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Abstract

AUC (Area Under ROC Curve) has been an impor-
tant criterion widely used in diverse learning tasks.
To optimize AUC, many learning approaches have
been developed, most working with pairwise surro-
gate losses. Thus, it is important to study the AUC
consistency based on minimizing pairwise surro-
gate losses. In this paper, we introduce the general-
ized calibration for AUC optimization, and prove
that it is a necessary condition for AUC consis-
tency. We then provide a sufficient condition for
AUC consistency, and show its usefulness in study-
ing the consistency of various surrogate losses, as
well as the invention of new consistent losses. We
further derive regret bounds for exponential and lo-
gistic losses, and present regret bounds for more
general surrogate losses in the realizable setting.
Finally, we prove regret bounds that disclose the
equivalence between the pairwise exponential loss
of AUC and univariate exponential loss of accuracy.

1 Introduction
AUC (Area Under ROC Curve) has been an important cri-
terion widely used in diverse learning tasks [Freund et al.,
2003; Kotlowski et al., 2011; Flach et al., 2011; Zuva and
Zuva, 2012]. Owing to its non-convexity and discontinu-
ousness, direct optimization of AUC often leads to NP-hard
problems. To make a compromise for avoiding computational
difficulties, many pairwise surrogate losses, e.g., exponen-
tial loss [Freund et al., 2003; Rudin and Schapire, 2009],
hinge loss [Brefeld and Scheffer, 2005; Joachims, 2005;
Zhao et al., 2011] and least square loss [Gao et al., 2013],
have been widely adopted in practical algorithms.

It is important to study the consistency of these pairwise
surrogate losses. In other words, whether the expected risk
of learning with surrogate losses converge to the Bayes risk?
Here, consistency (also known as Bayes consistency) guaran-
tees the optimization of a surrogate loss will yield an optimal
solution with Bayes risk in the limit of infinite sample.
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This work presents a theoretical study on the consistency
of AUC optimization based on minimizing pairwise surrogate
losses. The main contributions include:

i) We introduce the generalized calibration, and prove that
it is necessary yet insufficient for AUC consistency (cf.
Theorem 1). This is because, for pairwise surrogate
losses, minimizing the expected risk over the whole dis-
tribution is not equivalent to minimizing the conditional
risk on each pair of instances from different classes. For
example, hinge loss and absolute loss are shown to be
calibrated but inconsistent with AUC.

ii) We provide a sufficient condition for the AUC consis-
tency based on minimizing pairwise surrogate losses (cf.
Theorem 2). From this finding, we prove that exponen-
tial loss, logistic loss and distance-weighted loss are con-
sistent with AUC. In addition, this result suggests the in-
vention of some new consistent surrogate losses such as
q-norm hinge loss and general hinge loss.

iii) We present regret bounds for exponential and logistic
losses (cf. Theorem 3 and Corollary 5). For general
surrogate losses, we present the regret bounds in the re-
alizable setting (cf. Theorem 4).

iv) We provide regret bounds to disclose the equivalence
(cf. Theorems 5 and 6) between the pairwise exponen-
tial surrogate loss of AUC and univariate exponential
surrogate loss of accuracy. As a result, the univariate
exponential loss is consistent AUC, and the pairwise ex-
ponential loss is consistent with accuracy by selecting a
proper threshold. One direct consequence of this finding
is the equivalence between AdaBoost and RankBoost in
the limit of infinite sample.

Related Work
The studies on AUC can be traced back to 1970’s in signal de-
tection theory [Egan, 1975], and AUC has been an important
performance measure for information retrieval and learning
to rank, especially in bipartite ranking [Cohen et al., 1999;
Freund et al., 2003; Rudin and Schapire, 2009].

Consistency has been an important issue. Zhang [2004b]
and Bartlett et al. [2006] provided the fundamental anal-
ysis for binary classification, and many algorithms such as
boosting and SVMs are proven to be consistent. The consis-
tency studies on multi-class and multi-label learnings have
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been addressed in [Zhang, 2004a; Tewari and Bartlett, 2007]
and [Gao and Zhou, 2013], respectively. Much attention has
been paid to the consistency of learning to rank [Cossock and
Zhang, 2008; Xia et al., 2008; Duchi et al., 2010].

It is noteworthy that previous consistency studies focus
on univariate surrogate losses over single instance [Zhang,
2004b; Bartlett et al., 2006], whereas pairwise surrogate
losses are defined on pairs of instances from different classes.
This difference brings a challenge for studying AUC consis-
tency: for univariate surrogate loss, it is sufficient to study
the conditional risk; for pairwise surrogate losses, however,
the whole distribution has to be considered (cf. Lemma 1).
Because minimizing the expected risk over the whole distri-
bution is not equivalent to minimizing the conditional risk.

Duchi et al. [2010] explored the consistency of supervised
ranking, which is different from our setting: they consid-
ered “instances” consisting of a query, a set of inputs and a
weighted graph, and the goal is to order the inputs according
to the weighted graph; yet we consider instances with positive
or negative labels, and aim to rank positive instances higher
than negative ones. Clemenćon et al. [2008] studied the con-
sistency of ranking, and shown that calibration is a necessary
and sufficient condition. We study the consistency of score
functions by pairwise surrogate losses, and calibration is nec-
essary but insufficient for AUC consistency (cf. Theorem 1).

Kotlowski et al. [2011] studied the AUC consistency based
on minimizing univariate exponential and logistic losses, and
this study is generalized to proper (composite) surrogate
losses in [Agarwal, 2013]. These studies focused on uni-
variate surrogate losses, whereas our work considers pairwise
surrogate losses. Almost at the same time of our earlier ver-
sion [Gao and Zhou, 2012], Uematsu and Lee [2012] pro-
vided a sufficient condition similar to Theorem 2 (as to be
shown in Section 3.2), but with different proof skills. Later,
our Theorem 2 was extended by Menon and Williamson
[2014]. [Uematsu and Lee, 2012; Menon and Williamson,
2014] did not provide the other three contributions (i.e., i, iii
and iv in the previous section) of our work.

The rest of the paper is organized as follows. Section 2
introduces preliminaries. Section 3 presents consistent con-
ditions. Section 4 gives regret bounds. Section 5 discloses
the equivalence of exponential loss. Section 6 concludes.

2 Preliminaries

Let X and Y = {+1,−1} be the input and output spaces,
respectively. Suppose that D is an unknown distribution over
X × Y , and DX corresponds to the instance-marginal distri-
bution over X . Let η(x) = Pr[y = +1|x] be the conditional
probability over x. For score function f : X → R, the AUC
w.r.t. distribution D is defined as

E[I[(y − y′)f(x)− f(x′) > 0] + 1
2I[f(x) = f(x′)]|y 6= y′]

where (x, y) and (x′, y′) are drawn i.i.d. from distributionD,
and I[·] is the indicator function which returns 1 if the argu-
ment is true and 0 otherwise. Maximizing the AUC is equiva-
lent to minimizing the expected risk, which can be viewed as

a reward formulation as follows.

R(f) = E[η(x)(1− η(x′))`(f,x,x′)

+ η(x′)(1− η(x))`(f,x′,x)] (1)

where the expectation takes on x and x′ drawn i.i.d. from
DX , and `(f,x,x′) = I[f(x) > f(x′)] + 1

2I[f(x) = f(x′)]
is called ranking loss. Write the Bayes riskR∗ = inff [R(f)],
and we get the set of Bayes optimal functions as

B = {f : R(f) = R∗} = {f : (f(x)− f(x′))

× (η(x)− η(x′)) > 0 if η(x) 6= η(x′)}. (2)

Ranking loss ` is non-convex and discontinuous, and directly
optimizing it often leads to NP-hard problems. In practice,
we consider pairwise surrogate losses as follows:

Ψ(f,x,x′) = φ(f(x)− f(x′)),

where φ is a convex function, e.g., exponential loss φ(t) =
e−t [Freund et al., 2003; Rudin and Schapire, 2009], hinge
loss φ(t) = max(0, 1 − t) [Brefeld and Scheffer, 2005;
Joachims, 2005; Zhao et al., 2011], etc.

We define the expected φ-risk as

Rφ(f) = Ex,x′∼D2
X

[η(x)(1− η(x′))φ(f(x)− f(x′))

+ η(x′)(1− η(x))φ(f(x′)− f(x))], (3)

and denote by R∗φ = inff Rφ(f). Given two instances
x,x′ ∈ X , we define the conditional φ-risk as

C(x,x′, α) = η(x)(1− η(x′))φ(α)

+ η(x′)(1− η(x))φ(−α) (4)

where α = f(x)−f(x′). For simplicity, denote by η = η(x)
and η′ = η(x′) when it is clear from the context.

3 AUC Consistency
We first define the AUC consistency as follows:
Definition 1 The surrogate loss φ is said to be consistent
with AUC if for every sequence {f 〈n〉(x)}n≥1, the following
holds over all distributions D on X × Y:

Rφ(f 〈n〉)→ R∗φ then R(f 〈n〉)→ R∗.

In binary classification, recall the notion of classification
calibration, which is a sufficient and necessary condition for
consistency of 0/1 error [Bartlett et al., 2006]. A surrogate
loss φ is said to be classification-calibrated if, for every x ∈
X with η(x) 6= 1/2,

inf
f(x)(1−2η(x))≥0

{η(x)φ(f(x)) + (1− η(x))φ(−f(x))}

> inf
f(x)∈R

{η(x)φ(f(x)) + (1− η(x))φ(−f(x))} .

We now generalize to AUC calibration as follows:
Definition 2 The surrogate loss φ is said to be calibrated if

H−(η, η′) > H(η, η′) for any η 6= η′

where H−(η, η′) = infα : α(η−η′)≤0 C(x,x′, α), H(η, η′) =
infα∈R C(x,x′, α) and C(x,x′, α) is defined in Eqn. (4).
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We first have

R∗φ = inf
f
Rφ(f) ≥ Ex,x′∼D2

X
inf
α
C(η(x), η(x′), α). (5)

It is noteworthy that the equality in the above does not hold
for many surrogate losses from the following lemma:
Lemma 1 For hinge loss φ(t) = max(0, 1− t), least square
hinge loss φ(t) = (max(0, 1− t))2, least square loss φ(t) =
(1− t)2 and absolute loss φ(t) = |1− t|, we have

inf
f
Rφ(f) > Ex,x′∼D2

X
inf
α
C(η(x), η(x′), α).

Proof We will present detailed proof for hinge loss by con-
tradiction, and similar considerations could be made to other
losses. Suppose that there exists a function f∗ s.t.

Rφ(f∗) = Ex,x′∼D2
X

[inf
α
C(η(x), η(x′), α)].

For simplicity, we consider three instances x1,x2,x3 ∈ X
s.t. η(x1) < η(x2) < η(x3). The conditional risk of hinge
loss is given by

C(x,x′, α) = η(x)(1− η(x′)) max(0, 1− α)

+η(x′)(1− η(x)) max(0, 1 + α).

Minimizing C(x,x′, α) gives α = −1 if η(x) < η(x′). This
yields f∗(x1) − f∗(x2) = −1, f∗(x1) − f∗(x3) = −1 and
f∗(x2)− f∗(x3) = −1; yet they are contrary each other.

From Lemma 1, the study on AUC consistency should fo-
cus on the expected φ-risk over the whole distribution rather
than conditional φ-risk on each pair of instances. This is quite
different from binary classification where minimizing the ex-
pected risk over the whole distribution is equivalent to mini-
mizing the conditional risk on each instance, and thus binary
classification focuses on the conditional risk as illustrated in
[Zhang, 2004b; Bartlett et al., 2006].

3.1 Calibration is Necessary yet Insufficient for
AUC Consistency

We first prove that calibration is a necessary condition for
AUC consistency as follows:
Lemma 2 If the surrogate loss φ is consistent with AUC, then
φ is calibrated, and for convex φ, it is differentiable at t = 0
with φ′(0) < 0.
Proof If φ is not calibrated, then there exist η0 and η′0 s.t.
η0 > η′0 and H−(η0, η

′
0) = H(η0, η

′
0). This implies the

existence of some α0 ≤ 0 such that

η0(1− η′0)φ(α0) + η′0(1− η0)φ(−α0)

= inf
α∈R
{η0(1− η′0)φ(α) + η′0(1− η0)φ(−α)} .

We consider an instance space X = {x1,x2} with marginal
probability Pr[x1] = Pr[x2] = 1/2, η(x1) = η0 and
η(x2) = η′0. We construct a sequence {f 〈n〉}n6=1 by selecting
f 〈n〉(x1) = f 〈n〉(x2) + α0, and it is easy to get that

Rφ(f 〈n〉)→ R∗φ yet R(f 〈n〉)−R∗ = (η0−η′0)/8 as n→∞,

which shows that calibration is a necessary condition.

To prove φ′(0) < 0, we consider the instance space
X = {x1,x2} with Pr[x1] = Pr[x2] = 1/2, η(x1) = η1
and η(x2) = η2. Assume that φ is differentiable at t = 0
with φ′(0) ≥ 0. For convex φ, we have η1(1 − η2)φ(α) +
η2(1−η1)φ(−α) ≥ (η1−η2)αφ′(0) + (η1(1−η2) +η2(1−
η1))φ(0) ≥ (η1(1−η2)+η2(1−η1))φ(0) for (η1−η2)α ≥ 0.
This follows that

min
{
{η1(1− η2)φ(0) + η2(1− η1)φ(0)},

inf
(η1−η2)α≤0

{η1(1− η2)φ(α) + η2(1− η1)φ(−α)}
}

= inf
(η1−η2)α≤0

{η1(1− η2)φ(α) + η2(1− η1)φ(−α)}

which is contrary to H−(η1, η2) > H(η1, η2).
Suppose that φ is not differentiable at t = 0. There exists

two subgradients g1 > g2 such that
φ(t) ≥ g1t+ φ(0) and φ(t) ≥ g2t+ φ(0) for t ∈ R.

If g1 > g2 ≥ 0, we select η1 = g1/(g1 + g2) and η2 =
g2/(g1 + g2). It is obvious that η1 > η2, and for any α ≥
0, we have η1(1 − η2)φ(α) + η2(1 − η1)φ(−α) ≥ η1(1 −
η2)(g2α+φ(0))+η2(1−η1)(−g1α+φ(0)) ≥ (η1(1−η2)+
η2(1− η1))φ(0).

In a similar manner, we can prove η1(1−η2)φ(α)+η2(1−
η1)φ(−α) ≥ (η1(1−η2)+η2(1−η1))φ(0) for g1 ≥ 0 > g2,
g1 > 0 ≥ g2 and 0 ≥ g1 > g2 if (η1 − η2)α ≥ 0. This
follows that H(η1, η2) = H−(η1, η2), which is contrary to
the consistency of φ.

For the converse direction, we observe that hinge loss and
absolute loss are convex with φ′(0) < 0, and thus they are
calibrated, yet inconsistent with AUC as follows:
Lemma 3 For hinge loss φ(t) = max(0, 1− t) and absolute
loss φ(t) = |1−t|, the surrogate loss Ψ(f,x,x′) = φ(f(x)−
f(x′)) is inconsistent with AUC.
Proof We present detailed proof for hinge loss and similar
proof could be made to absolute loss. We consider the in-
stance space X = {x1,x2,x3}, and assume that, for 1 ≤
i ≤ 3, the marginal probability Pr[xi] = 1/3 and conditional
probability ηi = η(xi) s.t. η1 < η2 < η3, 2η2 < η1 + η3
and 2η1 > η2 + η1η3. We write fi = f(xi) for 1 ≤ i ≤ 3.
Eqn. (3) gives

Rφ(f) = κ0 + κ1

3∑
i=1

∑
j 6=i

ηi(1− ηj) max(0, 1 + fj − fi)

where κ0 > 0 and κ1 > 0 are constants and independent to
f . Minimizing Rφ(f) yields the optimal expected φ-risk

R∗φ = κ0 + κ1(3η1 + 3η2 − 2η1η2 − 2η1η3 − 2η2η3)

when f∗ = (f∗1 , f
∗
2 , f

∗
3 ) s.t. f∗1 = f∗2 = f∗3 − 1. Note that

f ′ = (f ′1, f
′
2, f
′
3) s.t. f ′1 + 1 = f ′2 = f ′3 − 1 is not the optimal

solution w.r.t. hinge loss since
Rφ(f ′) = κ0 + κ1(5η1 + 2η2 − 2η1η2 − 3η1η3 − 2η2η3)

= R∗φ + κ1(2η1 − η2 − η1η3) = R∗φ + κ1(η2 − η1)/2.

This completes the proof.

Together with Lemma 2 and Lemma 3, we have
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Theorem 1 Calibration is necessary yet insufficient for AUC
consistency.

The study on AUC consistency is not parallel to that of
binary classification where the classification calibration is
necessary and sufficient for the consistency of 0/1 error in
[Bartlett et al., 2006]. The main difference is that, for AUC
consistency, minimizing the expected risk over the whole dis-
tribution is not equivalent to minimizing the conditional risk
on each pair of instances as shown by Lemma 1.

3.2 Sufficient Condition for AUC Consistency
We now present a sufficient condition for AUC consistency.
Theorem 2 The surrogate loss Ψ(f,x,x′) = φ(f(x) −
f(x′)) is consistent with AUC if φ : R → R is a convex, dif-
ferentiable and non-increasing function s.t. φ′(0) < 0.
Proof It suffices to prove inff /∈B Rφ(f) > inff Rφ(f)
for convex, differentiable and non-increasing function φ s.t.
φ′(0) < 0. Assume that inff /∈B Rφ(f) = inff Rφ(f), i.e.,
there is an optimal function f∗ s.t. Rφ(f∗) = inff Rφ(f) and
f∗ /∈ B, i.e., for some x1,x2 ∈ X , we have f∗(x1) ≤ f∗(x2)
yet η(x1) > η(x2). Recall the φ-risk’s definition in Eqn. (3)

Rφ(f) =

∫
X

∫
X
η(x)(1− η(x′))φ(f(x)− f(x′))+

η(x′)(1− η(x))φ(f(x′)− f(x))dPr(x)dPr(x′).

We introduce function h1 s.t. h1(x) = 0 if x 6= x1 and
h1(x1) = 1 otherwise, and write g(γ) = Rφ(f∗ + γh1) for
any γ ∈ R, and thus g is convex. For optimal function f∗, we
have g′(0) = 0 which implies that∫

X\x1

η(x1)(1− η(x))φ′(f∗(x1)− f∗(x))

− η(x)(1− η(x1))φ′(f∗(x)− f∗(x1))dPr(x) = 0. (6)

Similarly, we have∫
X\x2

η(x2)(1− η(x))φ′(f∗(x2)− f∗(x))

− η(x)(1− η(x2))φ′(f∗(x)− f∗(x2))dPr(x) = 0. (7)

For convex differentiable and non-increasing function φ, we
have φ′(f∗(x1) − f∗(x)) ≤ φ′(f∗(x2) − f∗(x)) ≤ 0 if
f∗(x1) ≤ f∗(x2). This follows

η(x1)φ′(f∗(x1)− f∗(x)) ≤ η(x2)φ′(f∗(x2)− f∗(x)) (8)

for η(x1) > η(x2). In a similar manner, we have

(1− η(x2))φ′(f∗(x)− f∗(x2))

≤ (1− η(x1))φ′(f∗(x)− f∗(x1)). (9)

If f∗(x1) = f∗(x2), then we have

η(x1)(1− η(x2))φ′(f∗(x1)− f∗(x2))

− η(x2)(1− η(x1))φ′(f∗(x2)− f∗(x1)) < 0

from φ′(0) < 0 and η(x1) > η(x2), which is contrary to
Eqns. (6) and (7) by combining Eqns. (8) and (9).

If f∗(x1) < f∗(x2), then φ′(f∗(x1)−f∗(x2)) ≤ φ′(0) <
0, φ′(f∗(x1)− f∗(x2)) ≤ φ′(f∗(x2)− f∗(x1)) ≤ 0, and

η(x1)(1− η(x2))φ′(f∗(x1)− f∗(x2))

≤ η(x2)(1− η(x1))φ′(f∗(x2)− f∗(x1))

which is also contrary to Eqns. (6) and (7) by combining
Eqns. (8) and (9).This theorem follows as desired.

From Theorem 2, we have

Corollary 1 For exponential loss φ(t) = e−t and logistic
loss φ(t) = ln(1 + e−t), the surrogate loss Ψ(f,x,x′) =
φ(f(x)− f(x′)) is consistent with AUC.

Marron et al. (2007) introduced the distance-weighted loss
method for high-dimensional yet small-size sample, which
was reformulated by Bartlett et al. (2006), for any ε > 0, as

φ(t) = 1
t for t ≥ ε; and φ(t) = 1

ε

(
2− t

ε

)
otherwise.

Corollary 2 For distance-weighted loss, the surrogate loss
Ψ(f,x,x′) = φ(f(x)− f(x′)) is consistent with AUC.

Lemma 3 proves the inconsistency of hinge loss, and also
shows the difficulty for consistency without differentiability.
We now derive some variants of hinge loss that are consistent.
For example, the q-norm hinge loss: φ(t) = (max(0, 1− t))q
for q > 1 is consistent as follows:

Corollary 3 For q-norm hinge loss, the surrogate loss
φ(f,x,x′) = φ(f(x)− f(x′)) is consistent with AUC.

From this corollary, it is immediate to get the consistency of
least-square hinge loss φ(t) = (max(0, 1− t))2.

For ε > 0, define the general hinge loss as φ(t) = 1− t for
t ≤ 1− ε; φ(t) = 0 for t ≥ 1 + ε; and φ(t) = (t− 1− ε)2/4ε
otherwise.

Corollary 4 For general hinge loss, the surrogate loss
Ψ(f,x,x′) = φ(f(x)− f(x′)) is consistent with AUC.

Hinge loss is inconsistent with AUC, but we can use the
general hinge loss to approach hinge loss when ε → 0. In
addition, it is also interesting to derive other consistent surro-
gate losses under the guidance of Theorem 2.

4 Regret Bounds
We will present the regret bounds for exponential and logistic
losses, and for general losses under the realizable setting.

4.1 Regret Bounds for Exponential and Logistic
Losses

We begin with a special property as follows:

Proposition 1 For exponential loss and logistic loss, we have

inf
f
Rφ(f) = Ex,x′∼D2

X
inf
α
C(η(x), η(x′), α).

Proof We provide the detailed proof for exponential loss. For
a fixed instance x0 ∈ X and f(x0), we set

f(x) = f(x0) +
1

2
ln
η(x)(1− η(x0))

η(x0)(1− η(x))
for x 6= x0.
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This holds that, for x1,x2 ∈ X ,

f(x1)− f(x2) =
1

2
ln
η(x1)(1− η(x2))

η(x2)(1− η(x1))
,

which minimizes C(η(x1), η(x2), α) by α = f(x1)−f(x2).
We complete the proof as desired.

Proposition 1 is specific to the exponential and logistic loss,
and does not hold for hinge loss, absolute loss, etc. Based on
this proposition, we study the regret bounds for exponential
and logistic loss by focusing on conditional risk as follows:
Theorem 3 For constants κ0 > 0 and 0 < κ1 ≤ 1, we have

R(f)−R∗ ≤ κ0(Rφ(f)−R∗φ)κ1 ,

if f∗ ∈ arg inff Rφ(f) satisfies that, for η(x) 6= η(x′),
(f∗(x) − f∗(x′))(η(x) − η(x′)) > 0 and |η(x) − η(x′)| ≤
κ0
(
C(η(x), η(x′), 0)− C(η(x), η(x′), f∗(x)− f∗(x′))

)κ1 .

Proof This proof is partly motivated from [Zhang, 2004b].
From Eqns. (1) and (2), we have

R(f)−R∗ = E(η(x)−η(x′))(f(x)−f(x′))<0[|η(x)− η(x′)|]
+ Ef(x)=f(x′)[|η(x′)− η(x)|]/2

≤ E(η(x)−η(x′))(f(x)−f(x′))≤0[|η(x)− η(x′)|]

which yields that, by our assumption and Jensen’s inequality,

R(f)−R∗ ≤ κ0
(
E(η(x)−η(x′))(f(x)−f(x′))≤0[C(η(x),

η(x′), 0)− C(η(x), η(x′), f∗(x)− f∗(x′))]
)κ1

for 0 < κ1 < 1. This remains to prove that

E[C(η(x), η(x′), 0)− C(η(x), η(x′), f∗(x)− f∗(x′))]
≤ E[C(η(x), η(x′), f(x)− f(x′))

− C(η(x), η(x′), f∗(x)− f∗(x′))]
where the expectations take over (η(x) − η(x′))(f(x) −
f(x′)) ≤ 0. To see it, we consider the following cases:
1) For η(x) = η(x′) and convex φ, we have

C(η(x), η(x′), 0) ≤ C(η(x), η(x′), f(x)− f(x′));

2) For f(x) = f(x′), we have

C(η(x), η(x′), 0) = C(η(x), η(x′), f(x)− f(x′));

3) For (η(x)− η(x′))(f(x)− f(x′)) < 0, we derive that 0 is
between f(x)− f(x′) and f∗(x)− f∗(x′) from assumption
(f∗(x)− f∗(x′))(η(x)− η(x′)) > 0. For convex φ, we have
C(η(x), η(x′), 0) ≤ max(C(η(x), η(x′), f(x)− f(x′)) and
C(η(x), η(x′), f∗(x) − f∗(x′))) = C(η(x), η(x′), f(x) −
f(x′)). The theorem follows as desired.

Based on this theorem, we have
Corollary 5 The regret bounds for exponential and logistic
loss are given, respectively, by

R(f)−R∗ ≤
√
Rφ(f)−R∗φ ,

R(f)−R∗ ≤ 2
√
Rφ(f)−R∗φ .

Proof We will present detailed proof for exponential loss
and similarly consider logistic loss. The optimal func-
tion f∗ satisfies f∗(x) − f∗(x′) = 1

2 ln η(x)(1−η(x′))
η(x′)(1−η(x) by

minimizing C(η(x), η(x′), f(x) − f(x′)). This follows
(f∗(x) − f∗(x′))(η(x) − η(x′)) > 0 for η(x) 6= η(x′),
C(η(x), η(x′), 0) = η(x)(1 − η(x′)) + η(x′)(1 − η(x)),
and C(η(x), η(x′), f∗(x) − f∗(x′)) =

√
η(x)(1− η(x))

×
√
η(x′)(1− η(x′)). Therefore, we have

C(η(x), η(x′), 0)− C(η(x), η(x′), f∗(x)− f∗(x′))
=
(√

η(x)(1− η(x′))−
√
η(x′)(1− η(x))

)2
=

|η(x)− η(x′)|2

(
√
η(x)(1− η(x′)) +

√
η(x′)(1− η(x)))2

≥ |η(x)− η(x′)|2,

where we use the fact η(x), η(x′) ∈ [0, 1]. We complete the
proof by applying Theorem 3.

4.2 Regret Bounds for Realizable Setting
We now define the realizable setting as:
Definition 3 A distribution D is said to be realizable if
η(x)(1− η(x)) = 0 for each x ∈ X .

This setting has been studied for bipartite ranking [Rudin
and Schapire, 2009] and multi-class classification [Long and
Servedio, 2013]. Under this setting, we have
Theorem 4 For some κ > 0, if R∗φ = 0, then we have

R(f)−R∗ ≤ κ(Rφ(f)−R∗φ)

when φ(t) ≥ 1/κ for t ≤ 0 and φ(t) ≥ 0 for t > 0.

Proof Let D+ and D− denote the positive and negative in-
stance distributions, respectively. Eqn. (1) gives that R(f)
equals to

Ex∼D+,x′∼D− [I[f(x) < f(x′)] + 1
2I[f(x) = f(x′)]]

and R∗ = inff [R(f)] = 0 for f(x) > f(x′). From Eqn. (3),
we get the φ-risk Rφ(f) = Ex∼D+,x′∼D− [φ(f(x)− f(x′))].
Then, R(f) − R∗ = Ex∼D+,x′∼D− [I[f(x) < f(x′)] +
I[f(x) = f(x′)]/2] ≤ Ex∼D+,x′∼D− [κφ(f(x) − f(x′))] =
κ(Rφ(f)−R∗φ), which completes the proof.

Based on this theorem, we have
Corollary 6 For exponential loss, hinge loss, general hinge
loss, q-norm hinge loss, and least square loss, we have

R(f)−R∗ ≤ Rφ(f)−R∗φ,

and for logistic loss, we have

R(f)−R∗ ≤ 1
ln 2 (Rφ(f)−R∗φ).

Hinge loss is consistent with AUC under the realizable setting
yet inconsistent for the general case as shown in Lemma 3.
Corollary 5 shows regret bounds for exponential and logistic
loss in the general case, whereas the above corollary provides
tighter regret bounds under the realizable setting.
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5 Equivalence Between AUC and Accuracy
Optimization with Exponential Losses

In binary classification, we try to learn a score function f ∈
X → R, and make predictions based on sgn[f(x)]. The goal
is to improve the accuracy by minimizing

Racc(f) = E(x,y)∼D [I [yf(x) < 0]]

= Ex [η (x) I [f (x) < 0] + (1− η (x)) I [f (x) > 0]] .

Denote by R∗acc = inff Racc(f), and we get the set of optimal
solutions for accuracy as follows:

Bacc = {f : f(x)(η(x)− 1/2) > 0 for η(x) 6= 1/2}.

The popular formulation, called surrogate losses, is given by

φacc(f(x), y) = φ(yf(x)),

where φ is a convex function such as exponential loss [Freund
and Schapire, 1997], logistic loss [Friedman et al., 2000], etc.
We define the expected φacc-risk as

Rφacc(f) = E(x,y)∼D[φ(yf(x))] = Ex[Cacc(η(x), f(x))]

= Ex[(1− η(x))φ(−f(x)) + η(x)φ(f(x))],

and denote by R∗φacc
= inff Rφacc(f).

Theorem 5 For exponential loss and classifier f , we have

Rφ(f)−R∗φ ≤ Rφacc(f)(Rφacc(f)−R∗φacc
).

Proof For accuracy’s exponential surrogate loss, we have

Rφacc(f)−R∗φacc
= Ex

(√
η(x)e−f(x)−

√
(1− η(x))ef(x)

)2
and for AUC’s exponential surrogate loss, we have

Rφ(f)−R∗φ = Ex,x′

(√
η(x)(1− η(x′))e−f(x)+f(x′)

−
√
η(x′)(1− η(x))ef(x)−f(x′)

)2
.

By using (ab− cd)2 ≤ a2(b− d)2 + d2(a− c)2, we have

Rφ(f)−R∗φ ≤ 4Ex[(1− η(x))ef(x)](Rφacc(f)−R∗φacc
)

and in a similar manner, we have

Rφ(f)−R∗φ ≤ 4Ex[η(x)e−f(x)](Rφacc(f)−R∗φacc
).

This follows Rφ(f)−R∗φ ≤ Rφacc(f)(Rφacc(f)−R∗φacc
).

For ranking function f , we select a proper threshold to con-
struct classifier by

t∗f = arg min
t∈(−∞,+∞)

Ex

[
η(x)e−f(x)+t + (1− η(x))ef(x)−t

]
= 1

2 ln(Ex[η(x)e−f(x)]/ lnEx[(1− η(x))ef(x)]).

Based on such threshold, we have
Theorem 6 For ranking function f and exponential loss,

Rφacc(f − t∗f )−R∗φacc
≤ 2
√
Rφ(f)−R∗φ

by selecting the threshold t∗f defined above.

Proof For score function f(x), we have

Rφacc(f − t∗f )−R∗φacc
= −2Ex

√
η(x)(1− η(x))

+2
√
Ex[η(x)e−f(x)]Ex[(1− η(x))ef(x)].

For pairwise exponential loss of AUC, we have

Rφ(f)−R∗φ = 2Ex[η(x)e−f(x)]Ex[1− η(x)ef(x)]−

2(Ex[
√
η(x)(1− η(x))])2 ≥ (Rφacc(f − t∗f )−R∗φacc

)2/2

which completes the proof.

Together with Corollary 5, Theorems 5 and 6, and [Zhang,
2004b, Theorem 2.1], we have
Theorem 7 For exponential loss and classifier f , we have

R(f)−R∗ ≤
(
Rφacc(f)(Rφacc(f)−R∗φacc

)
)1/2

Racc(f)−R∗acc ≤
√

2(Rφacc(f)−R∗φacc
)1/2 .

For exponential loss and ranking function f , we have

R(f)−R∗ ≤ (Rφ(f)−R∗φ)1/2

Racc(f − t∗f )−R∗acc ≤ 2(Rφ(f)−R∗φ))1/4 .

This theorem discloses the asymptotic equivalence be-
tween univariate exponential loss of accuracy and the pair-
wise exponential loss of AUC. As a result, AdaBoost and
RankBoost are equivalent, i.e., both of them optimize AUC
and accuracy simultaneously, because AdaBoost and Rank-
Boost essentially optimize φacc(f(x), y) = e−yf(x) and
φ(f,x,x′) = e−(f(x)−f(x

′)), respectively.
Rudin and Schapire [2009] established the equivalence be-

tween AdaBoost and RankBoost for finite training sample
based on the assumption of equal contribution between neg-
ative and positive classes. Our work does not make any as-
sumption, and regret bounds show the equivalence between
pairwise and univariate exponential loss, providing a new ex-
planation between AdaBoost and RankBoost.

In [Menon and Williamson, 2014], there is a proposition:
Proposition 10 Given any DM,η ∈ ∆X×{±1}, strictly
proper composite loss ` with inverse link function Ψ−1(v) =
1/(1 + e−av) for some a ∈ R \ {0}, and scorer s : X → R,
there exists a convex function F` : [0, 1]→ R+ such that

F`

(
regretD,Univ

Bipart,01(s)
)
≤ regretD,Univ

Bipart,`(s)

where regretD,Univ
Bipart,`(s) equals to

LDBipart,`(Diff(s))− inf
t : X→R

[LDBipart,`(Diff(t))]

where ”Univ” means univariate loss, and the other notations
please refer [Menon and Williamson, 2014]. This proposi-
tion shows that the univariate exponential loss is consistent
with AUC optimization. In our Theorems 5 and 6, we show
that the univariate exponential loss is equivalent to pairwise
exponential loss, for the consistency of optimizing all per-
formance measures such as AUC, rankloss, precision-recall,
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etc. Note that the cited proposition does not involve pairwise
loss, needless to say the equivalence between pairwise and
univariate losses; moreover, the cited proposition considers
only AUC for performance measure, whereas we consider all
performance measures. 1

6 Conclusion
This work studies the consistency of AUC optimization by
minimizing pairwise surrogate losses. We first showed that
calibration is necessary yet insufficient for AUC consistency.
We then provide a new sufficient condition, and show the con-
sistency of exponential loss, logistic loss, least-square hinge
loss, etc. Further, we derive regret bounds for exponential and
logistic losses, and obtain the regret bounds for many surro-
gate losses under the realizable setting. Finally, we provide
regret bounds to show the equivalence between the pairwise
exponential loss of AUC and univariate exponential loss of
accuracy, with a direct consequence that AdaBoost and Rank-
Boost are equivalent in the limit of infinite sample.
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