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Abstract

Sum-product networks (SPNs) are rooted, directed
acyclic graphs (DAGs) of sum and product nodes
with well-defined probabilistic semantics. More-
over, exact inference in the distribution represented
by an SPN is guaranteed to take linear time in the
size of the DAG. In this paper we introduce an al-
gorithm that learns the structure of an SPN using
a greedy search approach. It incorporates meth-
ods used in a previous SPN structure-learning al-
gorithm, but, unlike the previous algorithm, is not
limited to learning tree-structured SPNs. Several
proven ideas from circuit complexity theory along
with our experimental results provide evidence for
the advantages of SPNs with less-restrictive, non-
tree structures.

1 Introduction
Sum-product networks (SPNs) are a recently-proposed class
of probabilistic models in which exact inference is guaran-
teed to take linear time in the size of the model. They can
efficiently represent a larger class of distributions than some
other models such as mixture models and thin junction trees
[Poon and Domingos, 2011]. SPN parameters can be learned
using expectation-maximization or gradient descent in both
the generative and discriminative settings [Poon and Domin-
gos, 2011; Gens and Domingos, 2012].

Results [Gens and Domingos, 2012] on twenty real-world
datasets compare SPNs to Bayesian networks learned using
the WinMine toolkit [Chickering, 2002] and to Markov net-
works learned using two other methods [Della Pietra et al.,
1997; Ravikumar et al., 2010]. In these experiments SPNs
and graphical models fit the data with comparable likelihood,
but the inference accuracy of SPNs is better, as measured us-
ing conditional-likelihood. Also, SPN inference is about two
orders of magnitude faster. Similar results [Rooshenas and
Lowd, 2014] were found when comparing an augmented SPN
to mixtures of trees [Meila and Jordan, 2001] and latent tree
models [Choi et al., 2011].

SPNs are represented using a directed, acyclic graph
(DAG) of sum and product nodes. Recent approaches to SPN
learning focus on the structure of this graph along with its

parameters [Rooshenas and Lowd, 2014; Gens and Domin-
gos, 2013; Peharz et al., 2013; Dennis and Ventura, 2012].
These algorithms add nodes in either a top-down or bottom-
up fashion until a complete SPN is constructed. In contrast,
the algorithm introduced in this paper uses a search proce-
dure that incrementally expands a simple, but complete, SPN
to produce a series of increasingly complex SPNs.

SPNs and multilinear arithmetic circuits (MACs), a model
from circuit complexity theory, are closely related. Both
are represented by DAGs whose internal nodes are sums
and products and both compute multilinear polynomials in
their leaf nodes. Multilinear arithmetic formulas (MAFs) are
MACs whose DAG is a tree. Raz has shown that MACs are, in
a sense, more powerful than MAFs: he proves a certain poly-
nomial to be computable by a MAC of polynomial-size but
only computable by a MAF of super-polynomial-size [Raz,
2006].

In a way this result is irrelevant to SPNs. With SPNs we
are concerned with representing probability distributions, not
computing polynomials. In other words, we care that an SPN
computes a certain function, not that it uses a certain polyno-
mial to do so. Still we conjecture that DAG-structured SPNs
are more powerful than tree-structured SPNs with respect to
their ability to compactly represent probability distributions.

We do not attempt to prove or disprove this conjecture here.
Instead we introduce a greedy structure search algorithm that
learns DAG-structured SPNs and compare this with a struc-
ture learning algorithm that learns tree-structured SPNs. Em-
pirical results provide evidence that DAG-SPNs have advan-
tages over tree-SPNs. We also prove a theorem that helps
clarify and simplify certain SPN concepts and helps us define
a useful approximate likelihood function for SPNs.

2 Previous Work
Delalleau & Bengio [2011] connect SPNs to work in both
circuit complexity and deep learning. They provide theoreti-
cal evidence for the utility of deep learning by proving lower
bounds on the size of shallow (depth two) sum-product net-
works for two classes of functions F and G. They show an
exponential separation in the size of shallow and deep SPNs;
to compute functions in F a shallow SPN requires at least
2
√
n−1 nodes while a deep SPN requires only n− 1 nodes.
Darwiche [2003] introduced the idea of representing a

Bayesian network using polynomials, called network polyno-
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mials, and of computing these polynomials using arithmetic
circuits. He also showed how to perform inference using
network polynomials and their corresponding circuits. This
work was foundational to the introduction of SPNs by Poon
& Domingos [2011].

Lowd & Domingos [2008] proposed the first search algo-
rithm for learning the structure of arithmetic circuits. Since
an arithmetic circuit can be converted to an equivalent SPN,
this work can be thought of as the first SPN structure search
algorithm. Their algorithm builds an arithmetic circuit that
maintains equivalence with a Bayesian network. A result of
this equivalence constraint is that a single step in the search
process can dramatically increase the size of the arithmetic
circuit. Our search algorithm increases the size of an SPN by
a modest amount at each step.

Several SPN structure learning algorithms have been pro-
posed; these we denote and reference as follows: DV [Den-
nis and Ventura, 2012], GD [Gens and Domingos, 2013], RL
[Rooshenas and Lowd, 2014], and PGP [Peharz et al., 2013].
DV, GD, and RL are top-down SPN structure learning algo-
rithms that start with a root node and recursively add children
until a full SPN has been built. DV uses an ad-hoc clustering
method to build several SPNs that are then merged together;
GD and RL take a more principled approach that creates prod-
uct node children using tests of independence and that creates
sum node children by learning naive Bayes models. GD and
RL construct trees, with the leaves of GD being univariate
distributions and the leaves of RL being multivariate distribu-
tions [Lowd and Rooshenas, 2013]; the graphs constructed by
DV and PGP are not restricted to trees. PGP uses a bottom-up
approach, merging smaller SPNs into larger ones. Another
approach learns an SPN structure by sampling from a prior
over tree or DAG structures [Lee et al., 2014]; no experimen-
tal results have been reported yet for this algorithm.

One of the difficulties in SPN structure learning has been
taking advantage of the architectural flexibility of SPNs. GD
and RL use well-justified algorithms but limit themselves
to learning SPN trees—except at the leaf nodes in the case
of RL, which can be arithmetic-circuit representations of
Markov networks. One of the aims of this paper is to pro-
vide an algorithm that employs the principled approaches of
GD and RL while learning DAG-structured SPN.

3 Sum-Product Networks
Indicators for a random variable Xi are defined as

λXi=j =

{
1 if Xi = j or Xi is unknown
0 otherwise

where j is one of the values that Xi can take. An SPN can be
represented as a rooted DAG whose leaf nodes are indicators
and whose internal nodes are sums and products. If an indi-
cator for Xi appears in an SPN then its scope contains Xi.
LetX = {X1, . . . , Xm} be the set of random variables in the
scope of an SPN.
Definition 1. A sum-product network (SPN) is:

1. an indicator node,
2. a product node whose children are SPNs with disjoint

scopes, or
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× × ×

+H1 +
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+
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+
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Figure 1: The bold lines show a complete sub-circuit. The cir-
cuit corresponds to variable settings H0= 2, H2= 1, H4= 1,
H6= 1, H7= 0, H8= 0, H10= 1, X1= 1, X2= 0, X3= 0, and
X4= 1.

3. a sum node whose children are SPNs with the same
scope, and whose edges to these children have non-
negative weights.

We do not use the similar definition from Gens & Domin-
gos [2013], even though it handles continuous variables more
naturally, because Definition 1 simplifies the discussion in
this paper. We assume without loss of generality that the chil-
dren of product nodes are sum nodes and that the children of
sums are either products or indicators.
Definition 2 (based on Chan & Darwiche [2006]). A tree c
embedded within an SPN is a complete sub-circuit if and only
if it can be constructed recursively, starting from the root of c,
by including all children of a product node p (and the edges
connecting them to p), and exactly one child of a sum node
s (and the edge connecting it to s). Let C be the set of all
complete sub-circuits embedded in an SPN.

An SPN computes a multilinear polynomial in which indi-
cators appear as variables. For any node n in an SPN let fn
be the polynomial computed by it and let ch(n) be its chil-
dren. Let wst be the weight on the edge between sum node s
and its child t; we assume that

∑
t∈ch(s) wst = 1. The root

node r of an SPN computes polynomial fr as follows. If r
is the indicator node for λXi=j then fr = λXi=j ; if r is a
product node then fr =

∏
t∈ch(r) ft; if r is a sum node then

fr =
∑
t∈ch(r) wrtft. We say that an SPN computes the poly-

nomial computed by its root node. The polynomial computed
by a complete sub-circuit is defined similarly. For input x
and polynomial fn we let fn(x) be the value of fn at input
x. For input x and gc, the polynomial computed by complete
sub-circuit c, we let c(x) = gc(x) be the value of gc at input
x.

A proof of the following theorem appears in the appendix.
Theorem 1. For some SPN let r be its root and let gc be the
polynomial computed by c ∈ C. Then fr =

∑
c∈C gc.

Using Theorem 1 we place a simple probabilistic interpre-
tation on the computation of an SPN. For c ∈ C the poly-
nomial gc =

∏
w∈Wc

w
∏
c(λX), where Wc is the multiset
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of weights in c and
∏
c(λX) is the product of indicators in

c. We interpret this by letting
∏
w∈Wc

w = P (Z= c) and∏
c(λX) = P (X|Z= c), where Z is a hidden variable whose

values are the circuits in C. Therefore gc = P (X,Z= c) and

fr =
∑
c∈C

gc =
∑
c∈C

P (X,Z= c) = P (X).

Thus an SPN represents a joint distribution over X . From
Definition 1 we see that each node n in an SPN is the root
of its own SPN. Let Φn be the distribution represented by the
SPN rooted at n.

SPNs compute the marginal probability of any subset of
X when the indicators for variables not in the subset are all
set to one. Thus marginal and, consequently, conditional in-
ference always takes time linear in the size of the SPN [Poon
and Domingos, 2011]. Inferring argmax

X,Z
P (X,Z), called the

most probable explanation (MPE), is also done in linear time.
After replacing sum nodes with max nodes, the SPN is eval-
uated in an upward pass followed by a downward pass. The
downward pass assigns the (or an) MPE circuit to Z and as-
signs values to any unobserved variables in X . The circuit is
constructed by starting at the root, traversing to all children of
product nodes and at sum nodes traversing to the (or a) child
whose weighted value is a maximum [Poon and Domingos,
2011; Chan and Darwiche, 2006]. We let c∗x be an MPE cir-
cuit for variable setting X = x.

Poon & Domingos [2011] associate with each sum node
s a hidden variable Hs whose values are the children of s.
Similar to how we see hidden variable Z as being summed
out of P (X,Z), they view an SPN as summing out H from
P (X,H), where H is the set of all Hs. The benefits of our
interpretation are a simpler mathematical formulation and a
clearer relationship to MPE inference. We do make use of
the variables in H , however, and relate them to Z by way of
complete sub-circuits as follows. A complete sub-circuit c
assigns values to a subset of H and all of the observed vari-
ables. If the edge from s to t ∈ ch(s) is in c then Hs = t. If
the indicator node for λXi=j is in c then Xi = j. Let Hc be
the set of variables to which c assigns values. See Figure 1.

4 SPN Structure Search
To learn an SPN, our greedy structure search algorithm uses
a training set T that contains i.i.d. samples of the variables
in X . For each product node p we use T to create another
dataset Tp. We infer for each training instance x ∈ T the
MPE state X=x, Z= c∗x, which in turn assigns values to the
variables in Hc∗x . If p is in c∗x (for some x ∈ T ) then all
of its children are in c∗x as well and c∗x assigns values to all
Hs, s ∈ ch(p). Thus MPE inference gives us a sample of the
hidden variables associated with children of p; this sample is
added to Tp.

In brief, a step in the search is as follows. We use the
datasets Tp to select a product node p∗ (Section 4.2). We
pass Tp∗ to modified versions of the variable- and instance-
partitioning procedures (Section 4.2) found in GD [Gens and
Domingos, 2013]. The structure modification algorithm (Sec-
tion 4.1) then uses the partitioning of Tp∗ to change the

+ · · · +

× p∗

· · · +
si

+
sj
· · ·

...
...

...
...

+ · · · +

× p∗

· · · +
s
· · ·

...
... ×p1 × p2 ...

...

+ + + +

Figure 2: An example of the MIXCLONES algorithm ap-
plied to the product node p∗ and a subset of its children
S1 = {si, sj} in the network fragment on the left (k = 2).
The algorithm replaces the bold nodes in the left with the bold
nodes in the network fragment on the right.

SPN structure at p∗. As described, variable- and instance-
partitioning in GD applies at the leaves of half-formed SPNs.
The use of the datasets Tp broadens the applicability of these
procedures to the internal nodes of SPNs.

4.1 Search Operator
The structure modification algorithm, or structure operator,
we use is called MIXCLONES and is outlined in Algorithm 1.
An example of applying this operator to an SPN is shown in
Figure 2. By analyzing the scopes of the newly added nodes,
we can see that the operator transforms one SPN into another
SPN. The new SPN has more parameters, making it more
flexible in approximating a target distribution.

Product node p∗, a subset of its children S1, and an integer
k are given as input to MIXCLONES. The set S1 identifies
the sub-distribution

∏
s′∈S1

Φs′ , which is assumed to not fit
the training data well enough. MIXCLONES replaces it with a
more expressive distribution: a mixture of k clones of the sub-
distribution (where the mixing coefficients and parameters of
each sub-distribution are subsequently changed, with the goal
of better fitting the training data).

MIXCLONES builds the mixture of clones as follows. It
removes the connections between p∗ and the nodes in S1. It
then creates k−1 clone sets, S2, . . . , Sk, of the set S1; a clone
set contains, for each s′ ∈ S1, a corresponding sum node with
the same set of children as s′. MIXCLONES creates product
node pi for each set Si (including p1 for S1), and adds pi as
the parent of the nodes in Si. The product nodes pi now repre-
sent the k clones of the sub-distribution

∏
s′∈S1

Φs′ . Adding
a new sum node s as parent to the nodes pi creates the mix-
ture of clones: Φs =

∑
i wspi

∏
s′∈Si

Φs′ . The mixture is
tied back in to the SPN by adding p∗ as the parent of s. Sum
node s is returned.

The weights wspi of s are the mixing coefficients of the
mixture model Φs and the weights of the sum nodes in
S1, . . . , Sk are the sub-distribution parameters. Outside of
MIXCLONES these parameters are chosen to (indirectly) in-
crease the training set likelihood.
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4.2 Search Algorithm
This section describes and justifies Algorithm 2
(SEARCHSPN), our SPN structure search procedure.
At a high level it is simply a repeated application of
MIXCLONES followed by some parameter updating. This
requires selecting p∗, S1, and k at each search iteration.
We now explain how these selections are made and how
parameter updating is done.

Selecting p∗.
We think of product node p∗ as identifying the weakest point
in the SPN structure, where we say a node is weaker than
another node if it contributes less to the likelihood. An ap-
proximate likelihood function L̃ gives us a simple method for
measuring weakness. Using Theorem 1, the true likelihood
can be written as L(fr|T ) =

∏
x∈T

∑
c∈C c(x). The approx-

imation is derived from L by replacing the sum with a max
operator. Thus

L̃(fr|T ) =
∏
x∈T

c∗x(x), (1)

where c∗x is, as defined before, the circuit whose output is
maximal for input x.

Remember that c∗x(x) =
∏
w∈Wc∗x

w, where here we as-
sume that when X=x the indicators in c∗x take the value
one. Substituting this expression into Equation 1 we see that
L̃ =

∏
x∈T

∏
w∈Wc∗x

w is a product of weights in the SPN;
weights in the product may appear more than once. We will
reorder the product of weights to assign partial responsibility
for the value of L̃ to each product node.

We define the multiset Wr for root node r and, letting P
be the set of product nodes, define the multiset Wp for every
p ∈ P . For some x ∈ T , if product node p and weight wst
are both in c∗x, and p is a parent of s, then we add wst to Wp;
if wst is in c∗x and s = r then we add wst to Wr. With these
definitions it is possible to rewrite L̃ as

L̃(fr|T ) =

( ∏
w′∈Wr

w′

) ∏
p∈P

∏
w∈Wp

w.

Product node p is said to be responsible for multiplying into
L̃ the value

∏
w∈Wp

w. Therefore p∗ = argmin
p

∏
w∈Wp

w

is the product node that contributes least to a high value of L̃.

Algorithm 1 MIXCLONES(p∗, S1 , k)
Input: product node p∗, S1 ⊆ ch(p∗), k > 1
Output: sum node s
remove the edge between p∗ and each s ∈ S1

s← new sum node
set p∗ as the parent of s
S2, . . . , Sk ← k − 1 clones of S1

for all Si ∈ {S1, . . . , Sk} do
pi ← new product node
set s as the parent of pi
set pi as the parent of each s′ ∈ Si

end for
return s

Algorithm 2 SEARCHSPN(N , T )
Input: SPN N , training instances T
while stop criteria not met do

p∗ ← argmin
p

∏
w∈Wp

w

use Tp∗ to partition {Hs|s ∈ ch(p∗)} into
approximately independent subsets Vj

for all Sj = {s|Hs ∈ Vj} where |Sj | > 1 do
partition Tp∗ into k groups Ti of similar

instances, ignoring variables not in Vj
s← MIXCLONES(p∗, Sj , k)
update weights of s and its grandchildren

end for
end while

Selecting S1 and k.
With p∗ selected, we would like to change the structure of
the SPN at p∗ such that the distribution Φp∗ =

∏
s∈ch(p∗) Φs

better fits the training data T . Since it is unclear how to do
this directly, SEARCHSPN instead solves a simpler, related
problem that admits the use of the variable- and instance-
partitioning methods of GD. More specifically, it changes
the structure of the SPN such that the distribution Ψp∗ =∏
s∈ch(p∗) Ψs better fits the training set Tp∗ , where Ψs, for

each s ∈ ch(p∗), is a categorical distribution over the vari-
able Hs and its parameters are the weights of s.

If the variables in Vp∗ = {Hs|s ∈ ch(p∗)} are mutu-
ally independent then Ψp∗ is an appropriate model. If, how-
ever, dependencies exist amongst the variables in some subset
Vj ⊆ Vp∗ then there will be a loss of likelihood. SEARCH-
SPN attempts to detect such subsets Vj that also have no de-
pendencies with the other variables Vp∗ \ Vj . Calling MIX-
CLONES with S1 set to {s|Hs ∈ Vj} changes the structure
of the SPN to better model the dependencies in Vj . We now
describe how SEARCHSPN selects subsets Vj and how it fits
the model created by MIXCLONES to the data Tp∗ .

Variable-partitioning, or selecting subsets Vj , can be done
empirically by analyzing Tp∗ as follows. SEARCHSPN de-
tects pairwise dependencies among the variables in Vp∗ ,
builds a graph representation of these dependencies, and par-
titions Vp∗ by finding the connected components in the graph.
It uses a normalized mutual information measure (and tunable
threshold τ ) to test for pairwise dependencies. MIXCLONES
is called once for each non-singleton subset in the partition of
Vp∗ . If the partition only contains singleton subsets then p∗ is
added to a blacklist so that it is not selected again and a new
search iteration is started.

After selecting Vj ⊆ Vp∗ , SEARCHSPN builds a mixture
model to explain the dependencies amongst the variables in
Vj . It does this by fitting the model to TVj , the portion of
the dataset Tp∗ that involves only variables in Vj . The mix-
ture model is defined as

∑k
i=1 wi

∏
Hs∈Vj

Ψ
(i)
s , where the

wi are mixing coefficients and each component
∏
Hs∈Vj

Ψ
(i)
s

is a product of categorical distributions Ψ
(i)
s over the vari-

ables in Vj . We use K-means to partition TVj into k datasets
T1, . . . , Tk and, assigning Ti to the ith component, set the
mixture model parameters to their maximum likelihood es-
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timate. The parameters of the ith categorical distribution over
Hs, Ψ

(i)
s , are set to maximize its likelihood given the dataset

Ti, where we ignore all variables in Ti except Hs. Mixture
coefficient wi is set to |Ti|/|TVj

|.
We could use hard EM instead ofK-means, but Rooshenas

& Lowd report little difference between the two methods
[Rooshenas and Lowd, 2014]. We run K-means several
times, increasing k on each run, and select the k that leads
to the mixture model with highest penalized likelihood. Like
GD we penalize the likelihood by placing an exponential
prior on k, P (k) ∝ exp(−γk|Vj |), where γ is a tunable pa-
rameter.

Updating Parameters and Efficiency.
SEARCHSPN calls MIXCLONES with S1 set to {s|Hs ∈ Vj}
and this returns a sum node that we denote sVj

. The weights
of sVj

are set to the mixing coefficients wi and the weights
of the sum nodes in S1, . . . , Sk (the grandchildren of sVj

)
are set using the distributions Ψ

(i)
s as follows. Let Si be the

grandchildren of sVj
from its ith child. We set the weights of

each s′ ∈ Si to the parameters of Ψ
(i)
s , where s is chosen as

follows. If Si = S1 then we set s = s′; otherwise we set s to
be the node in S1 that s′ is a clone of.

A key technical problem in implementing our search algo-
rithm is maintaining the training sets Tp as the SPN graph
structure changes. The obvious method is to re-build these
sets from scratch after each search step, but this requires a
full pass through the dataset, evaluating the SPN for each in-
stance. We avoid this (to almost the same effect) by updating
only those sets directly affected by the search step.

Our structure search algorithm uses data likelihood as its
scoring function. We stop when the likelihood of a validation
set reaches a maximum. To reduce the computational burden
we take many steps in the search space before computing the
likelihood. If the likelihood begins to drop we intelligently
re-trace our steps to find an SPN with high likelihood.

5 Experiments

We compare SEARCHSPN and LEARNSPN (from GD) on
twenty datasets that were recently used in Rooshenas and
Lowd [2014] and Gens and Domingos [2013]. We also
compare the algorithms on a set of artificially-generated
datasets based on the permanent of an n × n matrix.
For each dataset we run a grid search over hyperpa-
rameter values γ ∈ {0.1, 0.3, 1.0, 3.0, 10.0} and τ ∈
{0.003, 0.01, 0.03, 0.1, 0.3}, the cluster penalty and pairwise
dependency threshold, respectively. Chosen models are those
with the highest likelihood on a validation set. Table 1 and
Table 2 show the mean test set likelihood over ten runs.

We implement LEARNSPN using the same variable- and
instance-partitioning code that we use in SEARCHSPN. We
do this to make the algorithms as similar as possible so that re-
sult differences in our experiments can be attributed as much
as possible to the different classes of SPN structure that the
algorithms are able to learn (DAG vs. tree).

Table 1: The left two columns show log-likelihoods on 20
datasets for the DAG-SPN (learned using SEARCHSPN) and
tree-SPN (learned using LEARNSPN from GD) models. Bold
numbers indicate statistically significant results with p =
0
.
05

.

Dataset DAG-SPN Tree-SPN

NLTCS -6.072 -6.058
MSNBC -6.057 -6.044
KDDCup 2k -2.159 -2.160
Plants -13.127 -12.868
Audio -40.128 -40.486

Jester -53.076 -53.595
Netflix -56.807 -57.515
Accidents -29.017 -29.363
Retail -10.971 -10.970
Pumbs-start -28.692 -25.501
DNA -81.760 -81.993
Kosarek -10.999 -10.933
MSWeb -9.972 -10.300
Book -34.911 -36.288
EachMovie -53.279 -54.627

WebKB -157.883 -164.615
Reuters-52 -86.375 -92.796
20 Newsgrp. -153.626 -164.188
BBC -252.129 -261.778
Ad -16.967 -18.613

5.1 Permanent Distribution

A result from circuit complexity theory shows that a MAF
cannot compute the permanent of an n × n matrix unless it
is super-polynomial in size [Raz, 2009]. We also assume it is
a difficult problem for MACs since computing the permanent
is #P-complete [Valiant, 1979].

We build MNPerm, a set of artificial datasets based on the
permanent. Let aij be the entries in an n× n matrix. Let Sn
be the set of all permutations of {1, . . . , n}. Then the perma-
nent is defined as

∑
σ∈Sn

∏n
i=1 aiσ(i). Viewing the entries

aij as variables we see that this expression is a multilinear
polynomial. It defines an unnormalized probability distribu-
tion over variables X1, . . . , Xn if we view the entries aij as
indicator variables, where aij = λXi=j . Thus each variable
Xi is discrete and can take one of n values. This distribu-
tion evaluates to zero unless each variable takes a value that
is different from the value taken by every other variable. The
partition function is n!.

For each n ∈ {2, . . . , 9} we construct a fully-connected
pairwise Markov network whose distribution is a softened
version of the permanent distribution. We do this by defin-
ing the factor for each pair of variables Xi, Xj to take the
value one if Xi = Xj and take the value ten otherwise. The
datasets used to produce the results in Table 2 were gener-
ated by sampling from the constructed Markov networks us-
ing Gibbs sampling.
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Table 2: Log-likelihood of the MNPerm datasets for the
DAG-SPN and tree-SPN models. Bold numbers indicate sta-
tistically significant results with p = 0.05. The right column
indicates the ratio of the average size of the two models.

n DAG-SPN Tree-SPN |DAG|/|Tree|
2 -0.192 -0.216 1.14
3 -1.656 -1.646 1.13
4 -3.309 -3.651 1.05
5 -5.030 -6.129 1.23
6 -6.867 -8.834 1.04
7 -8.821 -11.809 1.09
8 -11.650 -15.392 1.07
9 -14.297 -18.811 1.06

5.2 Observations

The performance of SEARCHSPN is better than LEARNSPN
on thirteen of the twenty datasets and worse on six of them.
A similar outcome is seen when comparing the SEARCH-
SPN results with the results reported in [Gens and Domingos,
2013], although statistical significance cannot be determined
in this comparison.

Comparing to the results reported in [Rooshenas and
Lowd, 2014]—again without any significance claim—we see
that SEARCHSPN only gets a higher likelihood on the Ad
dataset. One explanation for the success of the RL models is
that, like SEARCHSPN models, they are not restricted to be-
ing tree-structured. Leaf nodes in RL models are multivariate
Markov networks modeled using arithmetic circuits that are
not restricted to having a tree structure.

SEARCHSPN arguably has an advantage over RL models
in that it seems to produce smaller networks in shorter train-
ing times. We have model-size and training-time data for RL
models [Rooshenas, 2014] on six of the datasets (NLTCS,
KDDCup 2k, Book, 20 Newsgrp., and Ad). The models
learned by RL range in size from 385k to 1.2M nodes and the
DAG-SPNs ranged in size from 2k to 114k nodes. Learning
times for RL ranged from 19m to 15.7h and the DAG-SPNs
ranged from 3m to 1.4h. For any of these datasets the DAG-
SPN has at least 10 times fewer nodes and its learning time
is at least 7 times faster. The learning-time results are less
definitive than the model-size results since some or all of the
difference reported here could be due to differences in such
factors as the hardware and programming language used in
the experiments, and not due to differences in the algorithms.
While further investigation is warranted, SEARCHSPN seems
to produce compact models quickly.

The results in Table 2 for the MNPerm datasets show a
clear separation in likelihood between DAG-SPNs and tree-
SPNs as n increases. And the difference does not seem due
to a difference in the size of the learned SPNs since the DAG-
structured SPNs are only marginally larger. These results
support the idea that DAG-structured SPNs have a distinct
advantage over tree-structured SPNs.

6 Conclusion
SEARCHSPN is the first algorithm designed for SPNs that
takes a search approach to structure-learning. In contrast with
previous work it does not dramatically increase the size of the
SPN at any point in the search and it uses principled methods
without restricting the class of learned structure to trees.

We have linked SPNs to the MAC and MAF models from
circuit complexity theory and highlighted some interesting
connections to that field that suggest tree-structured models
may be less powerful than DAG-structured models. Our ex-
periments indicate that being able to learn a wider class of
SPN structures can be advantageous. Future work includes
better understanding what types of datasets and distributions
benefit from a DAG-structured SPN and what types can be
well-modeled with tree-structured SPNs.

A Proof of Theorem 1
Proof. The proof is by induction from the leaf nodes to the
root node; thus if r has children we assume that for any t ∈
ch(r) ft =

∑
c∈Ct

gc. The proof is also broken into the cases
from Definition 1. Let Cn be the set of complete sub-circuits
in the SPN rooted at node n (thus C = Cr).

Case 1. Let r be an indicator node for λX=i. Then fr =
λX=i. Since C = {c′}, where c′ consists of the node r,
gc′ = λX=i. Thus fr = gc′ =

∑
c∈C gc.

Case 2. Let r be a product node whose children are SPNs
with disjoint scopes. Let ch(r) = {t1, . . . , tm}, C× be the
Cartesian product

∏m
i=1 Cti , and c× = (c1, . . . , cm) ∈ C×.

The scopes of the children of r are disjoint so any two cir-
cuits ci, cj , ci 6= cj from c× have no common nodes or edges.
Thus every c× yields a unique c ∈ C using the follow-
ing construction. Add r, add r’s edges, and add the nodes
and edges in each ci; then gc =

∏m
i=1 gci . Every circuit

in C can be constructed in this manner. Thus the construc-
tion is a one-to-one and onto mapping from C× to C. By
definition fr =

∏m
i=1 fti and by the inductive hypothesis

fr =
∏m
i=1

∑
c′∈Cti

gc′ . Multiplying out the right-hand side
yields fr =

∑
c×∈C×

∏m
i=1 gci and applying the mapping

yields fr =
∑
c∈C gc.

Case 3. Assume r is a sum node whose children are SPNs
with the same scope. Let C∪ =

⋃
t∈ch(r) Ct. Every c′ ∈

C∪ yields a unique c ∈ C using the following construction.
Add r, add the edge from r to the root t of c′, and add the
nodes and edges in c′; then gc = wrtgc′ . Every circuit in C
can be constructed in this manner. Thus the construction is
a one-to-one and onto mapping from C∪ to C. By definition
fr =

∑
t∈ch(r) wrtft and by the inductive hypothesis fr =∑

t∈ch(r) wrt
∑
c′∈Ct

gc′ . The double summation ranges over
C∪ so fr =

∑
c′∈C∪ wrtgc′ . Applying the mapping yields

fr =
∑
c∈C gc.
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