . . , sn as the prefix.

According to the standard theory of Markov process, the
pointed Markov chain (M, s) uniquely derives a measure
space (ΠM,s,∆M,s, probM,s) where ΠM,s consists of all infinite
paths of M; ∆M,s is the minimal Borel field containing all
basic cylinder of M (i.e., ∆(M,s) is closed under complementa-
tion and countable intersection); and the measuring function
probM,s fulfills: probM,s(cyl(s0, s1, . . . , sn)) equals 0 if s , s0,
and equals

∏
i<n T(si, si+1) otherwise. We say a set P ⊆ ΠM,s

is measurable if P ∈ ∆M,s. [Vardi, 1985] shows that the inter-
section of ΠM,s and an omega-regular set must be measurable.

The syntax of PCTL formulae is described by the following
abstract grammar:

f F > | ⊥ | a | ¬a | X∼p f | f ∧ f | f ∨ f | f U∼p f | f R∼p f

where ∼∈ {>,≥} and p ∈ [0, 1]. We also abbreviate >U∼p f
and ⊥R∼p f as F∼p f and G∼p f , respectively.
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Semantics of a PCTL formula is given w.r.t. a Markov
chain. For each PCTL formula f and a Markov chain M =
(S ,T, L), we will use ~ f �M to denote the subset of S satisfy-
ing f , inductively defined as follows.

• ~>�M = S ; ~⊥�M = ∅.

• ~a�M = {s ∈ S | a ∈ L(s)}; ~¬a�M = {s ∈ S | a < L(s)}.

• ~X∼p f �M = {s ∈ S |
∑

s′∈~ f �M
T(s, s′) ∼ p}.

• ~ f1 ∧ f2�M = ~ f1�M ∩ ~ f2�M; ~ f1 ∨ f2�M = ~ f1�M ∪

~ f2�M .

• ~ f1U∼p f2�M = {s ∈ S | probM,s{π ∈ cyl(s) | π |=
f1U f2} ∼ p} and ~ f1R∼p f2�M = {s ∈ S | probM,s{π ∈
cyl(s) | π |= f1R f2} ∼ p}.

In addition, for an infinite path π = s0, s1, . . . of M, the no-
tation π |= f1U f2 stands for that there is some i ≥ 0 such
that si ∈ ~ f2�M and s j ∈ ~ f1�M for each j < i. Meanwhile,
π |= f1R f2 holds if either π |= f2U( f1 ∧ f2) or s j ∈ ~ f2�M for
each j. To simplify notations, in what follows we denote by
M, s |= f whenever s ∈ ~ f �M holds.

3 PµTL, Syntax and Semantics
In this section we present a simple probabilistic extension of
modal µ-calculus, called PµTL. The syntax of PµTL formulae
is depicted as follows:

f F > | ⊥ | a | ¬a | Z | X∼p f | f ∧ f | f ∨ f | µZ. f | νZ. f

Semantics of a PµTL formula is given w.r.t. a Markov
chain M = (S ,T, L) and an assignment e : Z → 2S . Sim-
ilarly, for each PµTL formula f , we denote by ~ f �M(e) the
state set satisfying f under e. Inductively:

• ~>�M(e) = S and ~⊥�M(e) = ∅.

• ~a�M(e) = {s ∈ S | a ∈ L(s)} and ~¬a�M(e) = {s ∈ S |
a < L(s)}.

• ~Z�M(e) = e(Z).

• ~X∼p f �M(e) = {s ∈ S |
∑

s′∈~ f �M (e) T(s, s′) ∼ p}.

• ~ f1 ∧ f2�M(e) = ~ f1�M(e) ∩ ~ f2�M(e)
and ~ f1 ∨ f2�M(e) = ~ f1�M(e) ∪ ~ f2�M(e).

• ~µZ. f �M(e) =
⋂
{S ′ ⊆ S | ~ f �M(e[Z 7→ S ′]) ⊆ S ′} and

~νZ. f �M(e) =
⋃
{S ′ ⊆ S | ~ f �M(e[Z 7→ S ′]) ⊇ S ′}.

Indeed, ~µZ. f �M(e) (resp. ~νZ. f �M(e)) could be computed
as in the classical setting via the following iteration:

1. let S 0 = ∅ (resp. S 0 = S );

2. subsequently, let S i+1 = ~ f �M(e[Z 7→ S i]);

3. stops if S `+1 = S `, and returns S `.

Note that the algorithm obtains a monotonic chain with such
an iteration, and hence it must terminate within finite steps.
Actually, ~µZ. f �M(e) (resp. ~νZ. f �M(e)) captures the least
(resp. greatest) solution of X = ~ f �M(e[Z 7→ X]) within 2S .

Semantical definition of PµTL formulae also yields the
model checking algorithm.

Theorem 1. The model checking problem of PµTL is in UP
∩co-UP.

Indeed, the proof is analogous to the non-probabilistic ver-
sion [Jurdziński, 1998; Wilke, 2002] and the only noteworthy
difference lies from handling X∼p- subformulae, opposing to
�- and ^- subformulae, which could be proceeded in (deter-
ministic) polynomial time.

In what follows, we directly denote by ~ f �M in the case
that f is a closed formula (i.e., each variable of f is bound),
and we also denote by M, s |= f if s ∈ ~ f �M .

Below we give some example properties:
(1) The formula νZ.(a∧X>0.8Z) describes that there exists an

a-region, where each state has less than 0.2 probability to
escape from it immediately (i.e., in one step).

(2) νZ.(a∧X>0X>0Z) says that there is a cycle in the Markov
chain, such that a holds at least in every even step.

(3) M, s |= µZ.(a ∨ X≥0.6Z) if some a-state is reachable from
s, but at each step, one just has some probability (not less
than 0.6) to go on with the right direction.

(4) The PµTL formula µZ.(b∨ (a∧X≥1Z)) holds if aUb holds
along each path. It is stronger than the property described
by the PCTL formula aU≥1b. For the latter allows the
existence of a-cycles.

(5) As a more complicated example, the formula νZ1.(a ∨
µZ2.(a ∨ X>0Z2) ∧ X≥1Z1) just tells the story that “a will
be surely encountered”, as described by F≥1a with PCTL.

Given a PµTL formula f and a bound variable Z, we use
D f (Z) to denote the subformula which binds Z in f . For ex-
ample, let f = µZ1(a∧ νZ2.(b∧X>=0.3Z2)∨X>0.6Z1), then we
have D f (Z1) = f and D f (Z2) = νZ2.(b ∧ X≥0.3Z2).

We say that a PµTL formula f is guarded, if the occurrence
of each bound variable Z in D f (Z) is in the scope of some X-
operator. The following theorem could be proven in a same
manner as that in [Walukiewicz, 2000].
Theorem 2. For each PµTL formula f , there is a guarded
formula f ′ such that ~ f ′�M(e) = ~ f �M(e) for every M and e.

Thus, in what follows, we always assume that each PµTL
formula is guarded.

4 Expressiveness
In this section, we will give a comparison between PµTL and
PCTL, and we are only concerned about closed PµTL formu-
lae. For a PµTL formula f and a PCTL formula g, we say
that f and g are equivalent if ~ f �M = ~g�M for every Markov
chain M, denoted as f ≡ g.

First of all, we will show that some PµTL formula could
not be equivalently expressed by any PCTL formula.
Theorem 3. Let f = νZ.(a ∧ X≥0.5Z), then g . f for every
PCTL formula g.

Proof. To show this, we need first construct two families of
Markov chains, namely, M0,M1, . . . , and M′0,M

′
1,M

′
2, . . ..

For the first group, let Mn = ({s0, s1, . . . , sn},Tn, Ln),
where: Tn(s0, s0) = 1 and Tn(si+1, si) = 1 for each i < n
(hence Tn(si, s j) = 0 for any other si, s j). In addition,
Ln(s0) = ∅ and Ln(si) = {a} for each 0 < i ≤ n.

For the second ones, let M′n = ({s′0, s
′
1, . . . , s

′
n},T′n, L′n)

where: T′n(s′n, s
′
n) = T′n(s′n, s

′
n−1) = 0.5, T′n(s0, s0) = 1, and
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T′n(s′i+1, s
′
i) = 1 for every i < n − 1. In addition, L′n(s′0) = ∅

and L′n(s′i) = {a} for each 0 < i ≤ n.
Given a PCTL formula g, let N(g) be the maximal nesting

depth of temporal-operators of g. According to [Baier and
Katoen, 2008, Thm. 10.45], we have that M′n, s

′
n |= g if and

only if Mn, sn |= g whenever n ≥ N(g).
Observe the fact that M′n, s

′
n |= f and Mn, sn 6|= f for ev-

ery n ≥ 1. Assume that there exists some PCTL formula g
fulfilling f ≡ g, then we have

M′N(g), s
′
N(g) |= f ⇐⇒ M′N(g), s

′
N(g) |= g

⇐⇒ MN(g), sN(g) |= g ⇐⇒ MN(g), sN(g) |= f

and hence it results in a contradiction. �

Conversely, the following theorem reveals that there also
exists some PCTL formula that could not be equivalently ex-
pressed by any PµTL formula.

Theorem 4. Let f = F≥0.5a, then g . f for every (closed)
PµTL formula g.

Proof. Let M = ({s1, s2, s3},T, L) be the (family of) Markov
chain(s) where: L(s1) = L(s2) = ∅, L(s3) = {a}, T(s1, s1) =
x,T(s1, s2) = y,T(s1, s3) = z, and T(s2, s2) = T(s3, s3) = 1,
with x, y, z ∈ (0, 1) and x + y + z = 1.

For every PCTL and/or closed PµTL formula g, we let
Px(g) be the proposition that “for the fixed x, there are in-
finitely many y making M, s1 |= g and there are infinitely
many y making M, s1 6|= g”. We now show that if g is a closed
PµTL formula, then there exists some xg < 1 such that Px(g)
does not hold whenever x ∈ (xg, 1).

• Such xg can be arbitrarily chosen if g = ⊥, g = >, g = a
or g = ¬a.

• In the case that g = g1 ∧ g2, assume by contradiction
that such xg does not exist, then it implies that for every
x ∈ (0, 1), there exists some x′ > x such that Px′ (g)
holds. Observe that M, s1 |= g implies both M, s1 |= g1
and M, s1 |= g2; and M, s1 6|= g implies either M, s1 6|= g1
or M, s1 6|= g2. Thus, we can infer that either xg1 or xg2

does not exist, which violates the induction hypothesis.

• Proof for the case of g = g1 ∨ g2 is similar to the above.

• If g = X∼pg′ and p ∈ (0, 1), whenever x ∈ (max{p, 1 −
p}, 1), since ∼∈ {>,≥}, then M, s1 |= g iff M, s1 |= g′
because y + z < p in such situation. In this case, we may
just let xg = max{xg′ , p, 1 − p}.

• If g = X≥1g′, then we need to distinguish two cases:
1) There exist x, y ∈ (0, 1) such that M, s1 |= g holds,
then we can immediately infer that both M, s2 |= g′ and
M, s3 |= g′. In addition, observe that truth values of g′ on
s2 and s3 are irrelevant to x and y. It implies that in such
case M, s1 |= g iff M, s1 |= g′, and hence, we may just let
xg = xg′ . 2) There is no such x and y having M, s1 |= g
holds, in such situation, xg can be any number in (0, 1).

• If g = X>0g′, then the proof is similar to the above.

• When g = X≥0g′ (or g = X>1g′), things would be trivial,
because g could be reduced to > (resp. ⊥) in such case.

• If g = µZ.g′, we let g0 = ⊥ and gi+1 = g′[Z/gi]. Since
that M is a 3-state Markov chain, then g and

∨
i≤3 gi

share the same truth value at every state of M. This in-
dicates that all least fix-points could be eliminated w.r.t.
such Markov chain.

• When g = νZ.g′, the preprocessing is almost similar, but
we just replace g with

∧
i≤3 gi where g0 = >.

Now, for the PCTL formula f = F≥0.5a, such x f does not ex-
ist, because, for every x ∈ (0, 1) we have: M, s1 |= f provided
that y ∈ [(1 − x)/2, 1); and M, s1 6|= f if y ∈ (0, (1 − x)/2).
This implies that Px( f ) holds for every x ∈ (0, 1), and hence
f cannot be equally expressed by any PµTL formula. �

Note that the value 0.5 in the previous two theorems can be
generalized to any other probability p ∈ (0, 1).

We also provide a comparison on the qualitative fragments
of PCTL and PµTL. Probabilities occurring in such fragments
can only be 0 or 1.

Theorem 5. Every qualitative PCTL formula can be equally
expressed by a qualitative PµTL formula.

Proof. We will give a constructive translation procedure,
which takes a qualitative PCTL formula g and outputs an
equivalent qualitative PµTL formula g̃. Inductively:

1. g̃ = ⊥ if g = ⊥, or its root operator is X>1, U>1 or R>1;
g̃ = > if g = >, or its root operator is X≥0, U≥0 or R≥0.

2. g̃ = g̃1 ∧ g̃2 if g = g1 ∧ g2; and g̃ = g̃1 ∨ g̃2 if g = g1 ∨ g2.

3. g̃ = X>0g̃′ if g = X>0g′; and g̃ = X≥1g̃′ if g = X≥1g′.

4. g̃ = µZ.(g̃2 ∨ (g̃1 ∧ X>0Z)) if g = g1U>0g2;
and g̃ = νZ.(g̃2 ∧ (g̃1 ∨ X≥1Z)) if g = g1R≥1g2.

5. g̃ = νZ.(g̃2 ∨ (g̃1 ∧ F̃>0g2 ∧ X≥1Z)) = νZ.(g̃2 ∨ (g̃1 ∧

µZ′.(g̃2 ∨ X>0Z′) ∧ X≥1Z)) if g = g1U≥1g2;
and g̃ = µZ.(g̃2 ∧ (g̃1 ∨ G̃≥1g2 ∨ X>0Z)) = µZ.(g̃2 ∧ (g̃1 ∨

νZ′.(g̃2 ∧ X≥1Z′) ∨ X>0Z)) if g = g1R>0g2.

The proof of equivalence could be done by induction on the
structure of the formula. �

Note that Thm. 5 holds because we are only concerned
about finite models in this paper. Interested readers may show
that it is not true for infinite Markov chains.

Theorem 6. The qualitative PµTL formula f = νZ.(a ∧
X>0X>0Z) cannot be expressed in qualitative PCTL.

Proof. Construct a series of Markov chains M′′2 ,M
′′
3 , . . . such

that each M′′n is the Markov chain ({s′′0 , s
′′
1 , . . . , s

′′
n },T′′n , L′′n ),

where T′′n (s′′0 , s
′′
0 ) = 1 and T′′n (s′′i+1, s

′′
i ) = 1 for each i < n. In

addition, L′′n (s′′i ) = {a} for each i , 1, and L′′n (s′′1 ) = ∅.
For a given PCTL formula g, let ĝ be the LTL formula ob-

tained from g by discarding all probability quantifiers, e.g.,
we have ĝ = aU(b ∨ G¬a) if g = aU≥0.3(b ∨ G>0.6¬a). Since
that from s′′n the Markov chain M′′n has exactly one infinite
path πn = s′′n , . . . , s

′′
1 , (s′′0 )ω, then for each n ≥ 2 we have

M′′n , s
′′
n |= g if and only if πn |= ĝ. It is shown in [Wolper,

1983] that M′′n , s
′′
n |= ĝ iff M′′n+1, s

′′
n+1 |= ĝ in the case of

n ≥ N′(ĝ) = N′(g), where N′(g) and N′(ĝ) are the nesting
depth of X-operator of g and ĝ, respectively. Thus, we have
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M′′n , s
′′
n |= g iff M′′n+1, s

′′
n+1 |= g in such situation. This implies

that νZ.(a∧X>0X>0Z) has no equivalent qualitative PCTL ex-
pression, because we cannot simultaneously have M′′n , s

′′
n |= f

and M′′n+1, s
′′
n+1 |= f for each n ≥ 2. �

Note that the conclusion of Thm. 6 is also pointed out
in [Cleaveland et al., 2005], and we here provide a detailed
proof. Indeed, this proof also works for general PCTL for-
mulae, and hence the property νZ.(a ∧ X>0X>0Z) even cannot
be expressed by any PCTL formula.

5 Automata Characterization
In this section, we will define a new type of automata rec-
ognizing (pointed) Markov chains, called probabilistic alter-
nating parity automata (PAPA, for short), and such automata
could be viewed as the probabilistic extension of those de-
fined in [Wilke, 2002].

A PAPA A is a tuple (Q, q0, δ,Ω) where: Q is a finite set of
states, q0 ∈ Q is the initial state, δ is the transition function
to be defined later, and Ω : Q { N, is a partial function of
coloring; in what follows, we say a state is colored if Ω is
defined for the state.

The notion of transition conditions over Q is inductively
defined as follows:

1. ⊥ and > are transition conditions over Q.
2. For every a ∈ A, the literals a and ¬a are transition

conditions over Q.
3. If q ∈ Q, then q is a transition condition over Q.
4. If q ∈ Q and p ∈ [0, 1], then #∼pq is a transition condi-

tion over Q, where ∼∈ {≥, >}.
5. If q1, q2 ∈ Q then both q1 ∨ q2 and q1 ∧ q2 are transition

conditions over Q.
The transition function δ assigns each state q ∈ Q a transi-

tion condition over Q.
We denote by RA the derived graph of A, its vertex set

is just Q, and there is an edge from q1 to q2 iff q2 appears
in δ(q1). We say that A is well-structured, if for every path
q1, q2, . . . , qn that forms a cycle (i.e., q1 = qn) in RA, we have
that: 1) there exists some 1 ≤ i < n such that δ(qi) = #∼pqi+1
with some p ∈ [0, 1]; 2) there exists some 1 ≤ j < n such that
q j is colored. In what follows, we are only concerned about
well-structured PAPA.

Given a pointed Markov chain (M, s0) with M = (S ,T, L)
and s0 ∈ S , a run of A over (M, s0) is a Q × S -labeled tree
(T, λ) fulfilling: λ(v0) = (q0, s0) for the root vertex v0; and for
each internal vertex v of T with λ(v) = (q, s) we require that
• δ(q) , ⊥, and if δ(q) = > then v has no child;
• a ∈ L(s) if δ(q) = a, and a < L(s) if δ(q) = ¬a;
• if δ(q) = q1 ∧ q2 then v has two children v1 and v2 re-

spectively having λ(v1) = (q1, s) and λ(v2) = (q2, s);
• if δ(q) = q1 ∨ q2 then v has one child v′ with λ(v′) ∈
{(q1, s), (q2, s)};

• v has one child v′ having λ(v′) = (q′, s), if δ(q) = q′;
• if δ(q) = #∼pq′ then v has a set of children v1, . . . , vn

such that λ(vi) = (q′, si), where
∑n

i=1 T(s, si) ∼ p.

For an infinite branch τ = v0, v1, . . . of T , let nτ be the number

max{ n | there are infinitely many i s.t. Ω(proj1(λ(vi))) = n}

where proj1(q, s) = q. A run (T, λ) is accepting if nτ is an
even number, for every infinite branch τ of T . A pointed
Markov chain (M, s0) is accepted by A if A has an accepting
run over it. We denote by L (A) the set consisting of pointed
Markov chains accepted by A.

Theorem 7. Given a closed PµTL formula f , there is a PAPA
A f such that: M, s |= f iff (M, s) ∈ L (A f ), for each pointed
Markov chain (M, s).

Proof. We just let A f = (Q f , q f , δ f ,Ω f ), where:

• Q f = {qg | g is a subformula of f }, and hence q f ∈ Q f ;

• δ f is defined as follows:

– δ f (q⊥) = ⊥ and δ f (q>) = >;
– δ f (qa) = a and δ f (q¬a) = ¬a;
– δ f (qg1∧g2 ) = qg1 ∧ qg2 and δ f (qg1∨g2 ) = qg1 ∨ qg2 ;
– δ f (qX∼pg) = #∼pqg;
– δ f (qµZ.g) = qg and δ f (qνZ.g) = qg;
– δ f (qZ) = qD f (Z).

• Ω f is defined at every state qZ with Z ∈ Z fulfilling: If
Z is a µ-variable (resp. ν-variable), then Ω f (qZ) is the
minimal odd (resp. even) number which is greater than
every Ω f (qZ′ ) such that D f (Z′) is a subformula of D f (Z).

It could be directly examined that A f is well-structured
since f is guarded. The proof of equivalence can be similarly
done as that in [Wilke, 2002] — the only different induction
step is to deal with transitions being of #∼pq (in that paper,
the corresponding cases are �q and ^q). Actually, we can
see that if a PAPA (Q, q, δ,Ω) corresponds to the PµTL for-
mula g, then the PAPA (Q ∪ {q′}, q′, δ[q′ 7→ #∼pq],Ω) must
correspond to X∼pg. �

6 Satisfiability Decision
It is known from Section 5 that the Satisfiability problem of
PµTL could be reduced to the Emptiness problem of PAPA. In
this section, we will further reduce it to parity game solving.

A parity game G is a tuple (V, E,C), where: V is a finite
set of locations, and V could be partitioned into two disjoint
sets V0 and V1; E ⊆ V × V is the set of moves, required to be
total; and C : V { N is a partial function of coloring, and we
say a location v is colored, if C(v) is defined. In addition, for
the game G, we require that each loop involves at least one
colored location.

Two players — player 0 and player 1, are respectively in
charge of V0 and V1 when G is being played. A play of
G starting from v0 ∈ V is an infinite sequence of locations
v0, v1, . . . made by player 0 and player 1 — for every i ∈ N,
the location vi+1 is chosen by player 0 (resp. player 1) with
(vi, vi+1) ∈ E whenever vi ∈ V0 (resp. vi ∈ V1).

Player 0 (resp. player 1) wins the play v0, v1, . . . if the max-
imal color occurring infinitely often in it is even (resp. odd)
— and we say that a color c occurs in this play if there is
some vi with C(vi) = c.
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A winning strategy for player i is a mapping Hi : V∗ ·V i →

V , such that for every play v0, v1, . . ., player i always wins if
v j+1 = Hi(v0, . . . , v j) whenever v j ∈ V i. In addition, Hi is
memoryless if Hi(v0, . . . , v j) agrees with Hi(v j) for every j.
Theorem 8 ([Gurevich and Harrington, 1982; Zielonka,
1998; Jurdziński, 1998]). For a parity game G, from every
location, there is exactly one player having a winning strat-
egy. The problem of deciding the winner at a location is in
UP ∩co-UP. In addition, if a player has a winning strategy
then she also has a memoryless one from the same location.

We use Wi(G) to denote the set consisting of all locations
from which player i has a winning strategy.

Given a PAPA A = (Q, q, δ,Ω), a gadget D of A is a finite
directed acyclic digram (P, γ) where P ⊆ Q, γ ⊆ P × P, and
for each q ∈ P:

1. if δ(q) = q′, then q′ ∈ P and (q, q′) ∈ γ;
2. if δ(q) = q1 ∧ q2 then q1, q2 ∈ P, and (q, q1), (q, q2) ∈ γ;
3. if δ(q) = q1 ∨ q2 then there is some i ∈ {1, 2} such that

qi ∈ P and (q, qi) ∈ γ,
4. q has no successor for the other cases.

For convenience, we sometimes directly write q ∈ D when-
ever D = (P, γ) and q ∈ P. We denote by D(A) the set con-
sisting of all gadgets of A. Since we require that each PAPA
A is well-structured, thenD(A) must be a finite set.

Given a sequence of gadgets D1,D2, . . . such that Di =
(Pi, γi), an infinite path within it is a sequence of states
q1,1, . . . , q1,`1 , q2,1, . . . , q2,`2 , . . . such that each (qi, j, qi, j+1) ∈ γi
and δ(qi,`i ) = #∼pi qi+1,1 for some pi ∈ [0, 1]. We say such an
infinite path is even (resp. odd) if the maximal color (w.r.t.
Ω) occurring infinitely often is even (resp. odd).

We say that a gadget D = (P, γ) is incompatible if there
exist q1, q2 ∈ P and δ(q1) = a, δ(q2) = ¬a for some a ∈ A; or
there is some q ∈ P with δ(q) = ⊥. Otherwise, we say that D
is compatible.

Let D be a gadget and Γ = {D1, . . . ,Dk} be a set of gad-
gets, we denote by Γ 
 D if there exist k positive numbers
x1, . . . , xk such that:

∑k
i=1 xi ≤ 1, and for each q ∈ D with

δ(q) = #∼pq′, we have
∑

q′∈Di
xi ∼ p. We in what follows

call x1, . . . , xk the enabling condition. Note that the relation

 could be decided by solving a linear system of inequality.

According to automata theory, we may construct a de-
terministic (word) parity automaton Ã = (Q̃, q̃, δ̃, Ω̃) were
δ̃ : Q̃ ×D(A)→ Q̃ and Ω̃ is a total coloring function. It takes
a gadget sequence as input, and accepts it if every gadget in it
is compatible and every infinite path within it is even.

Then, we may create a parity game GA = (VA, EA,CA) for
the PAPA A, in detail:

• VA = V0
A ∪V1

A, where V0
A = 2D(A)×Q̃ and V1

A = D(A)× Q̃.
• EA = {({(D1, q̃1), . . . , (Dk, q̃k)}, (Di, q̃i)) | 1 ≤ i ≤ k} ∪
{((D, q̃), {(D1, q̃1), . . . , (Dk, q̃k)}) | (D1, . . . ,Dk) 
 D,
and each q̃i = δ̃(̃q,Di)}.

• CA(D, q̃) = Ω̃(̃q), hence every location in V1
A is colored.

Theorem 9. Let the PAPA A = (Q, q, δ,Ω), then L (A) , ∅
if and only if there is some D ∈ D(A) with q ∈ D such that
{(D, δ̃(̃q,D))} ∈ W0(GA).

Intuitively, player 0 could extract a winning strategy from
an accepting run of A over any pointed Markov chain; and
conversely, one can construct a pointed Markov chain ac-
cepted by A according to the (memoryless) winning strategy
of player 0. Interested readers may find the detailed proof in
the accompanied report [Liu et al., 2015].

As a consequence of Thm. 7, Thm. 8 and Thm. 9 we have
the following main conclusion of this section.

Theorem 10. Both the Emptiness problem of PAPA and the
Satisfiability problem of PµTL are decidable, and both of
them are in 2EXPTIME.

Indeed, from Thm. 7 one can get a PAPA whose scale is
linear in the size of the input formula, and an n-state PAPA
could be converted to a parity game with scale 22O(n)

. From
standard game theory (see [Jurdziński, 1998; Wilke, 2002],
and see [Schewe, 2008] for an improved bound), and with a
similar analysis of [Wilke, 2002] (see also the analysis of the
coloring number in that paper), one can infer that this problem
is in 2EXPTIME.

7 Discussion
In this paper, we present the logic PµTL, a simple and suc-
cinct probabilistic extension of µTL. We have compared the
expressiveness of these two kinds of logics: In general, PµTL
captures ‘local’ and ‘stepwise’ probabilities; whereas PCTL
could describe ‘global’ probabilities in the system. Hence,
these two logics are orthogonal and complementary, and one
can obtain a more powerful and expressive logic by combing
them together, as done in [Castro et al., 2015]. i.e., we may
use formulae like (µZ.(a ∨ X≥0.8Z))U≥0.6(νZ′.(b ∧ F>0.3Z′)).
Model checking algorithm of such an extension can be ac-
quired from those of the underlying logics.

In this paper, we have also investigated the decision prob-
lem of PµTL, the key issue and the most challenging part is
to deal with probabilistic quantifiers when doing reduction
to parity games, which is a highly nontrivial extension of the
non-probabilistic case. As a cost, we have only now got an al-
gorithm with double-exponential time complexity for solving
it — in contrast, the Satisfiability problem for the standard
µTL is in EXPTIME.
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[Jurdziński, 1998] M. Jurdziński. Deciding the winner in par-
ity games is in UP∩co-UP. Information Processing Letters,
68(3):119–124, 1998.

[Katoen, 1998] J.-P. Katoen. Concepts, Algorithms, and Tools for
Model Checking. FAU, Lehrstuhl für Informatik VII Friedrich-
Alexander Universität Erlangen-Nürnberg, 2 edition, 1998. Lec-
ture Notes of the Course “Mechanised Validation of Parallel Sys-
tems”.

[Kozen, 1983] D. Kozen. Results on the propositional µ-calculus.
Theoretical Computer Science, 27:333–354, 1983.

[Liu et al., 2015] W. Liu, L. Song, J. Wang, and Lijun Zhang.
http://arxiv.org/abs/1504.07737, Apr 2015.

[McIver and Morgan, 2002] A. McIver and C. Morgan. Games,
probability and the quantitative µ-calculus qmµ. In LPAR, vol-
ume 2514 of Lecture Notes in Computer Science, pages 292–310.
Springer, 2002.

[McIver and Morgan, 2007] A. McIver and C. Morgan. Results on
the quantitative µ-calculus qmµ. TOCL, 8(1):3, 2007.

[Mio, 2012a] M. Mio. Game semantics for probabilistic modal µ-
calculi. PhD thesis, The University of Edinburgh, 2012.

[Mio, 2012b] M. Mio. Probabilistic modal µ-calculus with inde-
pendent product. Logical Methods in Computer Science, 8(4),
2012.

[Morgan and McIver, 1997] C. Morgan and A. McIver. A proba-
bilistic temporal calculus based on expectations. In L. Groves
and S. Reeves, editors, Proc. Formal Methods Pacific, pages 4–
22. Springer, 1997.

[Pnueli, 1977] A. Pnueli. The temporal logic of programs. In Proc.
of 18th IEEE Symposium on Foundation of Computer Science
(FOCS’ 77), pages 46–57. IEEE Computer Society, 1977.

[Schewe, 2008] S. Schewe. Synthesis of Distributed Systems. Phd
thesis, Saarbrücken, 2008.

[Singh, 1998] Munindar P. Singh. Applying the mu-calculus in
planning and reasoning about action. J. Log. Comput., 8(3):425–
445, 1998.

[Sistla and Clarke, 1985] A. P. Sistla and E. M. Clarke. The com-
plexity of propositional linear temporal logics. Journal of Assoc.
Comput. Mach., 32(3):733–749, 1985.

[Vardi, 1985] M. Y. Vardi. Automatic verification of probabilistic
concurrent finite-state programs. In FOCS, pages 327–338. IEEE
Computer Society, 1985.

[Walukiewicz, 2000] I. Walukiewicz. Completeness of Kozen’s ax-
iomatization of the propositional µ-calculus. Information and
Computation, 157:142–182, 2000.

[Wilke, 2002] T. Wilke. Alternating tree automata, parity games,
and modal µ-calculus. Bull, Belg, Math, Soc, 8(2):359–391,
2002.

[Wolper, 1983] P. Wolper. Temporal logic can be more expressive.
Information and Control, 56(1–2):72–99, 1983.

[Zielonka, 1998] W. Zielonka. Infinite games on finitely coloured
graphs with applications to automata on infinite trees. Theoretical
Computer Science, 200:135–183, 1998.

888




