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Abstract
Cognitive modelling can discover the latent char-
acteristics of examinees for predicting their perfor-
mance (i.e. scores) on each problem. As cogni-
tive modelling is important for numerous applica-
tions, e.g. personalized remedy recommendation,
some solutions have been designed in the literature.
However, the problem of extracting information
from both objective and subjective problems to get
more precise and interpretable cognitive analysis is
still underexplored. To this end, we propose a fuzzy
cognitive diagnosis framework (FuzzyCDF) for ex-
aminees’ cognitive modelling with both objective
and subjective problems. Specifically, to handle the
partially correct responses on subjective problems,
we first fuzzify the skill proficiency of examinees.
Then, we combine fuzzy set theory and educational
hypotheses to model the examinees’ mastery on the
problems. Further, we simulate the generation of
examination scores by considering both slip and
guess factors. Extensive experiments on three real-
world datasets prove that FuzzyCDF can predict ex-
aminee performance more effectively, and the out-
put of FuzzyCDF is also interpretative.

1 Introduction
Recently, there are a lot of researches for better education,
e.g., on massive open on-line course (MOOC) [Anderson et
al., 2014], intelligent tutoring systems [Burns et al., 2014]
and cognitively diagnostic assessment [Nichols et al., 2012].

A crucial step of these educational researches is the cogni-
tive modelling of examinees, which aims at discovering the
latent factors/characteristics of examinees. Usually, the ef-
fectiveness of cognitive analysis is validated by predicting
the possible scores from these examinees to each problem by
collaboratively modelling a group of examinees, i.e. predict-
ing examinee performance (PEP). Since PEP could be further
applied to numerous applications, such as the personalized
remedy recommendation and the teaching plan improvement,
massive efforts of both data mining and educational psychol-
ogy have been made to the solutions of cognitive modelling
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for PEP: In terms of data mining, Matrix factorization (MF)
[Koren et al., 2009] is a classical prediction technique, which
is widely used to model examinees [Toscher and Jahrer, 2010;
Thai-Nghe et al., 2010; Desmarais, 2012]. In educational
psychology, most of the existing studies focus on cognitive
diagnosis. With the cognitive diagnosis models (CDMs) [Di-
Bello et al., 2006], examinees are characterized by the profi-
ciency on specific skills (e.g. problem-solving skills like cal-
culation), where a Q-matrix [Tatsuoka, 1984] is previously
given as the prior knowledge from education experts for de-
noting which skills are needed for each problem.
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Figure 1: An example of objective and subjective problems.

In spite of the importance of previous studies, there are still
some limitations in existing methods. For instance, the latent
factors in MF are unexplainable for describing the knowl-
edge state of examinees’ cognition. Comparatively, the re-
sults of CDMs could lead to a better interpretation. How-
ever, CDMs can only analyse examinees based on the sim-
ple objective problems, and the information of the subjective
problems is largely underexplored. As shown in Figure 1, the
objective (e.g. chosen) problems have dichotomous scores
with either right or wrong response and the subjective (e.g.
free-response) problems have polytomous scores with cor-
rect, incorrect or partially correct response. Obviously, for
subjective problems, it is harder for examinees to get a cor-
rect response by guessing an answer or get a wrong response
by carelessness (e.g. a slip of a pen). Thus, these subjective
problems measure the examinees much better, and it is of sig-
nificant importance to extract information from both objective
and subjective problems for cognitive modelling rather than
simply ignore the subjective problems or treat them as ob-
jective ones [Samejima, 1972]. Towards this goal, there are
several challenges: How to handle the dichotomous scores of
objective problems and the polytomous scores of subjective
problems simultaneously? How to get both precise and in-
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terpretable cognitive analysis? How to predict the examinee
performance based on this cognitive modelling?

To conquer these challenges, in this paper, we propose a
fuzzy cognitive diagnosis framework (FuzzyCDF) for exami-
nees’ cognitive modelling. Since the response to a subjective
problem may be partially correct, we adopt a solution inspired
by fuzzy systems. Specifically, we first fuzzify the skill profi-
ciency of examinees using fuzzy set theory. Then we suppose
the skill interactions on objective and subjective problems sat-
isfy two different hypotheses: conjunctive and compensatory
[Pardos et al., 2008], and fuzzify the problem mastery of ex-
aminees based on these two hypotheses. Next, we model
the generation of problem scores (predict examinee perfor-
mance) by considering two exceptions: slip and guess. In
this way, FuzzyCDF is represented as a four-tier hierarchical
model and we propose a Monte Carol Markov chain (MCMC)
sampling algorithm to estimate parameters, and thus we could
predict examinee performance (i.e. scores). The main contri-
butions of this paper are outlined as follows:
• To the best of our knowledge, this is the first compre-

hensive attempt for extracting information from both ob-
jective and subjective problems to get more precise and
interpretable cognitive analysis for PEP task.
• We propose a four-tier hierarchical cognitive model

FuzzyCDF, which combines educational assumptions
and fuzzy theories to redefine skill proficiency and prob-
lem mastery, and it predicts the examinee performance
by considering the slip and guess factors.
• We design a simple but effective MCMC sampling al-

gorithm for parameter estimation and conduct extensive
experiments on real-world datasets to demonstrate the
effectiveness of FuzzyCDF.

2 Related Work
We introduce existing modelling methods for PEP from two
aspects: data mining methods and cognitive diagnosis.

Data Mining Methods. Recently, more and more stud-
ies demonstrate the effectiveness of MF for examinee mod-
elling and predicting examinee performance by factorizing
the score matrix. For instance, [Toscher and Jahrer, 2010]
utilized singular value decomposition (SVD) and other factor
models to model examinees. In [Thai-Nghe et al., 2010], MF
technique was compared with regression methods for PEP.
Besides, [Desmarais, 2012; Sun et al., 2014] applied nonneg-
ative matrix factorization to infer the Q-matrix. However,
the latent factors inferred by the MF model are usually un-
explainable, i.e. each dimension of the factor vector cannot
correspond to a specific skill. In this work, we will adopt cog-
nitive diagnosis on exam data to obtain interpretative results.

Cognitive Diagnosis. In educational psychology, many
cognitive diagnosis models (CDMs) [DiBello et al., 2006]
have been developed to mine examinees’ skill proficiency,
which can be used for PEP. Figure 2 shows a toy process
of cognitive diagnosis. CDMs can be roughly divided into
two categories: continuous ones and discrete ones. The fun-
damental continuous CDMs are item response theory (IRT)
models [Rasch, 1961; Birnbaum, 1968; Embretson and Reise,
2013], which characterize examinee by a continuous vari-
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Figure 2: A toy process of cognitive diagnosis.

able, i.e. latent trait, and use a logistic function to model
the probability that an examinee correctly solves a prob-
lem. For discrete CDMs, the basic method is determinis-
tic inputs, noisy “and” gate model (DINA) [Haertel, 1984;
Junker and Sijtsma, 2001; De La Torre, 2011]. DINA de-
scribes an examinee by a latent binary vector which denotes
whether she masters the skills required by the problem, and a
given Q-matrix is used to guarantee the interpretation of the
diagnosis results. Though discrete CDMs can model exam-
inees interpretatively, their diagnosis results are usually not
accurate enough. Furthermore, existing methods cannot han-
dle the subjective problems.

Table 1: Some improtant notations.
Notation Description
Rji the score of examinee j on problem i
θj the high-order latent trait of examinee j
αjk the proficiency of examinee j on skill k
ajk, bjk the discrimination, difficulty of examinee j on skill k
µk the membership function of fuzzy set related to skill k
ηji the mastery of examinee j on problem i
si, gi the slip and guess factors of problem i

3 Fuzzy Cognitive Diagnosis
In this section, we will introduce our fuzzy cognitive diagno-
sis framework (FuzzyCDF). As shown in Figure 3 (from up to
bottom), our proposed method is a generation process which
starts with examinees’ latent trait, then determines exminees’
skill proficiency, next computes examinees’ problem mastery
and generates examinees’ observable scores on problems by
considering slip and guess factors. And we propose a MCMC
sampling algorithm to infer the unobservable parameters of
FuzzyCDF. For better illustration, Table 1 shows some math
notations and each step of FuzzyCDF will be specified in the
following subsections.

3.1 Fuzzifying Skill Proficiency
In this subsection, we show the way to get the proficiency
of examinees on specific skills (e.g. problem-solving skills
like calculation), which is the first step in cognitive diagnosis
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Figure 3: 4-tier fuzzy cognitive diagnosis framework.

models. Here, the challenge is that we have to handle both
objective problems and subjective problems, simultaneously.

In DINA-based CDMs, the examinees’ skill proficiency is
assumed to be absolutely mastered (i.e. 1) or nonmastered
(i.e. 0) so that this modelling can fit objective problems with
absolutely right or wrong responses, and meanwhile, this skill
proficiency is influenced by the high-order latent trait of the
examinee and the properties of the skill [De La Torre and
Douglas, 2004]. However, for a subjective problem which has
a partially correct response, the above “absolutely” modelling
on skill proficiency cannot fit well as shown in the experi-
ments. Thus, to address this issue, we adopt fuzzy systems
[Jantzen, 2013; Chrysafiadi and Virvou, 2014] in cognitive
modelling and redefine the proficiency of an examinee on a
skill by the following assumption:
Assumption 1 The proficiency of an examinee on a skill is
the grade of membership of the examinee in a fuzzy set
which is related to the skill.

Here, we assume that a skill k is related to a fuzzy set
(J, µk), where J is the set of examinees and µk : J → [0, 1]
is the membership function. Then, for each j ∈ J , we define
the proficiency of examinee j on skill k, αjk, as the grade
of membership of j in (J, µk), µk(j). Thus, if examinee j
masters skill k to some extent then the element j is a fuzzy
member of the fuzzy set, i.e. 0 ≤ αjk = µk(j) ≤ 1. In
this way, we can fuzzify the proficiency of an examinee on a
skill into a continuous variable with a value in [0,1]. For in-
stance, as shown in Figure 4(a), examinee j is fully included,
fully excluded and partially included by the fuzzy sets which
is related to Skill 1, Skill 2 and Skill 3, respectively. It also
means, examinee j has completely mastered, completely non-
mastered and partially mastered Skill 1, Skill 2 and Skill 3,
respectively. Formally, following an IRT-like high-order lo-
gistic model, αjk and µk(j) is defined as:

αjk = µk(j) =
1

1 + exp[−1.7ajk(θj − bjk)]
. (1)

The implication of this definition is that the proficiency of
an examinee on a specific skill (αjk) depends on the differ-
ence between the examinee’s high-order trait (θj) and the
properties of the skill: difficulty (bjk) and discrimination
(ajk) of skill k for examinee j. Here, the coefficient 1.7
is an empirical scaling constant in logistic cognitive mod-
els [Hulin et al., 1983; Camilli, 1994]. Generally, the major
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Figure 4: An example of the fuzzy set.

difference between this definition and the traditional models
[De La Torre and Douglas, 2004] is that we redefine the skill
proficiency from binary variables to the probabilistic ones.

3.2 Fuzzifying Problem Mastery
Based on the fuzzified skill proficiency in Section 3.1, we can
further fuzzify the problem mastery of examinees (i.e. the
probability of being able to solve the problem). CDMs as-
sume that problem mastery is a result of interaction of exami-
nees’ proficiency on required skills of this problem [Pardos et
al., 2008]. Thus, we will first discuss the skills’ interaction on
objective and subjective problems, then introduce a method to
model the two kinds of interactions according to fuzzy logic
and fuzzify the mastery of an examinee on a problem.

The skill’s interaction on problems can be mainly catego-
rized into conjunctive and compensatory [Pardos et al., 2008].
Conjunctive means that an examinee must master all the re-
quired skills to solve a problem, while compensatory means
that an examinee is possible to solve a problem as long as
she masters any skill required by the problem. As for ex-
aminations, an objective problem has a unique standard an-
swer and cannot be answered correctly unless the examinee
masters all the required skill without any omission. Thus the
skill’s interaction on objective problems is usually assumed to
be conjunctive [Pardos et al., 2008]. In contrast, a subjective
problem is a free-response one and the examinees can write
not only the final answers but also the solving process includ-
ing writing equations, deducing, calculating and so on (a toy
example is shown in the right part of Figure 1). That is, given
a subjective problem and the required skills, the more skills
an examinee masters, the higher score she will get on this
problem. Therefore in this research we assume that the skill’s
interaction on subjective problems is compensatory, the ef-
fectiveness of which can be demonstrated experimentally. To
sum up, we propose an assumption about skills’ interaction
on the problems as the following:

Assumption 2 The skills’ interaction on objective (or sub-
jective) problems is conjunctive (or compensatory).

Now, we model these two kinds of interactions in a fuzzy
way to fuzzify the problem mastery. Specifically, given the
set of examinees J , suppose we have a problem i requiring
Skill 1, Skill 2 and Skill 3 with their fuzzy sets (J, µ1) ,
(J, µ2) and (J, µ3). As shown in Figure 4(b), examinee j1 is
fully included by the fuzzy sets related to Skill 1, Skill 2 and
Skill 3 and examinee j2 is not included by the fuzzy set re-
lated to Skill 3, which means that if we adopt the conjunctive
assumption then examinee j1 has mastered problem i because
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she has mastered all the skills needed by problem i and exam-
inee j2 has not; as shown in Figure 4(c), examinee j1 is fully
included by the fuzzy sets related to Skill 1 and Skill 2 and
examinee j2 is not included by any of the fuzzy set. Here,
if we adopt the compensatory assumption then examinee j1
is possible to master problem i because she has mastered at
least one of the skills needed by problem i. In summary, the
set of the examinees who master all and any of the skills re-
quired for problem i is the intersection and union of the fuzzy
sets related to the skills, respectively. Thus, we propose an
assumption to fuzzify the problem mastery as follows:
Assumption 3 If the skills’ interactions between each other
on a problem is conjunctive (or compensatory), the mastery
of an examinee on this problem is the grade of membership of
this examinee in the intersection (or union) set of the fuzzy
sets related to the skills required by the problem.

Formally, given a Q-matrix with K skills, the mastery of
an examinee j on a problem i, ηji, is defined as the following
equation under conjunctive assumption:

ηji = µ⋂
1≤k≤K,qik=1 k

(j). (2)

And ηji for subjective problems is defined as the following
equation under compensatory assumption:

ηji = µ⋃
1≤k≤K,qik=1 k

(j). (3)

Here, qik from the Q-matrix indicates whether problem i
requires skill k (1 means required and 0 means non-required).
Without loss of generality, we adopt the simplest fuzzy inter-
section and union operation1 (standard fuzzy intersection and
union [GEORGE J and Bo, 2008]) as follows:

µA∩B(x) = min(µA(x), µB(x)). (4)

µA∪B(x) = max(µA(x), µB(x)).

In this way, we could get the mastery of each examinee on
every problem (ηji), either objective or subjective problem.

3.3 Modelling Generation of Examinees’ Scores
With the problem mastery defined in Section 3.2, we can now
determine examinees’ scores on problems. Specifically, we
take two exceptions, slip and guess [d Baker et al., 2008], into
account and adopt two distributions to simulate the generation
of scores of objective and subjective problems, respectively.

In a real-world examination, the score of an examinee on
a problem not only depends on the examinee’s problem mas-
tery. For instance, an examinee who is unable to solve the
problem can get a correct response by guessing an answer
(e.g. choosing “C” as the final answer somehow); Mean-
while, she who is able to do it right may get a wrong response
as a consequence of carelessness (e.g. a slip of a pen) [Em-
bretson, 1985]. Here, we assume that each problem has its
own slip and guess factors and consider these two exceptions
to model the generation of examinees’ scores.

Meanwhile, we handle the different score patterns of ob-
jective and subjective problems. With either right or wrong

1The effects of different kinds of fuzzy set operation are out the
scope of this paper.

response, the score of an examinee on a objective problem
can be coded to a binary variable with a value in {0,1}. Thus,
we adopt a Bernoulli distribution to model the scores of ex-
aminees on objective problems. Considering different score
scales of subjective problems, we normalize the scores on a
subjective problem by dividing the full score of the problem
into a continuous variable with a value in [0,1]. Then we
assume that the score of examinees on subjective problems
follow a Gaussian distribution, which is widely used in the
literature [Mnih and Salakhutdinov, 2007].

Formally, combining the problem mastery of the exami-
nees and the exceptions of slip and guess, we simulate the
generation of the scores as follows:

P (Rji = 1|ηji, si, gi) = (1− si)ηji + gi(1− ηji). (5)

P (Rji|ηji, si, gi) = N (Rji|[(1− si)ηji + gi(1− ηji)], σ2
). (6)

Equations (5) and (6) stand for objective problems and sub-
jective problems, respectively. Here, Rji denotes the score
(normalized score for subjective problem) of the examinee j
on problem i, ηji is the mastery of an examinee j on the prob-
lem i, si and gi denote the slip and guess factors of problem
i, and σ2 is the variance of the normalized score of an exami-
nee on a subjective problem. Thus, (1−si)ηji means this ex-
aminee masters the problem and answers it successfully (i.e.
without carelessness), while gi(1−ηji) represents the exami-
nee guesses a right response without mastering. That is, these
are the two ways for an examinee to give a correct response.

Summary. To better understand our proposed FuzzyCDF
method, we represent it using a graphic model as shown in
Figure 5. Here, what we can observe are the score matrix
R with M examinees, No objective and Ns subjective prob-
lems and the Q-matrix with K skills (if problem i requires
skill k, then qik = 1). An examinee j is related to skill pro-
ficiency αjk, k = 1, 2, · · · ,K, which depends on high-order
latent trait θj and skill parameters ajk, bjk, k = 1, 2, · · · ,K.
A problem mastery ηji is determined by required skill profi-
ciency αjk|qik = 1 and a problem score Rji is influenced by
ηji and problem parameters si, gi. It is noted that σ is only
used for modelling the generation of the score of an examinee
on a subjective problem.

θj  

ajk  

bjk  

αjk  qik  ηji  

Rji  si  

gi  

j = 1,2,⋯ , M 

k = 1,2,⋯ , K 

σ 

k = 1,2,⋯ , K 

i = 1,2,⋯ , No  𝑜𝑟 𝑁𝑠 

Figure 5: The graphic model of FuzzyCDF.
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3.4 MCMC Training Algorithm
In this section, we will introduce an effective training al-
gorithm using MCMC method for the proposed FuzzyCDF
model, i.e. to infer the unshaded variables in Figure 5. Specif-
ically, we assume that the prior distributions of the parameters
in FuzzyCDF as the following:

θj ∼ N (µθ, σ
2
θ), ajk ∼ lnN (µa, σ

2
a), bjk ∼ N (µb, σ

2
b );

si ∼ Beta(vs, ws,mins,maxs),

gi ∼ Beta(vg, wg,ming,maxg);

1/σ
2 ∼ Γ(xσ, yσ). (7)

whereBeta(v, w,min,max) is a four-parameter Beta dis-
tribution which has two shape parameters v and w and is sup-
ported on the range [min,max]. The functional forms of the
prior distributions are chosen out of convenience, and the as-
sociated hyperparameters are selected to be reasonably vague
within the range of realistic parameters. Then, the joint poste-
rior distribution of θ,a,b, s,g and σ2 given the score matrix
R is as follows:

P (θ, a,b, s, g, σ
2|R) (8)

∝ L(s, g, σ
2
, θ, a,b)P (θ)P (a)P (b)P (s)P (g)P (σ

2
),

where L is the joint likelihood function of FuzzyCDF:

L(s, g, σ
2
, θ, a,b) = Lo(s, g, θ, a,b)Ls(s, g, σ

2
, θ, a,b), (9)

where Lo and Ls denote the joint likelihood functions of ob-
jective and subjective problems respectively, and are defined
as the following equations:

Lo(s, g, θ, a,b) =
M∏
j

No∏
i

(Xji)
Rji (1−Xji)1−Rji , (10)

Ls(s, g, σ
2
, θ, a,b) =

M∏
j

Ns∏
i

N (Rji|Xji, σ2
), (11)

where, Xji = (1 − si)ηji + gi(1 − ηji). Then, the full
conditional distributions of the parameters given the data and
the rest of parameters as the following:

P (a,b|R, θ, s, g, σ2
) ∝ L(s, g, σ

2
, θ, a,b)P (a)P (b), (12)

P (θ|R, a,b, s, g, σ2
) ∝ L(s, g, σ

2
, θ, a,b)P (θ), (13)

P (s, g|R, θ, a,b, σ2
) ∝ L(s, g, σ

2
, θ, a,b)P (s)P (g), (14)

P (σ
2|R, θ, a,b, s, g) ∝ Ls(s, g, σ2

, θ, a,b)P (σ
2
). (15)

Finally, we propose a Metropolis-Hastings (M-H) based
MCMC algorithm [Hastings, 1970] for parameter estimation
by Algorithm 1. To be specific, we first randomize all the
parameters as the initial values. Then, using observed score
matrix R and the Q-matrix, we compute the full conditional
probability of skill discrimination a, skill difficulty b, exami-
nee latent trait θ, problem slip factor s and guess factor g and
the variance of normalized score of subjective problem σ2.
Next, the acceptance probability of samples can also be calcu-
lated based on M-H algorithm. In this way, we could estimate
the parameters with the MCMC formed through sampling.

Predicting Examinee Performance. After the training
stage, we can easily obtain fuzzified proficiency of the ex-
aminees on each skill based on estimated latent trait, skill
discrimination and difficulty (Equation (1)). Then, we can

further compute fuzzified mastery of the examinees on each
problem according to Q-matrix and problem type (objective
or subjective) by Equations (2) and (3). Combining the es-
timated slip and guess factors of each problem, we can now
complete the PEP task, i.e. predict examinees’ performance
(i.e. score) on each problem, by Equations (5) and (6). Note
that, the output of Equations (5) is continuous, and we can
discretize them for predicting on objective problems.

Algorithm 1 Sampling algorithm for FuzzyCDF.
Input: score matrix R, experts’ knowledge Q
Output: samples of θ,a,b,s,g,σ2

1: Initialize θ0,a0,b0, s0,g0, σ
2
0 with random values

2: for t = 1, 2, · · · , T do
3: Draw at ∼ U(at−1 − δa,at−1 − δa),bt ∼ U(bt−1 −

δb,bt−1 − δb), and accept at,bt with the probability:

min{1, L(st−1,gt−1,σ
2
t−1,θt−1,at,bt)P (at)P (bt)

L(st−1,gt−1,σ
2
t−1,θt−1,at−1,bt−1)P (at−1)P (bt−1)

}.
4: Draw θt ∼ U(θt−1 − δθ, θt−1 + δθ), and accept θt with the

probability:

min{1, L(st−1,gt−1,σ
2
t−1,θt,at,bt)P (θt)

L(st−1,gt−1,σ
2
t−1,θt−1,at,bt)P (θt−1)

}.
5: Draw st ∼ U(st−1 − δs, st−1 + δs),gt ∼ U(gt−1 −

δg,gt−1 + δg), and accept st,gt with the probability:

min{1, L(st,gt,σ
2
t−1,θt,at,bt)P (st)P (gt)

L(st−1,gt−1,σ
2
t−1,θt,at,bt)P (st−1)P (gt−1)

}.

6: Draw σ2
t ∼ U(σ2

t−1 − δσ, σ2
t−1 + δσ), and accept σ2

t with
the probability:
min{1, L(st,gt,σ

2
t ,θt,at,bt)P (σ2

t )

L(st,gt,σ
2
t−1,θt,at,bt)P (σ2

t−1)
}.

7: if convergence criterion meets then
8: return
9: end if

10: end for
11: return

4 Experiments
We first compare the performance of FuzzyCDF against the
baseline approaches on the PEP task; then, we conduct a case
study to assess the interpretation of the cognitive diagnosis.

Experimental Setup. The public dataset in our experiment
comprises of scores of middle school students on fraction
subtraction objective problems [Tatsuoka, 1984; DeCarlo,
2010]. The two private datasets2 are collected from two fi-
nal mathematical exams for high school students including
both objective and subjective problems. We denote the three
datasets as FrcSub, Math1 and Math2. Each of the datasets is
represented by a score matrix and a given Q-matrix by edu-
cation experts. The brief summary of these datasets is shown
in Table 2. Further, Figure 6 shows the preview of these three
datasets, where each column for each subfigure stands for
a problem and each row above and below represents an ex-
aminee and a skill, respectively. Specifically, the three sub-
figures in the above show FrcSub’s score matrix with only
dichotomous scores, Math1’s and Math2’s normalized score
matrix with both dichotomous and polytomous scores; The
three subfigures in the below show the three Q-matrices.

2The two private datasets we use have been publicly available on
http://staff.ustc.edu.cn/%7Eqiliuql/data/math2015.rar.
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Figure 6: The preview of the datasets.

Table 2: Datasets Summary.
# Problem

Dataset # Examinee # Skill Obj. Sub.
FrcSub 536 8 20 0
Math1 4,209 11 15 5
Math2 3,911 16 16 4

For the prior distributions of parameters in FuzzyCDF, we
set the hyperparameters as follows:

µθ = 0, σθ = 1;µa = 0, σa = 1;µb = 0, σb = 1;

vs = 1, ws = 2,mins = 0,maxs = 0.6;

vg = 1, wg = 2,ming = 0,maxg = 0.6;

xσ = 4, yσ = 6.

In this experiments, we set the number of iterations of Algo-
rithm 1 to 5,000 and estimate the parameters based on the last
2,500 samples to guarantee the convergency of the Markov
chain. Both our FuzzyCDF and other baseline approaches are
implemented by using Matlab on a Core i5 3.1Ghz machine
with Windows 7 and 4 GB memory.

PEP Task. To demonstrate the effectiveness of Fuzzy-
CDF, we conduct experiments on PEP task, i.e. predicting
the scores from the examinees on each problem. To observe
how the methods behave at different sparsity levels, we con-
struct different sizes of training sets, with 20%, 40%, 60%
and 80% of score data of each examinee, and the rest for test-
ing, respectively. We use root mean square error (RMSE) and
mean absolute error (MAE) as the evaluation metrics. Then,
we consider baseline approaches as follows:
• IRT:[Rasch, 1961; Birnbaum, 1968] a cognitive diagno-

sis method modelling examinees’ latent trait and the pa-
rameters of problems like difficulty and discrimination.
• DINA:[Junker and Sijtsma, 2001] a cognitive diagnosis

method modelling examinees’ skill proficiency and the
slip and guess factors of problems with a Q-matrix.
• PMF:[Mnih and Salakhutdinov, 2007] probabilistic ma-

trix factorization is a latent factor model projecting ex-
aminees and problems into a low-dimensional space.
• NMF:[Lee and Seung, 2001] non-negative matrix fac-

torization is a latent non-negative factor model and can
be viewed as a topic model.
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Figure 7: Prediction task performance.

For the purpose of comparison, we record the best per-
formance of each algorithm by tuning their parameters, and
Figure 7 shows the PEP results of our FuzzyCDF and base-
line approaches on three datasets. Here, we consider two im-
plementations of the matrix factorization methods, PMF and
NMF. That is, PMF-5D and PMF-10D (NMF-5D and NMF-
10D) represent the PMF (NMF) with 5 and 10 latent factors,
respectively. Thus, there are totally seven results in each split.

From this figure, we observe that, over all the datasets,
FuzzyCDF performs the best. Specifically, by combining ed-
ucational hypotheses it beats PMF and NMF, and by quan-
titatively analysing examinees from a fuzzy viewpoint, it
beats IRT and DINA. More importantly, with the increasing
of the sparsity of the training data (training data ratio de-
clines from 80% to 20%), the superiority of our FuzzyCDF
method becomes more and more significant. For instance,
when the training data is 20% and under the metric of MAE,
the improvement of FuzzyCDF compared to the best baseline
method IRT could reach 19%, 10%, and 8% on each data,
respectively. In summary, FuzzyCDF captures the character-
istics of examinees more precisely and it is also more suitable
for the real-world scenarios, where the data is sparse and the
examinees/problems are cold-start.

Fixing the training data ratio equal to 80%, Figure 8(a),
8(b) and 8(c) show the prediction performance for each spe-
cific problem in these three datasets. For simplicity, we only
give the results of FuzzyCDF and four baselines that have bet-
ter performance: PMF-5D, DINA, IRT and NMF-5D. From
each subfigure, we can observe that FuzzyCDF outperforms
almost all the baselines on all the problems. Specifically, in
Math1 and Math2 datasets (the last five and four problems are
subjective problems, respectively), FuzzyCDF method can
obtain the best performance for both objective and subjective
problems, which in turn proves the reasonability of our As-
sumption 2 about skill interaction on objective and subjective
problems. However, matrix factorization methods (PMF and
NMF) cannot fit the scores of objective problems very well
and the normal psychometric methods (IRT and DINA) are
unsuitable for subjective problems. Moreover, Table 3 shows
the runtime of each method under this setting.

Case Study. Here, we present an example of the diagno-
sis results of an examinee on each skill in Dataset FrcSub
using DINA and FuzzyCDF, and the results are shown in Fig-
ure 9. We can observe that both FuzzyCDF and DINA can
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Figure 8: Prediction performance for each problem.

Table 3: Runtime Results (seconds).
Datasets FuzzyCDF PMF DINA IRT NMF
FrcSub 111.26 0.14 11.19 1.77 0.07
Math1 885.63 1.27 239.56 78.87 0.344
Math2 1096.00 1.13 6184.21 68.14 0.256

obtain interpretatively meaningful diagnosis results with the
well-designed Q-matrix. However, DINA can only distin-
guish whether an examinee masters a skill (1 or 0) while our
FuzzyCDF can tell the extent to which the examinee masters
a skill. Thus, based on our diagnosis results, an examinee can
find out the true strength and shortcomings of hers at present,
and furthermore, educators or tutoring systems can give her
targeted remedy plans for improvement. We should note that
traditional IRT and matrix factorization methods describe an
examinee with latent variables, which cannot provide intu-
itive and interpretative results for each examinee.
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Figure 9: Diagnosis results of an examinee on each skill.

Discussion. From the experimental results of PEP task,
we can observe that FuzzyCDF outperforms the baselines
on both objective and subjective problems. The case study
demonstrated that FuzzyCDF could obtain interpretative cog-
nitive analysis results for examinees, which can be used for
composing a detailed and human-readable diagnosis report.

On the other hand, there is still some room for improve-
ment. First, FuzzyCDF currently confronts the problem of
high computational complexity, and we will try to design an
efficient sampling algorithm in the future. Second, we can
test more fuzzy set operation functions. Third, there may be

some other problem types beyond objective and subjective
problems that should be considered for cognitive modelling.

5 Conclusion
In this paper, we designed a fuzzy cognitive diagnosis frame-
work, FuzzyCDF, to explore the scores of both objective and
subjective problems for cognitive modelling. Specifically, we
first fuzzified the skill proficiency of examinees based on a
fuzzy set assumption, then fuzzified the problem mastery by
mapping conjunctive and compensatory interactions into the
fuzzy set operations, and next modelled the generation of the
two kinds of problems with different distributions by consid-
ering slip and guess factors. Finally, extensive experimental
results demonstrated that FuzzyCDF could quantitatively and
interpretatively analyse the characteristics of each examinee
and thus obtained a better performance for the PEP task. We
hope this work could lead to more future studies.
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