
Abstract

We describe a novel convolutional neural network
architecture with k-max pooling layer that is able
to successfully recover the structure of Chinese
sentences. This network can capture active fea-
tures for unseen segments of a sentence to mea-
sure how likely the segments are merged to be the
constituents. Given an input sentence, after all the
scores of possible segments are computed, an ef-
ficient dynamic programming parsing algorithm is
used to find the globally optimal parse tree. A sim-
ilar network is then applied to predict syntactic cat-
egories for every node in the parse tree. Our net-
works archived competitive performance to exist-
ing benchmark parsers on the CTB-5 dataset with-
out any task-specific feature engineering.

1 Introduction

Syntactic parsing of natural langauge sentences is one of the
most fundamental NLP tasks because of its importance in
mediating between linguistic meaning and expression. Chi-
nese parsing has also received steady attention since the re-
lease of Penn Chinese Treebank [Xue et al., 2005]. Most of
the previous work has focused on finding relevant features
for the model component, and on finding effective statistical
techniques for parameter estimation. Although such perfor-
mance improvements can be useful in practice, there is a great
temptation to optimize the system’s performance for a spe-
cific benchmark. Furthermore, such systems, especially for
those that use joint solution, usually involve a great number
of features, which makes engineering effective task-specific
features and structured learning of parameters very hard.

We address the Chinese parsing task by avoiding feature
engineering, which falls in line with the recent efforts to sur-
pass the state-of-the-art for many NLP tasks by “deep” learn-
ing. We introduce a convolutional neural network with k-max
pooling layer, called KMCNN, which can be used to produce
a score for each segment in an input sentence. Each produced
score measures how likely the segment is to become a con-
stituent in the parse tree. The k-max pooling operation is
applied on the output of the convolutional layer, and pools
the k most active features in each dimension to capture syn-
tactic and semantic information of a sentence segment, which

preserves the relative positions of the most relevant features,
and thus it is sensitive to the order of the words in the input
sentence. Experimental results show that the KMCNN can
successfully recover the structure of Chinese sentences.

The KMCNN is different from an adapted Graph Trans-
former Network with single local max pooling operation
(GTN) introduced by [Collobert, 2011] for discriminative
parsing. The advantage of the GTN is that it does not depend
on external language-specific features such as those derived
from the constituency or dependency parse trees. However,
its single max pooling operation cannot discriminate whether
a relevant feature occurs just one or several times, and also
neglects the relative order in which the features occur. The
order of the words does matter to the meaning or the structure
of the sentences, which is very useful for parsing or semantic
analysis. Another limitation of the convolutional neural net-
work with single max pooling operator is that if most or all of
the highest values occur in a segment, the outputs of the max
pooling layer for larger segments containing this segment are
very close or equivalent to each other, and those segments
cannot be distinguished in such cases.

Kalchbrenner et al [2014] proposed a more sophisticated
network, called Dynamic Convolutional Neural Network
(DCNN), in which multiple convolutional layers interleaved
with k-max pooling layers are stacked to derive higher level
features. In the DCNN, the k is a variable that depends on
the length of an input sentence and the depth of the net-
work. The DCNN is effective in modeling whole sentences
for many sentence-level tasks including sentiment prediction,
and question type classification, but its benefit may not be ap-
plicable to the case of sentence segment, much smaller units
than sentence. The KMCNN is also different from the DCNN
in how the convolution is computed. The DCNN used one-
dimensional convolution that is to take the dot product of the
filter vector with each n-gram in the sentence at the same
dimension to obtain another feature vector, whereas the con-
volution in the KMCNN is calculated by performing affine
transformations over each feature window (concatenation of
multiple consecutive feature vectors) to extract local features.

There are two major contributions in this paper. (1) We
describe a convolutional neural network architecture with k-
max pooling layer (KMCNN), which is able to capture the
most active features of sentence segments of varying length,
and can be used to recover the structure of sentences in com-

Character-Based Parsing with Convolutional Neural Network

Xiaoqing Zheng, Haoyuan Peng, Yi Chen, Pengjing Zhang, Wenqiang Zhang
School of Computer Science, Fudan University, Shanghai, China
Shanghai Key Laboratory of Intelligent Information Processing

{zhengxq, penghy11, yichen11, pengjingzhang13, wqzhang}@fudan.edu.cn

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

1054

bination with a dynamic programming decoder; (2) We ap-
plied KMCNN to parse Chinese sentences, and achieved the
state-of-art performance in constituent parsing by transferring
intermediate representations learned on large unlabeled data
without task-specific feature engineering.

2 Parse Tree Representation

Parsing can be viewed as a “chunking” process which recur-
sively finds chunks of phrases or constituents in a sentence.
Words are first merged into phrases, and then the phrases are
further merged into larger constituents in a syntactically and
semantically meaningful order until the full parse tree is de-
duced. The search space is proportional to the number of
possible parse trees. Even in grammars without unary chains
or empty elements, the number of parses is generally expo-
nential in the length of the sentence. For reducing the search
space, we focus on binary trees, which also allow us to use
efficient dynamic programming algorithms for decoding.

Government

private

encourage

entrepreneur

invest

national basic facilities(a)

private

encourage

entrepreneur
invest

national

basic facilities(b)

Government

expert

attempt business

entrepreneur

(c)

Figure 1: Parse tree representations. (a) Parse tree as in the
CTB. (b) Transformed binary tree after concatenating nodes
spanning the same constituents. (c) Expanding the word node
to its character-level tree through morphological analysis.

A parse tree in the Penn Chinese Treebank (CTB) is shown
in Figure 1 (a). The root spans all words of the sentence, and
it is recursively decomposed into smaller constituents with la-
bels like VP (verb phrase), NP (noun phrase), etc. We trans-
formed the parse trees into the equivalent binary forms like
Figure 1 (b) for training. The following three standard pre-
processing steps have been applied on the original trees:
• Multi-branching trees are converted into arbitrary

binary-branching nodes by inserting temporary nodes.
The labels of temporary nodes are generated by append-
ing “-C” (component) to the labels of their parent nodes.

• Tree nodes spanning the same constituents for several
consecutive levels are replaced by one node. The label

of this new node is the concatenation of replaced node
labels, such as “IP-VP” in Figure 1 (b).

• Functional labels as well as traces are removed.

This transformation added 61 extra tags to 22 already had
in the CTB. The first step breaks multi-branching nodes down
into binary-branching nodes by inserting temporary nodes.
Temporary nodes are collapsed and removed when we trans-
form a binary tree back into the multi-branching tree for test-
ing. The inverse operation is also performed on the nodes
having concatenated labels at test time.

Previous studies show that Chinese syntactic parsing by us-
ing character-level information and joint solution (i.e., per-
forming word segmentation, POS tagging, and parsing at the
same time) usually leads to the improvement in accuracy over
pipelined systems because the error propagation is avoided
and the various information normally used in the different
steps of pipelined systems can be integrated [Qian and Liu,
2012; Wang et al., 2013; Zhang et al., 2013]. Characters, in
fact, play an important role in the character-based languages,
such as Chinese and Japanese. They act as basic morpholog-
ical, syntactic and semantic units in a sentence.

The internal structures of words can be recovered through
morphological analysis. For example, ‘entrepreneur’
is a word derived by adding the suffix ‘expert noun plural
suffix’ to the base ‘enterprize’, as shown in Figure 1 (c).
Like [Zhang et al., 2013], we extended the notation of phrase-
structure trees, and expanded word nodes into their internal
structures. Using these extended annotations, the joint word
segmentation, POS tagging, and parsing can be performed by
starting with the character-level in a unified manner.

3 The Network Architecture

We choose to use a variant of convolutional neural network
with k-max pooling layer to find the structure of sentences.
The network architecture is shown in Figure 2. The k-max
pooling operations are applied in the network after the con-
volutional layers, which are used to pool the k most active
features at low levels. This network preserves the relative po-
sitions of the most relevant features, and thus it is sensitive to
the order of the words in input sentences. Convolutional lay-
ers are often stacked, interleaved with a non-linearity func-
tion, to extract higher level features (only two convolutional
layers are drawn in Figure 2 for clarity). The topmost k-max
pooling layer also guarantees that the input to the next layer
of the network is independent of the length of an input sen-
tence, in order to apply the same subsequent layers.

The input to the KMCNN is a sentence segment, and the
network induces a score for the segment which measures how
well the characters in the segment can be combined into a
constituent or a phrase. After all the scores of possible seg-
ments are computed (the scores for different segments can be
calculated in a parallel fashion by sharing the intermediate
values of their overlapping parts), a dynamic programming
parsing algorithm is used to find the globally optimal tree.
For every node in the optimal parse tree, the network predicts
syntactic labels by adding to the network a simple softmax
layer (after removing the last scoring layer).

1055

3.1 Mapping Characters into Feature Vectors

The characters are fed into the network as indices that are
used by a lookup operation to transform characters into their
feature vectors. We consider a fixed-sized character dictio-
nary D. The vector representations are stored in a character
embedding matrix M ∈ R

d×|D|, where d is the dimensional-
ity of the vector space (a hyper-parameter to be chosen) and
|D| is the size of the dictionary.

Formally, assume we are given a sentence c[1:n] that is a
sequence of n characters ci, 1 ≤ i ≤ n. For each character
ci ∈ D that has an associated index ki into the column of the
embedding matrix, a d-dimensional feature vector represen-
tation is retrieved by the lookup table layer ZD(·) ∈ R

d:

ZD(ci) = Meki
(1)

where we use a binary vector eki
∈ R

|D|×1 which is zero in
all positions except at the ki-th index. The lookup operation
can be seen as a simple projection layer. The feature vector
of each character can be initialized randomly or pre-trained
on unlabeled corpora. The character representations can be
tuned by back propagation to be relevant to the task.

Convolution

1
2
3

d 1
d

...

Text

Input

Features

Lookup Table

Number of Hidden Units

Hidden
b4)× +

Number of tags

(W 4

Output

"The government encourages private sector investment."

N
um

ber of
Convolutional
U

nitsW 2

k × Number of Convolutional Units

K-Max
k-max(·)

b5)× +(W 5

Score

b2

K-Max
k-max(·)

Convolution
W 3

b3

Figure 2: The neural network architecture.

3.2 Convolutional Layer

The lookup table layer extracts features for each single char-
acter, but the features of a character in context will be in-
fluenced by its surrounding characters. We assume that the

features of a particular character depend mainly on its neigh-
boring characters, and extract these features from a fixed size
window w (a hyper-parameter). More precisely, given an in-
put sentence c[1:n], the character feature window produced by
the first lookup table layer at position ci can be written as:

fwin
θ (ci) =

⎛
⎜⎜⎜⎜⎜⎝

ZD(ci−w/2)
...

ZD(ci)
...

ZD(ci+w/2)

⎞
⎟⎟⎟⎟⎟⎠

(2)

where fwin
θ is a function with trainable parameters θ. The

idea behind the convolution is to perform affine transforma-
tions over each character window to extract local features:

f con
θ (ci) = (Wfwin

θ (ci) + b) (3)

where the matrices W ∈ R
V ×(wd) and b ∈ R

V are the pa-
rameters to be optimized by training. A hyper-parameter V
is called as the number of convolutional units. The trained
weights in W and b can be viewed as a linguistic feature de-
tector that learns to recognize a specific class of n-grams.

A wide type of convolution is used as [Kalchbrenner et al.,
2014], and yields a matrix f con

θ (c[i:j]) ∈ R
V ×(j−i+w) for

the segment c[i:j] from character ci to cj . Out-of-range input
values are taken to be zeros. The narrow convolution gives
largely equal importance to the features for every character
in a segment, with the exception of characters at the margins
which are considered fewer times in the computation of the
convolution. In our case, the characters at the margins are
more important than others since they define the boundaries
of segments, and cannot be underestimated. The wide con-
volution ensures all weights in the filter reach the entire seg-
ment, including the characters at the margins (see Figure 2).
This is particularly significant when the window size w is set
to a relatively large value.

3.3 k-Max Pooling Layer

We applied a k-max pooling operation to the output of the
convolutional layer, which is a generalization of max pooling
over time dimension used in [Collobert and Weston, 2008;
Collobert et al., 2011]. Given a number k and a sequence
Q ∈ R

p(k ≤ p), k-max pooling selects the subsequence
Qk

max of k-highest values in Q. The selected values of Qk
max

preserve their relative order in Q. Given a output matrix fcon
θ ,

the k-max pooling layer yields another matrix:

fmax
θ (fcon

θ) =

⎛
⎜⎝

k-max([fcon
θ]1,1 · · · [fcon

θ]1,j−i+w)
...

...
...

k-max([f con
θ]V,1 · · · [fcon

θ]V,j−i+w)

⎞
⎟⎠

(4)
where [fcon

θ]i,j is the element in the i-th row and j-th column
of matrix fcon

θ .
Multiple convolutional layers are often stacked to extract

higher level features. Different convolutional layers may have
their own window size w and value k. Every column vector
of the matrix produced by the topmost k-max pooling layer is
concatenated to be fed to further neural network layers.

1056

3.4 Segment Scoring and Labeling

The fixed-sized vector produced by the topmost k-max pool-
ing layer is fed to two standard Linear Layers that succes-
sively perform affine transformations over the vector, in-
terleaved with some non-linearity function σ(·), to extract
highly non-linear features. As non-linear function, we chose
the sigmoidal function.

For each possible segment of an input sentence, the net-
work outputs a score for being a correct constituent in the
parse tree of the sentence. Training aims to increase scores
of good segments (correspond to correct spans in the parse
tree) and decrease scores of incorrect ones. Given an input
sentence, after all the scores of possible segments are calcu-
lated, an efficient dynamic programming decoding algorithm
is applied to find the globally optimal parse tree.

We add a simple softmax layer to the network (after remov-
ing the last scoring layer) to predict part-of-speech or syntac-
tic labels for each segment. Labeling is trained by minimizing
the cross-entropy error of the softmax layer using backpropa-
gation. The network performs the structure prediction and la-
beling jointly. The two tasks shared the several layers (from
the input to hidden layers) of the network. When minimiz-
ing the cross-entropy error of the softmax layer, the error will
also backpropagate and influence both the network parame-
ters and the character representations.

3.5 Dynamic Programming Decoding

In our discriminative parsing task, we aim to learn a function
f : X → Y , where X is a set of sentences, and Y is a set
of valid parse trees. We denote the set of all possible parse
trees that can be constructed from an input x ∈ X as T (x).
Generally, we have to enumerate all |T (x)| trees and score
them in order to find the best one, where |T (x)| is the num-
ber of parse trees that is usually exponential in the length of
the sentence. However, our grammars and representations are
generally structured to enable efficient inference.

Goverment

private

encourage

entrepreneur

invest

national

0

0

1

1 2 3 4 5

2

3

4

5

6 7

6

7

basic

facilities

(VP-C, 2, 7, 3)

Figure 3: Grid of labeled segments.

We assign scores to local segments of a parse tree with
the KMCNN, and the final score of the tree that we need for
structure prediction is the sum of all the local segments (i.e.,
non-terminal nodes of the tree). Such model has the overlap-
ping optimal substructure property which permits dynamic

programming decompositions. The similar idea of this de-
composition has previously been used for max-margin pars-
ing [Taskar et al., 2004], and in present extension to parsing
langauge with recursive neural networks [Socher et al., 2011].

We represent each parse tree as a set of context-free-rule tu-
ples (A → BC, b, e, m), where A, B and C are non-terminal
symbols, b is start-point, e is end-point, and m is split point.
Figure 3 is the grid representation of the binary parse tree
shown in Figure 1 (b). Although we illustrate the example
here by taking the words as basic input units for clarity, the
same dynamic programming algorithm still works when start-
ing with the character-level. The cells in the grid except for
those on the diagonal correspond to the possible segments in
an input sentence. Formally, R(x, ŷ) denotes a countable set
of non-terminal nodes in a parse ŷ for input x, the score of
the parse tree ŷ can be decomposed into a sum of the scores
of its parts:

s(θ, x, ŷ) =
∑

d(b,e)∈R(x,ŷ)

s(θ, x, d(b, e)) (5)

where θ are all the parameters needed to compute a score s
with the KMCNN, and d(b, e) is a non-terminal node span-
ning from b to e.

3.6 Training

Given a training example (x, y), we defined a structured mar-
gin Δ(x, y, ŷ) loss for proposing a parse ŷ for sentence x
when y is the true parse. This penalty is proportional to the
number of labeled spans on which the two parse trees do not
agree. In general, Δ(x, y, ŷ) is equal to 0 if y = ŷ. The loss
function is defined as a penalization of incorrect spans:

Δ(x, y, ŷ) =
∑

d(b,e)∈R(x,ŷ)

κ1{d(b, e) /∈ R(x, y)} (6)

where κ is a penalization term to each incorrect span, and
R(x, y) is the truth parse for input x.

For a training set, we seek a function f with small expected
loss on unseen sentences. The function we consider take the
following form:

fθ(x) = arg max
ŷ∈T (x)

s(θ, x, ŷ) (7)

where θ are all the parameters needed to be trained. The score
of a tree ŷ is higher if the algorithm is more confident that the
structure of the tree is correct. In the max-margin estimation
framework, we want to ensure that the highest scoring tree is
the true parse for all training instances (xi, yi), i = 1, · · · , n,
and it’s score to be larger up to a margin defined by the loss.
For all i in the training data:

s(θ, xi, yi) ≥ s(θ, xi, ŷ) + Δ(xi, yi, ŷ) (8)

These lead us to minimize the following regularized objec-
tive for n training instances:

J(θ) =
1
n

n∑
i=1

Ei(θ) +
λ

2
||θ||2, where

Ei(θ) = max
ŷ∈T (xi)

(s(θ, xi, ŷ) + Δ(xi, yi, ŷ))

− s(θ, xi, yi)

(9)

1057

where the coefficient λ governs the relative importance of the
regularization term compared with the error. Not that the cor-
rect parse tree of sentence xi is not necessarily unique, and
yi could be one with the highest score among the multiple
correct parses (See Figure 3). The loss penalizes trees more
when they deviate from the correct one. Minimizing this ob-
jective maximizes the score of the correct tree, and minimizes
that of the highest scoring but incorrect tree. The objective is
not differentiable due to the hinge loss. we use the subgradi-
ent method to compute a gradient-like direction for minimiz-
ing the objective function.

4 Experiments

We conducted two sets of experiments. The goal of the first
one is to test several variants of the network configurations
on the development set, to tune hyper-parameters. The sec-
ond one is to see how far we can go for Chinese constituent
parsing without task-specific feature engineering. We com-
pared the performance of the KMCNN with the existing state-
of-the-art systems on the Penn Chinese Treebank 5 (CTB-5)
using the standard split of data1.

We transformed the parse trees of the CTB-5 into their bi-
nary forms for training by the method described in Section
2. At test time, the inversion operation was performed on
the predicted parse trees. The standard F1-score was used
to evaluate the performance, which is the harmonic mean of
precision p and recall r, defined as 2pr/(p + r).

4.1 The Choice of Hyper-parameters

We tuned the hyper-parameters by trying only a few different
networks. All the test results were obtained over 10 runs with
different random initialization for each setting of the network.
In our experiments, we chose to use the networks with two
convolutional layers. Each convolutional layer is followed
by a non-linearity, and a k-max pooling layer. The window
sizes of the convolutional filters are 5 and 3, respectively. The
value of k at the first max pooling layer is 5, and that at the
top is 3.

Hyper-parameter Value

Window sizes of two convolutional layers 5/3
Values k in two k-max pooling layers 5/3
Number of convolutional units 200
Number of hidden units 300
Character feature dimension 50
Learning rate 0.02
Penalization term κ 0.05
Regularization parameter λ 0.0001

Table 1: Hyper-parameters of the network.

Generally, the numbers of convolutional and hidden units,
provided they are large enough, have a limited impact on the
generalization performance. The dimension of character was
set to 50, which achieved a good trade-off between training
speed and performance. We also found that the performance

1Sections 1-270, 400-931, 1001-1151 are used for training, sec-
tions 301-325 for development, and sections 271-300 for testing.

was improved marginally when the value k of max pooling at
the first layer is larger than 5, but the training time increases
drastically. Training can be faster with a larger learning rate,
but we preferred to stick to a small one which works, rather
than finding the optimal one for speed. The network hyper-
parameters used in the experiments are shown in Table 1.

4.2 Pre-training Character Embeddings

Previous work showed that the performance can be improved
by using word or character embeddings learned from large-
scale unlabeled data in many NLP tasks both in English [Col-
lobert et al., 2011; Socher et al., 2011] and Chinese [Zheng et
al., 2013; Pei et al., 2014]. Unsupervised pretraining guides
the learning towards basins of attraction of minima that sup-
port better generalization [Erhan et al., 2010]. We leveraged
large unlabeled corpus to learn character embeddings, and
then used these improved embeddings to initialize the charac-
ter lookup tables of the networks. A Chinese Wikipedia cor-
pus2 containing about 667MB data was used to train the char-
acter embeddings by Word2Vec tool3 [Mikolov et al., 2013].

System F1 Score

Socher et al [2011] 71.12 (RNN model)
Wang et al [2006] 77.50 (stacked classifier model)
Li [2011] 79.07 (annotated word structures)
Qian and Liu [2012] 82.85 (joint linear model)
Wang [2013] 83.42 (joint latticed-based model)
Zhang et al [2013] 84.43 (annotated word structures)
KMCNN 81.78 (pipeline)
KMCNN 84.22 (annotated word structures)

Table 2: Comparison with state-of-the-art systems

4.3 Experimental Results

The experimental results are reported in Table 2, in which our
model is indicated by “KMCNN”. We implemented a variant
of the RNN [Socher et al., 2011] which achieved an F1 of
71.12%. In this implementation, we start with the character-
level; combine the characters into words, words into phrases,
until a parse tree is generated for an input sentence. To see
how well the joint solution can improve the performance,
we also evaluated the parsing performance on automatically
tagged data (i.e. pipeline solution). We implemented a neural
network-based system of [Zheng et al., 2013], which can per-
form joint word segmentation and POS tagging task. The F1-
scores of this system in word segmentation and POS tagging
are about 95.2% and 91.8% respectively.

The results reported in Table 2 show that the KMCNN
achieved the state-of-art performance (just 0.21% difference
in F1 to the best parser [Zhang et al., 2013]) on the CTB-
5 data set. The pipeline version of our network also outper-
formed previous pipelined systems while less dataset-specific
features were used. Many other systems often used some
extra heuristics or task-specific features carefully optimized
to improve their performances. For example, Li [2011] pro-
posed an adapted chart parser of [Collins, 2003], which used

2Available at https://www.wikipedia.org/
3Available at http://code.google.com/p/word2vec/

1058

the head-finding rules described by [Sun and Jurafsky, 2004].
The reported best parser of [Zhang et al., 2013] integrated
various contextual and structural features at the morpheme-,
character-, and word-levels, carefully optimized for the task.
Unlike many current parsers, our networks were not tailored
to the intricacies of the CTB-5 dataset.

5 Related Work

More than a decade of parsing research for Chinese has seen
the parsing performance in F1 improved from 73.04% [Bikel
and Chiang, 2000] to 84.43% [Zhang et al., 2013], thanks
to the release of Penn Chinese Treebank. Bikel and Chi-
ang [2000] constructed two word-based statistical parsers on
the first release of the CTB. One is adapted from a lexical-
ized probabilistic context-free grammar [Miller et al., 1998];
The other is based on the statistical tree-adjoining grammar
[Chiang, 2000]. On sentences with ≤100 words, the for-
mer performed at 70.37% in F1, and the latter at 73.04%
in F1. Bikel and Chiang [2002] then proposed an unsuper-
vised learning algorithm to augment the head-finding rules,
and they achieved an improved F1 of 79.93%.

Fung et al [2004] took the maximum-entropy model aug-
mented by transformation-based learning. They achieved an
F1 of 79.56% when tested with gold standard segmentation.
Wang et al [2006] proposed a classifier-based determinis-
tic parser for Chinese, and compared four different classi-
fiers in making shift-reduce decisions when building parsing
trees from bottom to up in one pass. They found that the
classifier based on support vector machine outperformed the
three others: maximum entropy, decision tree, and memory-
based learning. Their best model using stacked classifiers
performed at F1 of 77.5% on the test set for sentences ≤100
words with automatically generated POS tags.

The character-based parsing solution was first proposed in
[Luo, 2003]. The benefit of those solutions is that they can
start with the character-level, and Chinese word segmenta-
tion, POS tagging and syntax parsing can be done in a joint
framework, which improves the accuracies of three sub-tasks
and does not suffer from the error propagation. Luo [2003]
used a maximum entropy frame for joint word segmentation,
POS tagging and constituent parsing task, and he achieved an
F1 score of 81.4% in parsing. Qian and Liu [2012] proposed
a decoding algorithm for joint word segmentation, POS tag-
ging and parsing. They trained the three individual models
separately, and incorporated them together during decoding.
An F1 score of 82.85% was achieved on the CTB-5.

Wang, Zong and Xue [2013] took a lattice-based frame-
work for joint Chinese word segmentation, POS tagging and
parsing, in which a sentence is first segmented into a word
lattice, and then a POS tagger and a parser are performed on
the word lattice at the same time. The experimental results on
the CTB-5 show that the lattice-based framework improves
the accuracy of the three sub-tasks, and has an F1 score of
83.42% in parsing. Zhang et al [2013] constructed a variant
of transition-based model of [Zhang and Clark, 2009] for the
same joint task. They manually annotated the internal struc-
tures of all Chinese words in the CTB-5, and their character-
based parsing model is augmented by the features derived

from the word-structure formation. Their joint model outper-
formed the state-of-the-art word-based parser, and achieved
an improved F1 of 84.43% on the CTB-5.

Most of the existing work in parsing has focused on finding
effective features for the model component, and on finding
effective statistical techniques for parameter estimation. This
approach is effective because researchers can leverage vari-
ous linguistic knowledge once this knowledge is converted
into the features. Although such performance improvements
can be very useful in practice, there is a great temptation to
optimize the performance of a system for a specific bench-
mark. In comparison, we try to avoid task-specific feature
engineering, and use the neural network to learn several lay-
ers of feature extraction from the inputs.

Some studies have investigated how to use neural networks
for parsing English sentences. Collobert [2011] proposed a
recurrent convolutional GTN for parsing. Assuming a parse
tree can be decomposed into a stack of levels, the network
predicts next level of the tree taking into account predictions
of previous levels. His discriminative parser achieved an F1
of 87.9% on the full Penn Treebank dataset with gold POS
tags. According to the observation that the parse trees of nat-
ural language sentences can be seen as recursive structures,
Socher et al [2010; 2011] introduced recursive neural network
to recover such structures, and they achieved an unlabeled
bracketing F1-measure of 92.1% on the Wall street Journal
dataset for sentences ≤15 words. The greedy search algo-
rithm was used in the RNN that recursively selects the pair
which receives the highest score to be merged until the full
parse tree is deduced. However, the greedy strategy does not
in general produce an optimal solution.

In most cases, words are fed to the neural networks as in-
put, while our neural network is different in that the input to
the network is a sequence of characters, more raw units than
words. The character is a more natural form of input in Chi-
nese, and we can leverage large-scale unlabeled data to obtain
the character representations with more syntactic and seman-
tic information, which is impossible for Chinese words due to
the lack of large high-quality pre-segmented corpora. We also
explored the feasibility of estimating how likely each possi-
ble segment in a sentence is to be a constituent by a variant
of convolutional neural network, and employing a dynamic
programming algorithm to find the globally optimal tree. To
the best of our knowledge, this study is among the first ones
to perform Chinese parsing by deep learning.

6 Conclusion

We have described a novel convolutional neural network ar-
chitecture with k-max pooling operation, which can capture
the most active features of sentence segments based on deep
learned semantic transformations of their original character-
level features. Using only the character embeddings learned
from large unlabeled texts, our neural networks achieved the
state-of-the-art performance without labor-intensive feature
engineering on the Chinese parsing task. In particular, the
dynamic programming decoder allows us to efficiently learn
a model which discerns among the entire space of parse trees,
as opposed to evaluating the top few candidates.

1059

7 Acknowledgments

The authors would like to thank the anonymous reviewers for
their valuable comments. This work was supported by a grant
from Shanghai Municipal Natural Science Foundation (No.
13ZR1403800).

References

[Bikel and Chiang, 2000] Daniel M. Bikel and David Chiang. Two
statistical parsing models applied to the Chinese treebank. In Pro-
ceedings of the Second Chinese Language Processing Workshop,
2000.

[Chiang and Bikel, 2002] David Chiang and Daniel M. Bikel. Re-
covering latent information in treebanks. In Proceedings of
the 19th International Conference on Computational Linguistics
(COLING’02), 2002.

[Chiang, 2000] David Chiang. Statistical parsing with an automat-
ically extracted tree adjoining grammar. In Proceedings of the
38th Annual Meeting of the Association for Computational Lin-
guistics (ACL’00), 2000.

[Collins, 2003] Michael Collins. Head-driven statistical models for
natural language parsing. Computational Linguistics, 29(4):589–
637, 2003.

[Collobert and Weston, 2008] Ronan Collobert and Jason Weston.
A unified architecture for natural language processing: deep
neural networks with multitask learning. In Proceedings of the
International Conference on Machine learning (ICML’08), 2008.

[Collobert et al., 2011] Ronan Collobert, Jason Weston, Léon Bot-
tou, Michael Karlen, Koray Kavukcuoglu, and Pavel Kuksa. Nat-
ural language processing (almost) from scratch. Journal of Ma-
chine Learning Research, 12:2493–2537, 2011.

[Collobert, 2011] Ronan Collobert. Deep learning for efficient dis-
criminative parsing. In Proceedings of the International Confer-
ence on Artificial Intelligence and Statistics (AISTATS’11), 2011.

[Erhan et al., 2010] Dumitru Erhan, Yoshua Bengio, Aaron
Courville, Pierre-Antoine Manzagol, and Pascal Vincent. Why
does unsupervised pre-training help deep learning. Journal of
Machine Learning Research, 11:625–660, 2010.

[Fung et al., 2004] Pascale Fung, Grace Ngai, Yongsheng Yang,
and Benfeng Cheng. A maximum-entropy Chinese parser aug-
mented by transformation-based learning. ACM Transactions on
Asian Language Information Processing, 3(2):159–168, 2004.

[Kalchbrenner et al., 2014] Nal Kalchbrenner, Edward Grefen-
stette, and Phil Blunsom. A convolutional neural network for
modelling sentences. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics (ACL’14),
2014.

[Li, 2011] Zhongguo Li. Parsing the internal structure of words: A
new paradigm for Chinese word segmentation. In Proceedings
of the 49th Annual Meeting of the Association for Computational
Linguistics (ACL’11), 2011.

[Luo, 2003] Xiaoqiang Luo. Maximum entropy Chinese character-
based parser. In Proceedings of the International Confer-
ence on Empirical Methods in Natural Language Processing
(EMNLP’03), 2003.

[Mikolov et al., 2013] Tomas Mikolov, Kai Chen, Greg Corrado,
and Jeffrey Dean. Efficient estimation of word representations
in vector space. CoRR, abs/1301.3781, 2013.

[Miller et al., 1998] Scott Miller, Heidi Fox, Lance Ramshaw, and
Ralph Weischedel. Sift - statistically-derived information from
text. In Proceedings of the 7th Message Understanding Confer-
ence (MUC’98), 1998.

[Pei et al., 2014] Wenzhe Pei, Tao Ge, and Baobao Chang. Max-
margin tensor neural network for chinsese word segmentation. In
Proceedings of the 52nd Annual Meeting of the Association for
Computational Linguistics (ACL’14), 2014.

[Qian and Liu, 2012] Xian Qian and Yang Liu. Joint Chinese word
segmentation, pos tagging and parsing. In Proceedings of the
International Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP’12), 2012.

[Socher et al., 2010] Richard Socher, Christopher D. Manning, and
Andrew Y. Ng. Learning continuous phrase representations and
syntactic parsing with recursive neural networks. In Proceedings
of the Deep Learning and Unsupervised Feature Learning Work-
shop, the Conference on Neural Information Processing Systems
(NIPS’10), 2010.

[Socher et al., 2011] Richard Socher, Cliff C-Y. Lin, Andrew Y.
Ng, and Christopher D. Manning. Parsing natural scenes and
natural language with recursive neural networks. In Proceedings
of the International Conference on Machine learning (ICML’11),
2011.

[Sun and Jurafsky, 2004] Honglin Sun and Daniel Jurafsky. Shal-
low semantic parsing of Chinese. In Proceedings of the Inter-
national Conference on Human Language Technology / North
American chapter of the Association for Computational Linguis-
tics (HLT-NAACL’04), 2004.

[Taskar et al., 2004] Ben Taskar, Dan Klein, Michael Collins,
Daphne Koller, and Christopher D. Manning. Max-margin pars-
ing. In Proceedings of the International Conference on Empirical
Methods in Natural Language Processing (EMNLP’04), 2004.

[Wang et al., 2006] Mengqiu Wang, Kenji Sagae, and Teruko Mi-
tamura. A fast, accurate deterministic parser for Chinese. In
Proceedings of the 44th Annual Meeting of the Association for
Computational Linguistics (ACL’06), 2006.

[Wang et al., 2013] Zhiguo Wang, Chengqing Zong, and Nianwen
Xue. A lattice-based framework for joint Chinese word segmen-
tation, pos tagging and parsing. In Proceedings of the 51st An-
nual Meeting of the Association for Computational Linguistics
(ACL’13), 2013.

[Xue et al., 2005] Nanwen Xue, Fei Xia, Fudong Chiou, and Marta
Palmer. The Penn Chinese Treebank: Phrase structure annotation
of a large corpus. Natural Language Engineering, 11(2):207–
238, 2005.

[Zhang and Clark, 2009] Yue Zhang and Stephen Clark. Transition-
based parsing of the Chinese treebank using a global discrimina-
tive model. In Proceedings of the 11th International Conference
on Parsing Technologies (IWPT’09), 2009.

[Zhang et al., 2013] Meishan Zhang, Yue Zhang, Wanxiang Che,
and Ting Liu. Chinese parsing exploiting characters. In Proceed-
ings of the 51st Annual Meeting of the Association for Computa-
tional Linguistics (ACL’13), 2013.

[Zheng et al., 2013] Xiaoqing Zheng, Hanyang Chen, and Tianyu
Xu. Deep learning for Chinese word segmentation and pos tag-
ging. In Proceedings of the International Conference on Em-
pirical Methods in Natural Language Processing (EMNLP’13),
2013.

1060

