
The Complexity of Model Checking Succinct Multiagent Systems

Xiaowei Huang
Jinan University, China
CSE, UNSW, Australia

Qingliang Chen
Jinan University,

Guangzhou 510632, China

Kaile Su
Jinan University, China

IIIS, Griffith University, Australia

Abstract
This paper studies the complexity of model check-
ing multiagent systems, in particular systems suc-
cinctly described by two practical representations:
concurrent representation and symbolic representa-
tion. The logics we concern include branching time
temporal logics and several variants of alternating
time temporal logics.

1 Introduction
Model checking [Clarke et al., 1999] is a promising technique
used in the verification of a system implementation against its
specification. Taking as inputs a model describing the system
implementation and a logic formula characterizing the sys-
tem specification, a model checking algorithm automatically
determines whether the formula is satisfied in the model. Tra-
ditional model checking works with temporal logics [Pnueli,
1977; Clarke et al., 1986], which can express properties quan-
tified in terms of time. In particular, branching-time temporal
logics CTL and CTL∗ can express the safety or liveness prop-
erties on all or some of the paths from a state.

The research on model checking techniques has been ex-
tended to work with systems consisting of multiple interact-
ing agents (or components, processes, etc). The system’s be-
haviour depends on agents’ strategies, which provide instruc-
tions for the agents to make decisions. To characterise these
specifications, various logical frameworks on reasoning about
strategies have been put forward. In particular, alternating-
time temporal logics (ATL and ATL∗) [Alur et al., 2002] gen-
eralise CTL and CTL∗ with selective quantifications over the
paths, by quantifying agents’ strategy ability.

In a multiagent system, an agent usually has to make deci-
sions based on incomplete information. It is allowed to par-
tially observe the system state and reason about the system
or other agents’ behaviours based on the observations. An
incomplete information system is particularly suitable for the
case where agents have private information which they do not
want to be accessed by other agents. In this paper, we assume
that agents conduct reasoning based on their current observa-
tions. With this assumption, there are two variants1 of ATL
and ATL∗, namely ATLir, and ATL∗ir.

1We follow the naming conventions from [Schobbens, 2004].

Logic Exp. Rep. Con. Rep. Sym. Rep.
CTL PTIME PSPACE PSPACE
CTL∗ PSPACE PSPACE PSPACE
ATLir ∆P

2 PSPACE NEXPTIME
ATL∗ir PSPACE PSPACE NEXPTIME

Table 1: Model Checking Complexities

This paper is to clarify the computational complexities of
model checking these logics on multiagent systems. The
complexity result of a model checking problem provides a
theoretical indication on the scalability of a model checking
algorithm. Most of existing works on studying model check-
ing complexity assume an explicit representation of the sys-
tem implementation by e.g., explicitly enumerating the states
and the transition relation, etc. However, this is inconsistent
with the ways most of the existing model checkers work.

In the paper, we work with succinct representations of
multiagent systems. A succinct representation can be a
concurrent representation, where agents run concurrently on
their own (explicit) protocols, or a symbolic representation,
where agents’ protocols are described by boolean formulas.
Concurrent representation has been taken as modelling lan-
guages of several model checkers, such as Verics [Kacprzak
et al., 2008]. Symbolic representation serves as intermediate
structure of most BDD-based or SAT-based symbolic model
checkers. Modelling languages of some model checkers, for
example NuSMV [Cimatti et al., 2002], MCMAS [Lomuscio
et al., 2009] and MCK [Gammie and van der Meyden, 2004],
can be translated into a symbolic representation in an obvi-
ous way. Therefore, it is more practical to work with succinct
representations than explicit representation.

Model checking complexities for explicit representation
have been well-understood for the logics that we are inter-
ested in. In particular, [Clarke et al., 1986] and [Emerson and
Lei, 1987] give the complexities for CTL and CTL∗, respec-
tively. [Schobbens, 2004; Jamroga and Dix, 2008] present
the complexity for ATLir and [Schobbens, 2004] shows the
complexity for ATL∗ir.

Model checking complexities for succinct representations
are less studied. All complexity results, together with those
for explicit representation, are given in Table 1. We prove
the results for concurrent representation and symbolic repre-

Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015)

1076

sentations. Some related works will be discussed in relevant
sections.

2 Multiagent Systems
As a usual structure stated in [Fagin et al., 1995], a multiagent
system consists of a set Agt of agents running simultaneously
in an environment. Let Var be a set of atomic propositions.
The syntax of the language ATL∗ is as follows:

φ ::= p | ¬φ | φ1 ∨ φ2 | 〈〈G〉〉φ | Eϕ
ϕ ::= φ | ¬ϕ | ϕ1 ∨ ϕ2 | Xϕ | ϕ1Uϕ2

where p ∈ Var and G ⊆ Agt is a set of agents. Other operators
can be obtained in the usual way, e.g., Aφ = ¬E¬φ, Fφ =
TrueUφ, etc. φ is called state formula and ϕ is called path
formula.

The language CTL∗ is a sublanguage of ATL∗ by removing
strategy operator 〈〈G〉〉 from the syntax of ATL∗. The language
ATL (CTL) is a sublanguage of ATL∗ (CTL∗, respectively) by
assuming that every path formula ϕ is immediately prefixed
with a branching operator E or A 2. In the following, we will
present semantics of the languages on multiagent systems of
several different representations.

In a multiagent system, at each time, every agent is in some
local state, and the environment is in some environment state.
A global state is a collection of environment state and local
states, one for each agent. At a global state, every agent will
make an observation over the system, take a local action and
update its local state, and the environment will update the
environment state according to the joint local action of the
agents.

2.1 Explicit Representation
Let Act = Πi∈AgtActi be a set of joint actions, where Acti is
a finite set of actions that may be performed by agent i ∈ Agt.
We use O to denote the set of all possible observations. A la-
beled transition system M, an explicit representation, consists
of a tuple (S , I, {Ni}i∈Agt, {Oi}i∈Agt,−→, π) where S is a set of
states, I ⊆ S is a set of initial states, Ni : S → P(Acti) \ {∅}
assigns each state a nonempty set of legal actions that may
be taken by agent i, Oi : S → O provides agent i with an
observation on each state, −→⊆ S × Act × S is a transition
relation, and π : S → P(Var) labels each state with a set of
atomic propositions. We assume that the transition relation
−→ is serial, i.e., for every joint action a ∈ Act and every
state s, there exists a state t such that (s, a, t) ∈−→.

A (uniform and memoryless) strategy θi of agent i maps
each state s ∈ S to a nonempty set of local actions such
that θi(s) ⊆ Ni(s) and for all states s, t ∈ S , Oi(s) = Oi(t)
implies θi(s) = θi(t). Further, a strategy θi is determinis-
tic if θi(s) is a singleton set for all s ∈ S . Given a strat-
egy θ j for some j ∈ Agt, we write Mθ j for the system
(S , I, {θ j}∪{Ni}i, j,i∈Agt, {Oi}i∈Agt,−→, π) where the legal action
function N j of agent j is replaced with the strategy θ j. We say
that the agent j follows strategy θ j in system Mθ j. For a set
G ⊆ Agt of agents, we write θG = {θi}i∈G for its collective
strategy and MθG for the system where every agent i ∈ G

2The variant of immediately prefixing every path formula with a
strategy operator can be expressed with this syntax.

follows strategy θi. Moreover, for any system M in which a
(maybe empty) set of agents follow their own strategies, we
write M0 for the original system where no strategy has been
applied.

A fullpath ρ of M is an infinite sequence of states s0s1...,
such that ∃a ∈ Act : (si, a, si+1) ∈−→ for all i ≥ 0. We
use ρ(m) to denote the state sm and ρ[m] to denote the suffix
starting from sm. Moreover, we write Path(M, s) for the set
of fullpaths ρ of M such that ρ(0) = s.

The semantics of ATL∗ in a labeled transition system M
can be entailed by a relation M, s |= φ, inductively defined as
follows for state s ∈ S and formula φ.
• M, s |= p for p ∈ Var if p ∈ π(s)
• M, s |= ¬φ if not M, s |= φ

• M, s |= φ1 ∨ φ2 if M, s |= φ1 or M, s |= φ2

• M, s |= 〈〈G〉〉φ if there exists a collective strategy θG such
that M0θG, s |= φ

• M, s |= Eϕ if there is some ρ ∈ Path(M, s) such that
M, ρ |= ϕ

where
• M, ρ |= φ if M, ρ(0) |= φ

• M, ρ |= ¬ϕ if not M, ρ |= ϕ

• M, ρ |= ϕ1 ∨ ϕ2 if M, ρ |= ϕ1 or M, ρ |= ϕ2

• M, ρ |= Xϕ if M, ρ[1] |= ϕ

• M, ρ |= ϕ1Uϕ2 if there exists m ≥ 0 such that M, ρ[k] |=
ϕ1, for all 0 ≤ k ≤ m − 1, and M, ρ[m] |= ϕ2

Note that, when dealing with formula 〈〈G〉〉φ, the strategy θG
is applied on the original system M0, instead of the current
system M. Given a labeled transition system M and a formula
φ of some language, the model checking problem is to decide
whether M, s |= φ for all s ∈ I.

For labeled transition systems, the complexity of model
checking will be measured over the number |S | of states, the
number |Act| of actions, and the size |φ| of formula. The size
of transition relation is polynomial with respect to both |S |
and |Act|. The size of a formula is measured over the number
of modalities it contains.

2.2 Concurrent Representation
A multiagent system can also be defined by specifying the
agents and the environment individually. This approach has
been adopted by the modeling languages of some model
checkers, for example Verics [Kacprzak et al., 2008]. We
define a representation that shares common characterisations
among them and has sufficient expressiveness. Informally,
in a concurrent representation of a multiagent system, every
agent and the environment run an individual protocol. At each
time, an agent will make an observation over the environment,
and then based on the observation and its own current local
state, choose a subset of local actions according to its proto-
col. For every joint action of the agents, the environment will
update the state in light of its protocol.

The set Var of atomic propositions is partitioned into dis-
joint sets Varx for x ∈ Agt∪ {e}. Let Obsi be the set of obser-
vations which agent i ∈ Agt can observe from environment

1077

states. The environment Ae is a tuple (Le, Ie, {Pi}i∈Agt,−→e
, πe), where Le is a set of environment states, Ie ⊆ Le is a set
of initial states, Pi : Le → Obsi provides agent i with an ob-
servation on each environment state, −→e⊆ Le ×Act × Le is a
transition relation, and πe : Le → P(Vare) is a labelling func-
tion. Note that |Obsi| ≤ |Le|. The environment has no local
action, but may nondeterministically update its own state by
taking into consideration the joint actions taken by the agents.

An agent Ai, for i ∈ Agt, is a tuple (Li, Ii,−→i, πi), where
Li is a set of local states, Ii ⊆ Li is a set of initial states,
−→i⊆ Li × Obsi × Acti × Li is a transition relation: a tuple
(li, oi, ai, l′i) ∈−→i means that when agent i is at state li and has
an observation oi on the environment state, it may take action
ai and move into the state l′i . If there are several ai with the
same li and oi, the agent i will nondeterministically choose
one of them to execute. A strategy θi of agent i can then be
redefined as a function mapping from Li × Obsi to P(Acti).

Without loss of generality, we let Agt = {1, ..., n}. Given
a concurrent representation C = {Ai}i∈Agt∪{e}, we can con-
struct its corresponding labeled transition system M(C) =
(S , I, {Ni}i∈Agt, {Oi}i∈Agt,−→, π) such that

1. S = Le × Πi∈AgtLi, I = Ie × Πi∈AgtIi,
2. for all states s ≡ (le, l1, ..., ln), Oi(s) = (Pi(le), li),
3. for all states s ≡ (le, l1, ..., ln) ∈ S and all ai ∈ Acti,

we let ai ∈ Ni(s) if and only if there exists a local state
l′i ∈ Li such that (li, Pi(le), ai, l′i) ∈−→i,

4. for all states s ≡ (le, l1, ..., ln), s′ ≡ (l′e, l
′
1, ..., l

′
n) and joint

actions a ≡ (a1, ..., an), we have that (s, a, s′) ∈−→ if and
only if (le, a, l′e) ∈−→e and for all agents i ∈ Agt, there is
(li, Pi(le), ai, l′i) ∈−→i, and

5. π(s) =
⋃

x∈Agt∪{e} πx(lx).
The model checking problem is, given a concurrent repre-

sentation C and a formula φ, to decide whether M(C) |= φ.
The complexity is measured over the number |

⋃
x∈Agt∪{e} Lx|

of local states, the number |
⋃

i∈Agt Acti| of local actions, and
the size of formula φ.

2.3 Symbolic Representation
To conduct model checking, most BDD-based or SAT-based
model checkers transform a multiagent system described by a
modeling language into a certain form of symbolic represen-
tation, which uses propositional formulas to represent system
components, e.g., the set of initial states, the transition rela-
tion, etc. Here we take a usual form of symbolic representa-
tion which are expressive enough to describe multiagent sys-
tems. Also, we note that modeling languages of some model
checkers, e.g., NuSMV [Cimatti et al., 2002], MCMAS [Lo-
muscio et al., 2009] and MCK [Gammie and van der Meyden,
2004], can be converted into such a representation linearly in
an obvious way.

The general idea for a symbolic representation comes from
the fact that a formula can be taken to represent a set of states
or a transition relation. Every truth assignment over a set of
state variables can be regarded as a state. Therefore, a for-
mula over the set of state variables represents the set of states
whose corresponding assignments satisfy the formula. Fur-
thermore, a transition from a state to a next state by taking

an action can be a truth assignment to the union set of state
variables, action variables, and next-time state variables. A
formula over the union set of variables can then represent a
set of transitions, i.e., a transition relation.

Given a set V of atomic propositions, we let V ′ = {v′ | v ∈
V} be the set of next-time variables of V , and write B(V) to
be the set of propositional formulas over V . Local actions⋃

i∈Agt Acti can be regarded as atomic propositions. The en-
vironment Agte is a tuple (Vare, Inie, Trne), where Vare is a
set of environment variables, formula Inie ∈ B(Vare) repre-
sents a set of initial states, formula Trne ∈ B(Vare ∪ Vare′ ∪⋃

i∈Agt Acti) represents a transition relation of the environ-
ment. We assume that the propositional formulas are of size
polynomial with respect to the variables. This assumption
also applies to the agents.

An agent Agti is a tuple (Vari, OVari, Inii, Trni), for i ∈
Agt, where Vari is a set of local variables, OVari ⊆ Vare
is a set of environment variables that are observable to agent
i, formula Inii ∈ B(Vari) represents a set of initial states,
formula Trni ∈ B(OVari ∪ Vari ∪ Vari′ ∪ Acti) represents
a transition relation for agent i. For a set V of variables and a
formula f over V , we write sa(V, f) for the set of satisfiable
assignments of V on f . A strategy θi of agent i can then be
redefined as a boolean formula over the variables OVari ∪
Vari ∪ Acti.

Given a symbolic representation F = {Agti}i∈Agt∪{e}, we
can construct its corresponding labeled transition system
M(F) = (S , I, {Ni}i∈Agt, {Oi}i∈Agt,−→, π) such that

1. S = sa(Var,True), I = sa(Var, Inie ∧
∧

i∈Agt Inii),

2. for all states s ∈ S and all ai ∈ Acti, we let ai ∈ Ni(s) if
and only if Trni ∧ s ∧ ai , False 3,

3. −→= sa(Var ∪Var′ ∪
⋃

i∈Agt Acti, Trne ∧
∧

i∈Agt Trni),

4. for all states s ∈ S , Oi(s) = s � (OVari ∪ Vari), and

5. p ∈ π(s) if and only if p ∈ s.

The model checking problem is, given a symbolic repre-
sentation F and a formula φ, to decide whether M(F) |= φ.
The complexity is measured over the number |Var| of atomic
propositions, the number |

⋃
i∈Agt Acti| of local actions, and

the size |φ| of formula.

3 Complexity Results for Incomplete
Information Systems

Now we are ready to investigate the complexities of model
checking logics in the two succinct representations of multi-
agent systems.

3.1 Concurrent Representation
Our concurrent representation of a multiagent system is dif-
ferent with the concurrent programs in [Kupferman et al.,
2000]. The concurrent representation is based on the idea of
synchronous languages (e.g, Esterel and Lustre) which have
been widely used in modelling reactive systems. On the other
hand, concurrent programs base the idea on process algebraic

3A state or an observation can be represented either as a set of
literals (variables or their negations), or the conjunction of them.

1078

languages, which have been extensively studied for modelling
asynchronous processes.

A concurrent program can be seen as a complete informa-
tion multiagent system where there exists no environment and
agents synchronise their behaviours by taking the same ac-
tion. Each agent i has a set of legal action Acti which may be
overlapping, and the product system has actions

⋃
i∈Agt Acti.

A tuple (s, a, t) is a transition between states s ≡ (l1, ..., ln)
and t ≡ (l′1, ..., l

′
n), if for all i ∈ Agt, 1) a ∈ Acti implies

(li, a, l′i) ∈−→i, and 2) a < Acti implies li = l′i . Due to dif-
ferent constructions, we can not directly derive complexity
results of concurrent representation from those of concurrent
programs.

[Jamroga and Agotnes, 2007] investigates modular inter-
preted systems (MIS), in which agents take actions by con-
sidering the influence emitted by other agents. For ATLIr and
ATLir model checking, an MIS will be unfolded into differ-
ent explicit representations. They conjectured that although
ATLIr model checking is easier than that of ATLir in explicit
representation, it is harder in MIS. This is different with our
results which are based on multiagent systems.
Theorem 1 The complexity of model checking CTL is
PSPACE-hard for the concurrent representation of multiagent
systems.
Proof: We proceed by a reduction from the problem of
accepting an empty input tape on linear bounded automata
(LBA). A nondeterministic Turing machine (NTM) T is a
tuple (Q,Γ, δ, q0, F) where Q is a finite set of states, Γ is a
finite set of alphabets including a special blank symbol b,
δ : Q × Γ → P(Q × Γ × {−1, 1}) is the transition relation,
q0 ∈ Q is the initial state, and F ⊆ Q is the set of accepting
states. Intuitively, a transition (q, a, q′, a′, d) means that when
the machine is at state q and reads a from the current tape cell,
it will transit to state q′, write a′ to the current cell, and move
its reading head to one of the neighbour cells in the direction
d. The head moves left, if d = −1, and moves right, if d = 1.

We define the size of a Turing machine as the size of space
needed to record its transition relation, i.e., 2× |Γ|2 × |Q|2. An
LBA is an NTM which uses n tape cells for a Turing machine
description of size n. It is well known that the following prob-
lem is PSPACE-complete: given an LBA, to decide whether
there exists a computation that accepts empty tape.

We let Agt = {1, ..., n} such that each tape cell is controlled
by an agent. For i ∈ Agt, we define i ⊕ 1 = i + 1, if i < n, and
= n, otherwise. Moreover, i ⊕ −1 = i − 1, if i > 1, and = 1,
otherwise. Let Acti = {τ} ∪ {acta | a ∈ Γ \ {b}} for i ∈ Agt.
We write ai for agent i’s local action in the joint action a. The
environment Ae is (Le, Ie, {Pi}i∈Agt,−→e, πe) such that

1. Le = Q × {1..n}, i.e., an environment state records the
machine state q and the current reading head position,

2. Ie = {(q0, 1)}, i.e., initially, the machine is at initial state
and the reading head is at the leftmost position,

3. Pi(s) = s, i.e., agents can see the environment state,
4. for all (q, a, q′, a′, d) ∈ δ, we let ((q,m), ja, (q′,m ⊕

d)) ∈−→e for all 1 ≤ m ≤ n, if jam = acta′ and jak = τ
for all k , m, and

5. acc ∈ πe((q,m)) for all 1 ≤ m ≤ n, if q ∈ F.

Let Obsi = Le. Agent Ai is (Li, Ii,−→i, πi) such that
1. Li = Γ, i.e., the agent records the symbol on its cell,
2. Ii = {b}, i.e., the agent starts with the blank symbol,
3. the transition relation −→i includes

(a) (a, (q, i), acta′ , a′) for all (q, a, q′, a′, d) ∈ δ, and
(b) (a, (q, k), τ, a) for all q ∈ Q and k , i,

4. πi(l) = ∅ for all local state l ∈ Li.
To see how the system C = {Ai}i∈Agt∪{e} simulates the com-

putation of the LBA, we first see that ((q0, 1), b, ..., b), the sin-
gle initial state of M(C), corresponds to the initial configura-
tion of the machine T that it is at state q0, the reading head
resides at position 1, and the tape is empty. Then for any
state such that le = (q,m) and lm = a, if there is a transi-
tion (q, a, q′, a′, d) ∈ δ then by the construction, agent Am will
transit into state a′ and execute the action acta′ . Other agents
Ak for k , m will execute τ action and stay at the same state.
The environment will respond to the joint action by transit-
ing into state q′ and moving the reading head to the position
m ⊕ d.

Therefore, the existence of a computation to accept the
empty tape (i.e., reach an accepting state) is equivalent to the
model checking problem M(C) |= EF acc. �

Theorem 2 The complexity of model checking ATL∗ir is in
PSPACE for the concurrent representation of multiagent sys-
tems.

Proof: We present a PSPACE model checking algorithm for
ATL∗ir. To decide if M(C) |= φ, the algorithm returns the
reversed result of the following procedure:

1. guesses an initial states s0 of the model M(C) and
2. returns the reversed result of sat(C, s0, φ).

The function sat(C, s, φ) is computed inductively as follows.
• sat(C, s, p) for p ∈ Var if p ∈ π(s).
• sat(C, s,¬φ) if not sat(C, s, φ)
• sat(C, s, φ1 ∨ φ2) if sat(C, s, φ1) or sat(C, s, φ2)
• sat(C, s, 〈〈G〉〉φ) is the result of guessing a strategy θG

and then verifying sat(C0[θG], s, φ), where C0[θG] is a
system by updating every agent i ∈ G’s transition rela-
tion −→i to make it consistent with the strategy θi in the
original system C0.

• sat(C, s, Eϕ) if psat(C, s, ϕ).
The function psat(C, s, ϕ) is computed via the automata the-
oretic approach for LTL model checking [Vardi and Wolper,
1986], whose idea is to reduce the model checking problem
into the language emptiness problem of the product Büchi au-
tomaton M(C)× Aϕ, where Aϕ is the Büchi automaton for the
formula ϕ. Note that, we use Aϕ, instead of the usual A¬ϕ
in LTL model checking, because ϕ comes from formula Eϕ.
The sizes of the automaton Aϕ and the system M(C) are ex-
ponential with respect to ϕ and C, respectively. However, we
do not need to construct them (and the product automaton)
explicitly. Instead, we treat the emptiness check as a Savitch-
style search [Savitch, 1970] by a nondeterministic procedure
which takes polynomial size of space. We omit the details

1079

of the search algorithm because it is a simple adaptation to
the standard automata theoretic approach [Vardi and Wolper,
1986].

The nondeterministic search algorithm on M(C) × Aϕ in-
volves the evaluations of state subformulas ψ of ϕ over the
states of M(C). These evaluations can be done inductively by
taking the procedure sat(C, s, ψ).

Let nL = |
⋃

x∈Agt∪{e} Lx| and nA = |
⋃

i∈Agt Acti|. To handle
state formulas, the algorithm needs to remember the current
state, which takes O(|Agt|×log nL) bits, the current strategy θ,
which takes up to

∑
i∈Agt |Li|×|Le|×|Acti| = O(|Agt|×nL2×nA)

bits, and the current formula, which takes up to O(|φ|) bits of
space. To handle path formulas, the algorithm needs up to
O((|Agt| × log nL + |φ|)2) bits of space for the Savitch-style
search. Therefore, the space requirement is sp = O((|Agt| ×
log nL + |φ|)2 + |Agt| × nL2 × nA).

The algorithm uses at = O(|φ|) number of alternations. By
Theorem 4.2 of [Chandra et al., 1980], the algorithm can be
simulated by a deterministic machine using space at × sp +
sp2, which is polynomial with respect to |Agt|, nL, |φ|, and
nA. Therefore, it is in PSPACE. �

The above theorems lead to the following conclusions.

Corollary 1 The complexities of model checking CTL, CTL∗,
ATLir, ATL∗ir are all PSPACE-complete for the concurrent rep-
resentation of multiagent systems.

Proof: The lower bounds are obtained by Theorem 1 and the
fact that CTL is a sublanguage of all other languages. The
upper bounds are obtained by Theorem 2 and the fact that all
other languages are subsumed by ATL∗ir. �

3.2 Symbolic Representation
Now we move on to examine the complexity on symbolic rep-
resentation. As will be shown, the complexities for CTL and
CTL∗ are the same with those on concurrent representation.
However, the complexities for ATLir and ATL∗ir are higher
than those on concurrent representation.

Theorem 3 The complexities of model checking CTL and
CTL∗ are PSPACE-complete for the symbolic representation
of multiagent systems.

Proof: The lower bound is obtained by a reduction from
concurrent representation. Let C = {Ax}x∈Agt∪{e}. We in-
troduce two boolean variables bs and b′s for each state s ∈⋃

x∈Agt∪{e} Lx and one boolean variable bo for each observa-
tion o ∈ Obsi with i ∈ Agt. We define several formulas:

1. fx,s = bs ∧
∧

t∈Lx\{s} ¬bt, expressing that s is the current
state of x ∈ Agt ∪ {e}, and f ′x,s = b′s ∧

∧
t∈Lx\{s} ¬b′t , ex-

pressing that s is the next-time state of x ∈ Agt ∪ {e},

2. gi,o = bo ∧
∧

o′∈Obsi,o′,o ¬bo′ , expressing that the current
observation of agent i on the environment state is o, and

3. hi =
∨

s∈Le
(fe,s ∧ gi,Pi(s)), expressing the function Pi by

the relation between states and observations.

For a joint action a ≡ (a1, ..., an), we let ka =
∧

i∈Agt ai. We
construct Agte = (Vare, Inie, Trne) such that

1. Vare = {bs | s ∈ Le} ∪
⋃

i∈Agt{bo | o ∈ Obsi},

2. Inie =
∧

i∈Agt hi ∧
∨

s∈Ie
fe,s, and

3. Trne =
∧

i∈Agt hi ∧
∨

(s,a,t)∈−→e
fe,s ∧ ka ∧ f ′e,t.

Intuitively, in Trne, the formula
∨

(s,a,t)∈−→e
fe,s ∧ ka ∧ f ′e,t en-

codes all possible transitions, and then the formula
∧

i∈Agt hi
tells the observations of agents. It is similar for Inie. More-
over, we have Agti = (Vari, OVari, Inii, Trni) such that

1. Vari = {bs | s ∈ Li}, OVari = {bo | o ∈ Obsi},

2. Inii =
∨

s∈Ii
fi,s and Trni =

∨
(s,o,a,t)∈−→i

fi,s ∧ gi,o ∧ a ∧
f ′i,t.

From the way of constructing its explicit representation, a
global transition −→ will need to have the same gi,o on both
Trni and Trne. It reflects the fact that agent makes an obser-
vation on the environment state, and then the observation is
taken into consideration when making local transition.

The symbolic representation F = {Agti}i∈Agt∪{e} is of size
polynomial with respect to C, and the above construction can
be done in polynomial time. Also, it is not hard to see that
M(C) |= φ if and only if M(F) |= φ.

The upper bound can be obtained by reusing the algorithm
in Theorem 2. We only describe the differences. First, the
procedure for sat(C, s, 〈〈G〉〉φ) is removed and therefore the
algorithm needs only a constant number, instead of a poly-
nomial number, of alternations. Second, during the Savitch-
style search for path formulas, the guessing of states can be
done in polynomial time by guessing the value for each vari-
able in Var. Third, the evaluation of transitions between
states are done by guessing a joint action and then evaluating
the satisfiability of the boolean formula Trne ∧

∧
i∈Agt Trni,

which by definition is in polynomial size.
Therefore, the complexity is in PSPACE because the al-

gorithm can be implemented by a nondeterministic machine
with polynomial space. �

Theorem 4 The complexities of model checking ATLir and
ATL∗ir are NEXP-complete for the symbolic representation of
multiagent systems.

Proof: The lower bound can be obtained by a reduction
from satisfiability of dependency quantified boolean formu-
las (DQBF) [Peterson et al., 2001]. Let X1, ...Xn,Y1, ...Yn be
tuples of boolean variables and F(X1, ..., Xn,Y1, ...,Yn) be a
boolean formula over these variables. A DQBF formula can
be written as

∀X1...∀Xn∃Y1(X1)...∃Yn(X1, ..., Xn) : F(X1, ..., Xn,Y1, ...,Yn).

Intuitively, the formula requires that the values of variables
Y1 depend only on the values of X1, the values of Y2 depend
only on the values of X1 and X2, and so on. More precisely,
such a formula is satisfiable if there exist tuples of boolean
expressions g1(X1) (in variables X1) through gn(X1, . . . , Xn)
(in variables X1, . . . , Xn) such that the QBF formula

∀X1...∀Xn(F(X1, ..., Xn, g1(X1), . . . , gn(X1, . . . , Xn)))

is True. It has been shown that every QBF formula can be
expressed as a DQBF formula, and the satisfiability problem
of DQBF is NEXPTIME-complete [Peterson et al., 2001].

Given a DQBF formula, we construct a symbolic represen-
tation. Let X = X1 ∪ ...∪Xn and Y = Y1 ∪ ...∪Yn. The system
consists of a set of agents Agt = Y . Every agent decides

1080

the value of a variable from some Yk based on the values of
the variables X1, . . . , Xk, which are made observable. Agent
y ∈ Y has two actions, i.e., Acty = {setTy, setFy}.

The environment represents the X and Y variables and han-
dles the evaluation of the formula F. More specifically, we
have Agte = (Vare, Inie, Trne) such that

1. Vare = X ∪ Y ∪ { f }, Inie = True,
2. Trne =

∧
y∈Y ((setTy ⇒ y′) ∧ (setFy ⇒ ¬y′)) ∧ (f ⇔

F(X1, ..., Xn,Y ′1, ...,Y
′
n),

where Y ′j = {y′ | y ∈ Y j} for 1 ≤ j ≤ n. That is, the en-
vironment sets the next-time value of each variable y′ ∈ Y
to true if the corresponding agent is performing the action
setTy. The value of the formula F, assigned to the vari-
able f , is then computed by taking the next-time values.
For every k = 1 . . . n and variable y ∈ Yk, we have agent
Agty = (Vary, OVary, Iniy, Trny) such that

1. Vary = ∅, OVary = X1 ∪ . . .∪ Xk consists of the set of X
variables on which y may depend,

2. Iniy = True, and Trny = setTy ∨ setFy.
Intuitively, every agent is attached with a variable, and an
agent observes the variables on which the value of its variable
depends and then makes decision on the value of its variable.
Therefore, it is straightforward to show that the satisfiability
of DQBF formula is equivalent to decide whether M(F) |=
〈〈Y〉〉AX f .

For the upper bound, we can reuse the algorithm in The-
orem 2, with some changes to obtain a different complexity.
One of the significant changes exists in dealing with strat-
egy formulas. A strategy θi may be represented by giving the
truth table for the formula θ(v), where the input variables are
OVari ∪ Vari ∪ Acti. Each time when dealing with formula
〈〈G〉〉φ, the algorithm nondeterministically guesses this truth
table representation of θi for every i ∈ G. This phase takes
exponential time.

To handle path formulas ϕ, we explicitly construct the
product automaton M(F) × Aϕ, which is of exponential size
with respect to both F and ϕ. Note that, we do not explic-
itly construct F0[θG]. Instead, we will look up the truth table
when evaluating a transition relation. The checking of the
emptiness of a Büchi automaton can be done in polynomial
time [Vardi and Wolper, 1986].

Finally, because the number of alternation is polynomial,
the algorithm can be implemented with a nondeterministic
machine in exponential time, i.e., in NEXPTIME. �

4 Conclusion and Future Work
This paper presents complexity results for model checking
several logics (CTL, CTL∗, ATLir, ATL∗ir) on two succinct
representations of multiagent systems. For concurrent repre-
sentation, it is shown that all of them are PSPACE-complete.
On the other hand, for symbolic representation, the complex-
ities for branching time logics remain at PSPACE-complete,
while they are NEXPTIME-complete for ATLir and ATL∗ir.
The reason for this increase is that the size of a strategy is
exponential for symbolic representation.

The increase of computational complexity from PSPACE
to NEXPTIME for symbolic representation reflects the actual

situation that it is hard to find an efficient symbolic algorithm
for ATLir and ATL∗ir. There are only a few attempts. In [Lo-
muscio and Raimondi, 2006], an algorithm is proposed to first
explicitly enumerate all possible strategies for a group and
then for every strategy, applying symbolic algorithm for CTL
over the system updated with that strategy. This work is later
extended with the capability of handling fairness constraints
in [Busard et al., 2013]. Because the number of strategies can
be exponential over the number of system states (and local ac-
tions if considering nondeterministic strategies), the explicit
enumeration of strategies can not make the algorithms scale
well in practical examples. In [Huang and van der Meyden,
2014b], a fully symbolic algorithm is proposed to tackle this
situation. The general idea is to have a symbolic encoding
of the strategy space, and then take advantage of the space-
efficiency of BDDs in achieving a succinct encoding of the
product system. The experimental results show a significant
improvement over the previous approach. A similar idea is
also presented in [Cermák et al., 2014] independently for a
slightly different logic.

For the future work, we may study the complexity for log-
ics with richer expressiveness, e.g., [Huang and van der Mey-
den, 2014c; 2014a; Cermák et al., 2014], or different memory
requirements such as perfect recall, where agents have mem-
ory to remember all past observations, or clock semantics,
where agents can observe a common global clock value. For
semantics with memory, we mention existing complexity re-
sults for explicit representation [van der Meyden and Shilov,
1999; Huang and van der Meyden, 2010; Guelev et al., 2011;
Huang, 2015].

We are also interested in the complexity for succinct rep-
resentations of complete information systems. Complete in-
formation systems can be seen as special cases of incomplete
information systems, such that agents can observe the under-
lying system state. It is therefore reasonable to expect that the
complexity may be lowered.

Acknowledgement The authors thank the support of Aus-
tralian Research Council (DP120102489 and DP150101618),
National Natural Science Foundation of China (No.61272415
and No.61003056), and Fundamental Research Funds for the
Central Universities of China (No.21615441).

References
[Alur et al., 2002] Rajeev Alur, Thomas A. Henzinger, and

Orna Kupferman. Alternating-Time Temporal Logic.
Journal of the ACM, 49(5):672–713, 2002.

[Busard et al., 2013] Simon Busard, Charles Pecheur,
Hongyang Qu, and Franco Raimondi. Reasoning about
strategies under partial observability and fairness con-
straints. In 1st Workshop on Strategic Reasoning 2013
(SR’13), pages 71–79, 2013.

[Cermák et al., 2014] Petr Cermák, Alessio Lomuscio,
Fabio Mogavero, and Aniello Murano. Mcmas-slk: A
model checker for the verification of strategy logic speci-
fications. In 26th International Conference on Computer
Aided Verification (CAV2014), pages 525–532, 2014.

1081

[Chandra et al., 1980] Ashok K. Chandra, Dexter C. Kozen,
and Larry J. Stockmeyer. Alternation. Journal of the ACM,
28(1):114–133, 1980.

[Cimatti et al., 2002] Alessandro Cimatti, Edmund Clarke,
Enrico Giunchiglia, Fausto Giunchiglia, Marco Pistore,
Marco Roveri, Roberto Sebastiani, and Armando Tac-
chella. Nusmv 2: An opensource tool for symbolic model
checking. In 14th International Conference on Computer
Aided Verification (CAV2002), pages 359–364, 2002.

[Clarke et al., 1986] E. M. Clarke, E. Allen Emerson, and
A. P. Sistla. Automatic verification of finite-state concur-
rent systems using temporal logic specifications. ACM
Transactions on Programming Languages and Systems,
8(2):244–263, 1986.

[Clarke et al., 1999] E. Clarke, O. Grumberg, and D. Peled.
Model Checking. The MIT Press, 1999.

[Emerson and Lei, 1987] E. Allen Emerson and Chin-Laung
Lei. Modalities for model checking: branching time
logic strikes back. Science of Computer Programming,
8(3):275–306, 1987.

[Fagin et al., 1995] Ronald Fagin, Joseph Y. Halpern, Yoram
Moses, and Moshe Y. Vardi. Reasoning About Knowledge.
The MIT Press, 1995.

[Gammie and van der Meyden, 2004] P. Gammie and
R. van der Meyden. MCK: Model Checking the Logic
of Knowledge. In Proc. Conf. on Computer-Aided
Verification, CAV, pages 479–483, 2004.

[Guelev et al., 2011] Dimitar P. Guelev, Catalin Dima, and
Constantin Enea. An alternating-time temporal logic with
knowledge, perfect recall and past: axiomatisation and
model-checking. Journal of Applied Non-Classical Log-
ics, 21(1):93–131, 2011.

[Huang and van der Meyden, 2010] Xiaowei Huang and
Ron van der Meyden. The complexity of epistemic
model checking: Clock semantics and branching time.
In 19th European Conference on Artificial Intelligence
(ECAI2010), pages 549–554, 2010.

[Huang and van der Meyden, 2014a] Xiaowei Huang and
Ron van der Meyden. An epistemic strategy logic. In
the 2nd International Workshop on Strategic Reasoning
(SR2014), pages 35–41, 2014.

[Huang and van der Meyden, 2014b] Xiaowei Huang and
Ron van der Meyden. Symbolic model checking epis-
temic strategy logic. In Proceedings of the the Twenty-
Eighth AAAI Conference on Artificial Intelligence (AAAI-
14), 2014.

[Huang and van der Meyden, 2014c] Xiaowei Huang and
Ron van der Meyden. A temporal logic of strategic knowl-
edge. In the 14th International Conference on Principles
of Knowledge Representation and Reasoning (KR2014),
2014.

[Huang, 2015] Xiaowei Huang. Bounded model checking of
strategy ability with perfect recall. Artificial Intelligence,
pages 182–200, 2015.

[Jamroga and Agotnes, 2007] Wojciech Jamroga and
Thomas Agotnes. Modular interpreted systems. In Pro-
ceedings of the Sixth International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS’07),
page 131, 2007.

[Jamroga and Dix, 2008] Wojciech Jamroga and Jurgen Dix.
Model checking abilities of agents: A closer look. Theory
of Computing Systems, 42(3):366–410, 2008.

[Kacprzak et al., 2008] Magdalena Kacprzak, Wojciech
Nabiałek, Artur Niewiadomski, Wojciech Penczek,
Agata Półrola, Maciej Szreter, Bożena Woźna, and
Andrzej Zbrzezny. VerICS 2007 - a Model Checker for
Knowledge and Real-Time. Fundamenta Informaticae,
85(1):313–328, 2008.

[Kupferman et al., 2000] Orna Kupferman, Moshe Y. Vardi,
and Pierre Wolper. An automata-theoretic approach to
branching-time model checking. J. ACM, 47(2):312–360,
2000.

[Lomuscio and Raimondi, 2006] Alessio Lomuscio and
Franco Raimondi. Model Checking Knowledge, Strate-
gies, and Games in Multi-Agent Systems. In the
proceedings of the 5th international joint conference on
Autonomous agents and multiagent systems (AAMAS
2006), pages 161–168, 2006.

[Lomuscio et al., 2009] Alessio Lomuscio, Hongyang Qu,
and Franco Raimondi. MCMAS: A Model Checker for
the Verification of Multi-Agent Systems. In Proc. Conf.
on Computer-Aided Verification, pages 682–688, 2009.

[Peterson et al., 2001] Gary Peterson, John Reif, and Salman
Azhar. Lower bounds for multiplayer non-cooperative
games of incomplete information. Computers and Mathe-
matics with Applications, 41:957–992, 2001.

[Pnueli, 1977] Amir Pnueli. The Temporal Logic of Pro-
grams. In Symp. on Foundations of Computer Science,
pages 46–57, 1977.

[Savitch, 1970] Walter J. Savitch. Relationships between
nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4(2):177–192,
1970.

[Schobbens, 2004] Pierre-Yves Schobbens. Alternating-
time logic with imperfect recall. Electronic Notes in The-
oretical Computer Science, 85(2):82–93, 2004.

[van der Meyden and Shilov, 1999] Ron van der Meyden
and Nikolay V. Shilov. Model Checking Knowledge and
Time in Systems with Perfect Recall. In Foundations of
Software Technology and Theoretical Computer Science,
pages 432–445, 1999.

[Vardi and Wolper, 1986] Moshe Y. Vardi and Pierre Wolper.
Automata theoretic techniques for modal logics of pro-
grams. Journal of Computer and System Sciences,
32(2):183–221, 1986.

1082

