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Abstract
Mobile user verification is to authenticate whether
a given user is the legitimate user of a smartphone
device. Unlike the current methods that commonly
require users active cooperation, such as entering
a short pin or a one-stroke draw pattern, we pro-
pose a new passive verification method that re-
quires minimal imposition of users through mod-
elling users subtle mobility patterns. Specifically,
our method computes the statistical ambience fea-
tures on WiFi and cell tower data from location
anonymized data sets and then we customize Hid-
den Markov Model (HMM) to capture the spatial-
temporal patterns of each user’s mobility behav-
iors. Our learned model is subsequently validated
and applied to verify a test user in a time-evolving
manner through sequential likelihood test. Experi-
mentally, our method achieves 72% verification ac-
curacy with less than a day’s data and a detection
rate of 94% of illegitimate users with only 2 hours
of selected data. As the first verification method
that models users’ mobility pattern on location-
anonymized smartphone data, our achieved result
is significant showing the good possibility of lever-
aging such information for live user authentication.

1 Introduction
Smartphones nowadays have become important sensing and
personal assistants to support a wide spectrum of user daily
activities from communication, scheduling, social network-
ing, reading, shopping to entertainment. People carry their
smartphone wherever they go and constantly interact their de-
vices. As a smartphone records rich private information of
one’s activities, their security cannot be taken for granted.
The existing user verification methods, such as entering a
short personal identification number (PIN), drawing a one-
stroke pattern [von Zezschwitz et al., 2013], require users’
active cooperation to set up and to memorize a numeric or
graphic draw pattern, and enter it for authentication when-
ever it is required. Even though such methods have been
widely adopted, it is worth noting that the imposition on users
to memorize and manage their secret credential, and enter it
all the times is a significant burden. As a result, many choose

not to use any on-access verification option. Even for those
who use PIN and draw pattern, such information can be easily
shoulder surfed, leading to the loss of security.

In order to complement existing user verification meth-
ods mentioned earlier, we explore in this paper a new way
of user verification, i.e., through passively modelling and
monitoring the subtle behavioral patterns (mobility in our
case) of the users on the ubiquitous location-anonymized
data. Our choice of characterizing mobility patterns is mo-
tivated by the fact, as pointed out in [de Montjoye et al.,
2013], that individuals present distinctive mobility patterns in
terms of the spatial-temporal transitions and the daily route.
Also, a smartphone is known to continuously receive various
location-relevant information such as cell towers [Song et al.,
2010b; 2010a] and WiFi access points [Zheng et al., 2008] to
support the basic communication needs. This provides a basis
for passive and continuous user verification through profile
modelling on their mobility patterns.

Previously, relevant research works have been carried out
in the areas of mobile user profiling and user identification.
For mobile user profiling, the works in [De Mulder et al.,
2008; Bayir et al., 2009] profiled individuals’ mobility pat-
terns using spatial-temporal data. Mulder et al. [De Mulder
et al., 2008] modeled individuals’ mobility by the first-order
Markov model based on cell tower data, and each user’s mo-
bility pattern was represented in terms of the transition be-
tween locations and their stationary distribution. The pro-
file model was applied in the identification setting to show
that the individuals can be simply deanonymized based on
the historical sequence of GSM towers that the user has vis-
ited. Bayir et al. [Bayir et al., 2009] learned individu-
als’ mobility profile using the frequent path information be-
tween different cell towers where the frequent patterns of the
mobility profiles were searched by the AprioriAll algorithm
[Agrawal and Srikant, 1995]. The profile model was used
for analyzing crowd mobility patterns, e.g., for the sake of
city planning. For mobile user verification/identification,
a few studies [de Montjoye et al., 2013; Gambs et al., 2013;
Lin et al., 2015] leveraged on either the geographic data or
the smartphone sensory data. Montjoye et al. [de Mon-
tjoye et al., 2013] aimed to identify individuals based on their
spatial-temporal points. They found that 95% of mobile users
in a population of 1.5 million could be correctly identified
by using only four spatio-temporal points extracted for each
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user. Gambs et al. [Gambs et al., 2013] constructed individ-
uals’ mobility models based on the Mobility Markov Chain
(MMC), and further applied the MMC in linking users’ traces
in the training phase and the testing phase. Based on WiFi and
cell tower data, Lin et al. [Lin et al., 2015] proposed to use
both dynamical time warping and k-nearest neighbor clas-
sifier to solve user identification/verification as multi-class
classification for fixed-duration data.

Most of the studies [de Montjoye et al., 2013; Gambs et
al., 2013] compared users’ mobility profiles based on the
explicit location symbols, which is not applicable in the
anonymized data set. This is because in the anonymized data
set each user’s data is done separately, making two user’s
data unlinkable using explicit symbols. Also, none of the
above methods [De Mulder et al., 2008; Bayir et al., 2009;
de Montjoye et al., 2013; Gambs et al., 2013; Lin et al., 2015]
was designed from the pure perspective of user verification.
Thus, they cannot be applied in our scenario of user verifica-
tion using anonymized location data.

Our methodology takes the following three parts. First, we
describe users’ mobility using statistical ambience features of
the ubiquitous cell tower and WiFi data. Our method is ap-
plied to the location anonymized data set that does not con-
tain any explicit location information. As the explicit loca-
tion information are considered highly private, it is common
that the locations and its relevant substitutes are dynamically
anonymized into a discrete set of symbols before sharing the
data set. As we do not directly use the explicit location in-
formation in our modelling, it is safer to share our model in
the cloud for centralized online verification service. Second,
we profile users’ mobility by using HMM based on the ex-
tracted statistical features. The reasons of using HMM are
given as follows. 1) Individuals’ mobility data are sequen-
tial data and present strong temporal relevance. Generally,
we can describe each users’ mobility in a repeatable regular
basis, e.g., the transition from home to working place, the
periods of staying at home, etc. HMM is suitable to model
the mobility in such a case. 2) In the verification phase, the
testing data also come in sequentially, thus the verification
method should output current result by accumulating the re-
sults from previous data. HMM is suitable for the case of re-
using the previous results, e.g., calculating the probability of
the sequence, according to forward-backward algorithm (the
details are given in Section 3.2). Third, our user verification
is performed in a time-evolving manner through sequential
probability ratio test.

Figure 1 shows the framework of our experimental method-
ology in three phases, training, validation and verification. In
the Training phase, we tailor HMM to learn each user’s mo-
bility profile based on the time series of user implicit mobility
features and statistical ambience features. The implicit mo-
bility features include the temporal information and the very
existence of each type of observations. For instance, users
may turn off WiFi scanner to save the power when they are
in transitions. Thus, the missing of WiFi information can im-
plicitly indicate user’s mobility states. The statistical ambient
features are used to describe the network circumstances that
individuals stay in. In the validation phase, we construct
each user’s validation model, including one genuine model

Figure 1: Overview of the user verification framework.

and a list of background models. The genuine model is used
to characterize the owner user through the trained HMM from
the training phase. The list of the background models are used
to model the data from different imposters, including those
presenting either similar mobility patterns or dissimilar mo-
bility patterns to the legitimate user [Sahoo et al., 2012]. In
the verification phase, we verify whether the given phone
user is the legitimate owner or not by using sequential proba-
bility ratio test based on 1) a sequence from an unknown user,
2) the profile and validation model from the claimed user.

Our contributions of this study are three fold. First, we
identify a new problem in terms of 1) passively verifying
smartphone users and 2) using the anonymized location sym-
bols. The proposed method can complement existing smart-
phone protection methods by providing a more secure user
verification mechanism. Second, because the anonymized lo-
cation symbols are inconsistent among different users’ data,
we propose to use statistical ambience features to describe
users’ mobility behaviors, and this method can work well on
the common location-anonymized data in the cloud or server.
Third, we justify our choice of using the HMM to learn in-
dividuals’ profiles using two types of the location data. Last,
we evaluate our mobile user verification method by using two
data sets extracted from the device analyzer data set. Exper-
imental results show that our method achieves 72% accuracy
with less than a day’s data and a detection rate of 94% of
illegitimate users with only 2 hours of selected data.

2 Mobile User Profiling
In this section, we present the methodology of how to tailor
Hidden Markov Model to learn each user’s mobility profile
based on anonymized location data.

Before describing our model in details, we introduce some
notations. Let Ot = {Ht, Et,O

c
t ,O

a
t ,O

ac
t } denote the ob-

servation at the tth hour, where Ht denotes the temporal in-
formation including hour of the day and day of the week, Et

denotes the existence of each type of the observations, Oc
t

denotes the detailed cell tower observation, Oa
t denotes the

detailed WiFi observation, and Oac
t denotes the WiFi con-

nection information.
Specifically, in the tth hour, the cell tower observation is

given asOc
t = {nt,i}, where each nt,i denotes the number of

connections to the ith cell tower observed in this hour. The
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Figure 2: (a) The distributions of number of distinct cell tow-
ers in a given state fitted by a Poisson distribution. (b) The
distribution of the entropy of the cell towers in a given state
fitted by a Gaussian distribution.

WiFi observation is given as Oa
t = {mt, {mt,i}}, where mt

denotes the total number of scans during this hour and {mt,i}
denotes the number of scans for each of the WiFi APs in this
hour. Note that, not every WiFi AP is shown in each scanned
result, thus 0 ≤ mt,i ≤ mt. If the smartphone connects to
WiFi AP(s), Oac

t denotes the symbol(s) of these WiFi AP(s),
otherwise it is empty.

In the Hidden Markov model, let Ω = {1, 2, ..,K} denote
a list of one user’s mobility states, and the mobility state at
the tth hour as St, where St ∈ Ω. In the following, we detail
the modeling of users’ mobility.

Implicit mobility features. There are four implicit user
mobility features, namely, temporal information, the exis-
tence of the cell tower observation, the WiFi observation, the
connection to a WiFi AP.

Let Ht denote the temporal information including hour
of the day ht and day of the week wt, where ht ∈
{0, 1, 2, ..., 23} and wt ∈ {0, 1, 2, ..., 6}. Since individuals
may not have regular mobility behaviors exactly in the same
hour, we divide the hour space into a few non-overlapping
space of equal size. The hour information is modeled by a
probability mass function over the space. Similarly, we ap-
ply the same method for the temporal information day of the
week.

Let Et = {Ec
t , E

a
t , E

ac
t } denote the existence of each ob-

servation, where Ec
t ∈ {0, 1} corresponds to the existence of

the cell tower observation, Ea
t ∈ {0, 1} corresponds to the

WiFi observation, and Eac
t ∈ {0, 1} corresponds the connec-

tion to a WiFi AP or not. Let εk = {εk,c, εk,a, εk,ac} denote
the parameter set of describing the existence features given
state k. Thus,

P (Ec
t = 1|St = k) = εk,c (1)

where Oc
t 6= ∅, 0 ≤ εk,c ≤ 1, and it is similar for the other

two existence features.
Statistical ambience features. There are two types of sta-

tistical ambient features extracted from either cell tower ob-
servation and WiFi observation, namely, distinct number of
items, and the entropy of these items.

By grouping the cell tower data into different states, we
generate the distribution of the cell tower features. Figure 2

shows the number of distinct cell towers is well-fitted by a
Poisson distribution, and the entropy of these cell towers is
well-fitted by a Gaussian distribution. In the following, we
model these two types of features by Poisson distributions
and Gaussian distributions, respectively. Specifically, in the
cell tower observation, the first feature, given as the num-
ber of distinct cell tower, is F (1)

t = nt,d = |{nt,i}|, and
it is modeled by a Poisson distribution. The second feature,
given as the entropy of the cell towers, is F (2)

t = nt,e, where
nt,e =

∑
i p̂t,i log p̂t,i and p̂t,i =

nt,i∑
i nt,i

, and it is modeled
by a Gaussian distribution. The probability of the cell tower
observation given state k in the tth hour is

P (Oc
t |St = k) =

2∏
i=1

P (F
(i)
t |Ct = 1, St = k) (2)

where Ct = 1 denotes current observation is cell tower.
Similarly in the WiFi observation, the total number of dis-

tinct WiFi APs observed is F (1)
t = mt,d = |{mt,i}|, and it is

modeled by a Poisson distribution. The entropy of these WiFi
APs is F (2)

t = mt,e =
∑

i p̂t,i log p̂t,i, where p̂t,i =
mt,i

mt
,

and it is modeled by a Gaussian distribution. Similarly, the
probability of the WiFi observation given state k in the tth
hour follows Eq. (2) given Ct = 0.

In summary, the parameter sets in the model are θ =
{π,R,θm,θc,θa}, where π and R are the parameters de-
scribing the initial probability and transition matrix of the
states, θm denotes the parameter sets of describing the im-
plicit user mobility features, θc and θa denotes the parameter
sets of describing the statistical ambient item features of cell
tower and WiFi APs, respectively.

Modeling users’ mobility. In the proposed HMM, the ob-
servation probability is

P (Ot|St) = P (Ht, Et,O
c
t ,O

a
t ,O

ac
t |St)

= P (Ht|St)P (Et|St)P (Oc
t |St)P (Oa

t |St)

where the connection observation Oac
t is modeled in the ex-

istence feature Eac
t . Except the difference of the observation

probability, the other parts, e.g., state transitions, initial prob-
ability, are the same as the traditional HMM.

With a given number of mobility states K, the inference of
the parameter set θ is performed via the EM algorithm, sim-
ilar to [Dempster et al., 1977]. Also, the proposed method is
extendable in the case of using both types of the observation
or either type of the observation. Specifically, the method de-
scribed in this section provides a framework of using both
types of the observations, and the learned Hidden Markov
Model is denoted by B-HMM. We can train the proposed
Hidden Markov model only using one type of the observa-
tion, namely, C-HMM trained using cell tower observation
and A-HMM trained using WiFi observation. In the experi-
mental section, we compare the performance of using differ-
ent HMM in user verification.

3 User Verification
In this section, we describe both the validation and verifica-
tion shown in Figure 1.
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3.1 Validation
In the validation phase, for each user we construct the valida-
tion model using one genuine model and a list of background
models. The genuine model is the trained hidden Markov
model for the smartphone owner. The list of background
models are the other users’ trained hidden Markov models,
including a list of the most similar ones to the current gen-
uine model and the same number of the most dissimilar ones.
The similar ones help to differentiate the traces from users
with similar mobility behaviors. The dissimilar ones help to
identify the traces from those with very different mobility be-
haviors. This is because if all the background models are very
similar to the user’s genuine model, the mobility traces from
those with very different patterns will be badly fitted by either
genuine model or any of the background models, leading to
an unreliable verification result [Bimbot et al., 2004].

In order to get a list of similar models and dissimilar mod-
els to the current profile model, we compute the distance be-
tween HMMs according to the method given in [Do, 2003].
The distance between two HMMsM = {π,R,θm,θc,θa}
and M̃ = {π̃, R̃, θ̃

m
, θ̃

c
, θ̃

a
} is bounded by D(M||M̃) ≤∑K

j=1 vj(D(rj ||r̃j) +D(bj ||b̃j)), where vj is the stationary
probability of state j. D(rj ||r̃j) is the KL distance [Kullback
and Leibler, 1951] between the transition vector given state j.
D(bj ||b̃j) is the KL distance between the corresponding ob-
servation distribution given state j. And we use the upper
bound to approximate the distance of two HMMs.

3.2 Verification
In this part, we show how to conduct sequential probability
ratio test (S-test) [Wald, 1945] in user verification. The se-
quential probability ratio test is specifically designed for test-
ing the sequence with increasing length and this test makes
the decision in a time-evolving manner by accumulating the
results from previous step.

LetO1:T be the mobility sequence that needs to be verified
whether it belongs to user u or not. For user u, we have the
profile modelM0 and the background model lists {M1}. We
would like to verify the following two hypotheses:

• H0 : the sequenceO1:T is from the claimed user u.

• H1 : the sequenceO1:T is not from the claimed user u.

Sequential probability ratio test (S-test). There are two
thresholds in this test, namely, εl and εh, where εl < 0 < εh.
S-test consists a list of tests based on subsequences. The first
test starts from Index 1 and ends at Index i, where in our
case i ≥ 2 since we need at least two temporally-adjacent
samples to capture the dependency of the observations. Then,
we calculate the likelihood ratio given current subsequence
O1:i,

Λ(O1:i) = logP (O1:i|{M1})− logP (O1:i|M0) (3)

The decision is made as follows
Accept H0, If Λ(O1:i) < εl
Accept H1, If Λ(O1:i) > εh
Undetermined, Otherwise

(4)

If these is no decision given current subsequence, we increase
the length of the subsequence by one and conduct the test
again. We terminate the test either there is a decision or we
reach the end of the sequence. The theory of S-test provides
the criteria of choosing εl and εh according to the predefined
missed detection rate PmisD and false alarm rate PFA [Wald,
1945], where εl ≈ log PmisD

1−PFA
and εh ≈ log 1−PmisD

PFA
. In

the experiments, we set these two thresholds in S-test εl and
εh as the default values according to PmisD = 0.01 and
PFA = 0.01. This is because assigning the relatively low
missed detection rate and false alarm rate will impose high
constraint on the decision of the tests, thus it can lead to more
accurate results.

Algorithm 1 User verification algorithm.
Input: 1) a mobility sequence O1:T from an unknown user,
2) a claimed user ID, 3) two threshold εl and εh. Output:
verification result.

1: Initialize t = 2;
2: while t <= T&flag == Un do
3: Initialize flag = Un, pgen = 0, pbac = 0;
4: for j ∈ {0, 1} do
5: Get current model(s)Mj and model number num;
6: for m ∈ {1, num} do
7: if t == 2 then
8: Calculate {αk(t); t ∈ [1, 2], k ∈ [1,K]} ac-

cording to Eq.(5) and Eq.(6);
9: else

10: Update the forward probability matrix by
adding {αk(t); k ∈ [1,K]} according to
Eq.(6);

11: end if
12: Calculate P (O1:t) =

∑
k αk(t);

13: if j == 0 then
14: pgen = P (O1:t);
15: else
16: pbac = max{pbac, P (O1:t)};
17: end if
18: end for
19: end for
20: Do verification using pgen and pbac according to Eq.(3)

and Eq. (4);
21: end while
22: return flag

Verification method. Due to the nature of the hidden
Markov Model, we can re-use the test results based on previ-
ous subsequence in S-test. Specifically, let αk(t) be the for-
ward probability of observing the first t samples given state
k at time t, thus αk(t) = P (O1:t, St = k) and it can be
calculated recursively,

αk(1) = πkP (O1|S1 = k) (5)

αk(t) = P (Ot|St = k)
∑
l

αl(t− 1)rl,k (6)

The verification process shown in Algorithm 1 works as
follows. The variable flag records the test result from current
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subsequence. If flag == Un it means that there is no de-
cision from current subsequence, and we increase the length
of the sequence and continue the test. During the process of
testing each subsequence, we calculate the probability of the
sequence based on the genuine model (j == 0) and back-
ground model (j == 1), respectively. Also, we maintain the
forward probability matrix in each test, and when increasing
the length of the sequence by one we only have to update the
forward probability matrix given the current length.

4 Experiments
In this section, we present the experimental results of our mo-
bile user verification method. We test the user verification in
both positive verification (p-verify) and negative verification
(n-verify). In the former case, we use one user’s own un-
seen data to test against his/her profile model and validation
model. In the latter case, we use all the other users’ data to
attack the current user’s model.

Data set. We use the mobility data recorded by the De-
vice Analyzer app [Wagner et al., 2014; 2013]. In this data
set, all the location relevant and identifiable information is
anonymized, such as cell tower IDs, WiFi AP mac addresses,
etc., and is done separately by each user. Randomly choosing
a testing period from 2013-01-01 to 2013-03-31, we select
the candidate users in our experiments based on the follow-
ing criteria. First, the selected users should have frequent cell
tower information and/or WiFi information. Second, in order
to have the balanced data set, each individual should have at
least 10 one-week segments. According to these criteria, two
data sets are obtained. In the first data set (D1), we have 59
users from time zone ”+0”, and a total of 786 one-week data
segments are accumulated. In the second data set (D2), we
have 50 users from time zone ”+1”, and a total of 636 one-
week data segments are accumulated.

Parameter setting. In the training phase, we use each
user’s first 9 weeks’ data to train the HMM, and the num-
ber of states is tested from 3 to 6. In the validation phase,
we set the number of similar models and dissimilar models as
the default value 5. This is because when applying the max
function on the results from the background model lists, in-
creasing the number of similar models or dissimilar models
would not affect the results since it always uses the one with
highest probability from the lists. The verification process is
conducted on each user’s remaining 2 to 4 weeks’ data.

Evaluation metric. Since in each user’s case the percent-
age of n-verify (98%) in terms of detection of the imposters
is much larger than p-verify (2%), we evaluate the results in
terms of three measures, namely, sensitivity, specificity, and
undetermined rate in p-verify. According to the information
given in Table 1, we calculate these measures given as follows

sensitivity =
Ntp

Ntp +Nfn +Np
un

specificity =
Ntn

Nfp +Ntn +Nn
un

undetermined rate, Pun =
Np

un

Nfp +Ntn +Np
un

Table 1: Verification measures. Besides traditional terminolo-
gies we used, e.g., the number of verifications given true posi-
tive results (Ntp), the number of verifications given false posi-
tive results (Nfp), etc., we also have two additional quantities,
namely, the number of undetermined verifications among the
positive tests (Np

un), and the number of undetermined verifi-
cations among the negative tests Nn

un.

p-verify n-verify

test results
accept H0 Ntp Nfp

reject H0 Nfn Ntn
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un Nn
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Figure 3: The verification results based on data set D1 are
shown in (a), (b), and (c), and each of them corresponds to
the metrics of sensitivity, specificity, and undetermined rate
in p-verify, respectively. The similar results obtained from
D2 are shown in (d), (e) and (f).

We find in our experiments that the undetermined rates in n-
verify according to the different methods are typically very
minor compared with those in the p-verify. Therefore, in the
following sections, we do not evaluate the undetermined rate
in the n-verify. This will be detailed in the follow-up section.

4.1 Comparison with other methods
We conduct the verification based on each user one-day’s data
according to Algorithm 1. To the best of our knowledge,
there are few studies targeting on user verification using loca-
tion data. Thus, the comparison is made among the proposed
method using either one type of the observation, namely, C-
HMM, A-HMM, or both types of the observations, namely,
B-HMM.

The comparison results based on D1 and D2 are shown in
Figure 3. A few observations can be made as follows.

First, in terms of sensitivity shown in Figure 3(a) and (d),
the methods of using only one type of the observation, i.e.,C-
HMM, A-HMM, perform unsatisfactorily, and in most cases
the achieved results are less than 20%. Comparatively, the
performance of using both types of the observation, i.e., B-
HMM, is are much better, and in the best case the verification
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accuracy in p-verify, i.e., the sensitivity, can be close to 60%
given the number of hidden states is 6. This shows that, each
type of the location data alone is unable to describe users’
regular mobility behaviors. And these two types of data are
complementary in the scenario of modeling users’ mobility
patterns since the verification results are greatly improved via
combining these two types of data.

Second, similar to the results of sensitivity, Figure 3 (b)
and (e) show that combining two types of data can greatly im-
prove the specificity than those using one type of data. Also,
in the best case, B-HMM can achieve around 95% verifica-
tion accuracy in n-verify, i.e., specificity, which makes our
method applicable in the real case of user verification. It is
worth to note that, the great difference between the achieved
specificity (around 95%) and sensitivity (around 60%) given
different methods indicates that the main challenge in user
verification using location data is how to recognize users’
own mobility behaviors, i.e., p-verify in our case, rather than
detecting the different mobility behaviors from others, i.e.,
n-verify in our case.

Third, due to the high specificity achieved in different
methods, the corresponding undetermined rate is small in n-
verify. Therefore, we only show the plot of the undetermined
rate in p-verify, Pun, given in Figure 3 (c) and (f). The re-
sults show that given two types of data we can almost make
a decision of 99% of the one-day sequences, where among
the p-verify we can achieve 58% accuracy and among the n-
verify we can achieve 94% accuracy by using B-HMM.

4.2 Other factors in user verification
In this section, we explore several other facts that can affect
user verification results, e.g., the starting hour of the test se-
quences, and the minimum length of the sequences used in
verification. Note that in the training phase we fix the num-
ber of hidden states to be 6.

Figure 4 (a) and (b) show the achieved accuracy in two
types of verifications in different cases. Given different start-
ing hour, the verification accuracy increases with the length
of the sequence increasing in the p-verify, and it shows an op-
posite trend in the n-verify. The former one is consistent with
the finding in the previous section that, short period data may
not be sufficient to describe users’ regular mobility behaviors,
and increasing the length of the testing sequence will greatly
improve the results. The latter one is due to the reason that
long sequence may include certain overlapped mobility be-
haviors, e.g., staying in the office, and it leads to a lower ver-
ification accuracy when the length of the sequence increases.
However, the effect of increasing the length of the mobility
sequence in user verification is minor since the accuracy in
n-verify decreases only 1% when increasing the length of the
sequence from 2 to 12. This result further validates that, start-
ing with a short period data, e.g., 2 hours’ data, can achieve a
reasonably high verification accuracy, around 94%, when the
smartphone is being used by those other than the owner.

The temporal information also affects the verification re-
sults. When the minimum length of the sequence is short,
e.g., less than 6 hours, the best starting hour in confirming the
current user is owner is 12:00, and given longer sequence the
best starting hour is 17:00 shown in Figure 4 (a). When de-
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Figure 4: The verification accuracy of the p-verify (a) and
n-verify (b) based on different minimum length and starting
hour in D1. The mean length of the correctly verified se-
quence in the p-verify (c) and n-verify (d) based on different
minimum length and starting hour in D1.

tecting the abnormal usage of the smartphones, the sequences
starting from 17:00 are always a good choice shown in Fig-
ure 4 (b). This is because the sequence starts from 17:00 may
include one user’s typical daily route, namely, a short period
of staying at office, the transition period from office to home,
and the period of staying at home.

Figure 4 (c) and (d) further show the mean length of the
sequence used in the correct p-verify and n-verify. In the p-
verify, when we set the minimum length of the test sequence
to be 2, it takes on average 7 to 8 hours’ data to determine
that a given user is the legitimate user. Comparatively, in the
n-verify, the mean length of the sequence used always a little
bit longer, e.g., one hour, than the minimum length.

5 Conclusion
In this paper, we present a novel user verification method by
combining the complementary location ambience features on
location anonymized data set. The proposed method shows a
high detection accuracy of 94% for illegitimate users by us-
ing two hours’ data and a verification accuracy of 72% with
less than one day’s data when the smartphone is used by its
owner. The proposed method can be applied in complement-
ing and enhancing current smartphone user authentication to-
wards less imposition of user’s load. Our future work along
this avenue includes the investigation of finding better mobil-
ity features and model user’s mobility with an aim to further
reduce the false alarm rate and to improve the useability of
the passive user verification method.

965



Acknowledgments
This work is supported by Ministry of National Development
(MND) Singapore under the grant No. SUL2013-5. And it is
also supported by the research grant for the Human-centered
Cyber-physical Systems Programme at the Advanced Digital
Sciences Center from Singapore’s Agency for Science, Tech-
nology and Research (A*STAR).

References
[Agrawal and Srikant, 1995] Rakesh Agrawal and Ramakr-

ishnan Srikant. Mining sequential patterns. In 11th In-
ternational Conference on Data Engineering, pages 3–14,
1995.

[Bayir et al., 2009] M.A. Bayir, M. Demirbas, and N. Eagle.
Discovering spatiotemporal mobility profiles of cellphone
users. In 10th IEEE International Symposium on a World
of Wireless, Mobile and Multimedia Networks, pages 1–9,
2009.

[Bimbot et al., 2004] Frédéric Bimbot, Jean-François
Bonastre, Corinne Fredouille, Guillaume Gravier, Ivan
Magrin-Chagnolleau, Sylvain Meignier, Teva Merlin,
Javier Ortega-Garcı́a, Dijana Petrovska-Delacrétaz, and
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