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Abstract
The margin of victory of an election is a useful
measure to capture the robustness of an election
outcome. It also plays a crucial role in determining
the sample size of various algorithms in post election
audit, polling etc. In this work, we present efficient
sampling based algorithms for estimating the margin
of victory of elections.
More formally, we introduce the (c, ε, δ)–MARGIN
OF VICTORY problem, where given an election E on
n voters, the goal is to estimate the margin of victory
M(E) of E within an additive factor of cM(E)+εn.
We study the (c, ε, δ)–MARGIN OF VICTORY prob-
lem for many commonly used voting rules includ-
ing scoring rules, approval, Bucklin, maximin, and
Copelandα. We observe that even for the voting
rules for which computing the margin of victory is
NP-Hard, there may exist efficient sampling based
algorithms, as observed in the cases of maximin and
Copelandα voting rules.

1 Introduction
In many real life applications, there is often a need for a set
of agents to agree upon a common decision although they
may have different preferences over the available candidates
to choose from. A natural approach used in these situations is
voting. Some prominent examples of the use of voting rules in
the context of multiagent systems include collaborative filter-
ing [Pennock et al., 2000], personalized product selection [Lu
and Boutilier, 2011] etc.

In a typical voting scenario, we have a set of votes each of
which is a complete ranking over a set of candidates. We also
have a function called voting rule that takes as input a set of
votes and outputs a candidate as the winner. A set of votes
over a set of candidates along with a voting rule is called an
election and the winner is called the outcome of the election.

Given an election, one may like to know how robust the elec-
tion outcome is with respect to the changes in votes [Shiryaev
et al., 2013; Caragiannis et al., 2014; Regenwetter et al., 2006].
One way to capture robustness of an election outcome is to
compute the minimum number of votes that must be changed
to change the outcome. This idea of robustness is captured

precisely by the notion called margin of victory. The margin
of victory of an election is the smallest number of votes that
need to be changed to change the election outcome. In a sense,
an election outcome is considered to be robust if the margin
of victory is large.

1.1 Motivation
In addition to being interesting purely because of theoretical
reasons, the margin of victory of an election plays a crucial role
in many practical applications. One such example is post elec-
tion audits — methods to observe a certain number of votes
(which is often selected randomly) after an election to detect
an incorrect outcome. There can be a variety of reasons for an
incorrect election outcome, for example, software or hardware
bugs in voting machine [Norden and Law, 2007], machine out-
put errors, use of various clip-on devices that can tamper with
the memory of the voting machine [Wolchok et al., 2010], hu-
man errors in counting votes. Post election audits have nowa-
days become common practice to detect problems in electronic
voting machines in many countries, for example, the US. As a
matter of fact, at least thirty states in the US have reported such
problems by 2007 [Norden and Law, 2007]. Most often, the
auditing process involves manually observing some sampled
votes. Researchers have subsequently proposed various risk
limiting auditing methodologies that not only minimize the
cost of manual checking, but also limit the risk of making a hu-
man error by sampling as few votes as possible [Stark, 2008a;
2008b; 2009; Sarwate et al., 2011]. The sample size in a risk
limiting audit critically depends on the margin of victory of
the election.

Another very important application where the margin of
victory plays an important role is polling. In polling, the
pollster samples a certain number of votes from the population
and predicts the outcome of the underlying election based on
the outcome of the election on the sampled votes. One of the
most fundamental questions in polling is: how many votes
should be sampled? It turns out that the sample complexity
in polling too crucially depends on the margin of victory of
the election from which the pollster is sampling [Canetti et al.,
1995; Dey and Bhattacharyya, 2015]. The number of samples
used in an algorithm is called the sample complexity of that
algorithm. As the above discussion shows, computing the
margin of victory of an election is often a necessary task in
many practical applications. However, one cannot observe all
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Voting Rule Sample complexity

Scoring rules ( 1
3 , ε, δ)–MoV, 12

ε2 ln 2m
δ [Theorem 3]

(c′, ε, δ)–MoV†,
(1−c)2
36ε2 ln

(
1

8e
√
πδ

)
,

[Corollary 1]

k-approval (0, ε, δ)–MoV, 12
ε2 ln 2k

δ , [Theorem 4]

Approval (0, ε, δ)–MoV, 12
ε2 ln 2m

δ , [Theorem 5]

Bucklin ( 1
3 , ε, δ)–MoV, 12

ε2 ln 2m
δ , [Theorem 6]

Maximin ( 1
3 , ε, δ)–MoV, 24

ε2 ln 2m
δ , [Theorem 7]

Copelandα
(

1−O
(

1
logm

)
, ε, δ

)
–MoV, 96

ε2 ln 2m
δ , [Theorem 8]

Table 1: Sample complexity for the (c, ε, δ)–MOV problem
for various voting rules. †The result holds for any c′ ∈ [0, 1).

the votes in many applications including the ones discussed
above. For example, in a survey or polling, one cannot first
observe all the votes to compute the margin of victory and
then sample a few votes based on the computed margin of
victory. Hence, one often needs a “good enough” estimate of
the margin of victory by observing a few votes. We, in this
work, precisely address this problem: estimate the margin of
victory of an election by sampling as few votes as possible.

1.2 Our Contributions
Let n be the number of votes, m the number of candidates, r
any voting rule. We introduce and study the following compu-
tational problem in this paper1:
Definition 1. ((c, ε, δ)–MARGIN OF VICTORY (MOV))
Given a r-election E , determine Mr(E), the margin of victory
of E with respect to r, within an additive error of at most
cMr(E) + εn with probability at least 1− δ. The probability
is taken over the internal coin tosses of the algorithm.

We call the parameter (c, ε) in Definition 1 the approxi-
mation factor of the problem. Our goal here is to solve the
(c, ε, δ)–MOV problem with as few sample votes as possi-
ble. Our main technical contribution is to come up with effi-
cient sampling based polynomial time randomized algorithms
to solve the (c, ε, δ)–MOV problem for various voting rules.
Each sample reveals the entire preference order of the sampled
vote. The specific contributions of this paper are summarized
in Table 1.

Table 1 shows a practically appealing positive result- the
sample complexity of all the algorithms presented here is inde-
pendent of the number of voters. We also present lower bounds
on the sample complexity of the (c, ε, δ)–MOV problem for
all the common voting rules which matches with the upper
bounds when we have a constant number of candidates. More-
over, the lower and upper bounds on the sample complexity
match exactly for the k-approval voting rule irrespective of
number of candidates, when k is a constant.

One key finding of our work is that, there may exist efficient
sampling based polynomial time algorithms for estimating the
margin of victory, even if computing the margin of victory
is NP-Hard for a voting rule [Xia, 2012], as observed in the
cases of maximin and Copelandα voting rules.

1.3 Related Work and Discussion
Magrino et al. [Magrino et al., 2011] presents approximation
algorithms to compute the margin of victory for the instant

1Throughout this section, we use standard terminlogy from voting
theory. For formal definitions, refer to Section 2.

runoff voting (IRV) rule. Cary [Cary, 2011] provides algo-
rithms to estimate the margin of victory of an IRV election.
Xia [Xia, 2012] presents polynomial time algorithms for com-
puting the margin of victory of an election for various voting
rules, for example the scoring rules, and proved intractability
results for several other voting rules, for example the maximin
and Copelandα voting rules. Endriss et al. [Endriss and Leite,
2014] computes the complexity of exact variants of the margin
of victory problem for Schulze, Cup, and Copeland voting
rules. However, all the existing algorithms to either compute
or estimate the margin of victory need to observe all the votes,
which defeats the purpose in many applications including the
ones discussed in Section 1.1. We, in this work, show that we
can estimate the margin of victory for many common voting
rules quite accurately by sampling a few votes only. Moreover,
the accuracy of our estimation algorithm is good enough for
many practical scenarios. For example, Table 1 shows that it
is enough to select only 3600 many votes uniformly at random
to estimate MoV

n of a plurality election within an error of 0.1
with probability at least 0.99, where n is the number of votes.
We note that in all the sampling based applications discussed
in Section 1.1, the sample size is inversely proportional to
MoV
n

[Canetti et al., 1995] and thus it is enough to estimate
MoV
n accurately.
The margin of victory problem is the same as the op-

timization version of the destructive bribery problem in-
troduced by Faliszewski et al. [Faliszewski et al., 2006;
2009]. However, to the best of our knowledge, there is no prior
work on estimating the cost of bribery by sampling votes.

2 Preliminaries
Let V = {�1, . . . ,�n} be the set of all votes and C =
{c1, . . . , cm} the set of all candidates. If not mentioned oth-
erwise, m and n denote the number of candidates and the
number of voters respectively. Each vote �i is a complete
order over the candidates in C. For example, for the candidate
set C = {a, b}, a �i b means that the vote �i prefers a to
b. We denote the set of all complete orders over C by L(C).
Hence, L(C)n denotes the set of all n-voters’ preference pro-
files �= (�1, . . . ,�n). A map r : ∪n,|C|∈N+L(C)n −→ 2C

is called a voting rule. Given a vote profile�∈ L(C)n, we call
the candidates in the set r(�) the winners. The pair (�, C) is
called an r–election E if the voting rule used is r.

Examples of some common voting rules are as follows.
Positional scoring rules: A collection of vectors {~si}i∈N,

where ~sm = (α1, α2, . . . , αm) ∈ Rm is a m-dimensional
vector with α1 ≥ α2 ≥ · · · ≥ αm and α1 > αm for every
m ∈ N, naturally defines a voting rule – a candidate gets score
αi from a vote if it is placed at the ith position, and the score
of a candidate is the sum of the scores it receives from all the
votes. The winners are the candidates with maximum score.
Scoring rules remain unchanged if we multiply every αi by
any constant λ > 0 and/or add any constant µ. Hence, we can
assume without loss of generality that in every score vector ~α,
there exists a j with αj − αj+1 = 1 and αi = 0 for all i > j.
We call such a vector ~α a normalized score vector.

The vector ~α that is 1 in the first k coordinates and 0 else-
where gives the k-approval voting rule. 1-approval is called
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the plurality voting rule. The score vector (m − 1,m −
2, . . . , 1, 0) gives the Borda voting rule.

Approval: In approval voting, each vote approves a sub-
set of candidates. The winners are the candidates which are
approved by the maximum number of votes.

Bucklin: A candidate x’s Bucklin score is the minimum
number ` such that at least half of the votes rank x in their
top ` positions. The winners are the candidates with lowest
Bucklin score.

Maximin: Given an election E and any two candidates
x and y, the quantity DE(x, y) is defined as NE(x, y) −
NE(y, x), whereNE(x, y) (respectively NE(y, x)) is the num-
ber of votes which prefer x to y (respectively y to x). The
maximin score of a candidate x is miny 6=xDE(x, y). The
winners are the candidates with maximum maximin score.

Copelandα: The Copelandα score of a candidate x is |{y 6=
x : DE(x, y) > 0}| + α|{y 6= x : DE(x, y) = 0}|, where
α ∈ [0, 1]. The winners are the candidates with the maximum
Copelandα score.

For score based voting rules (all the voting rules mentioned
above are score based), we denote the score of any candi-
date x ∈ C by s(x). Given an integer t, we denote the set
{1, . . . , t} by [t]. The notion of margin of victory of an elec-
tion is defined as follows.

Definition 2. (MARGIN OF VICTORY (MOV))
Given an election E = (�, C) with voting rule r, the margin
of victory of E , denoted by Mr(E), is the minimum number of
votes that should be changed to change the winning set r(�).

2.1 Chernoff Bound
We repeatedly use the following concentration inequality:

Theorem 1. Let X1, . . . , X` be a sequence of ` independent
random variables in [0, 1] (not necessarily identical). Let
S =

∑
iXi and let µ = E [S]. Then, for any 0 ≤ δ ≤ 1:

Pr[|S − µ| ≥ δµ] < 2 exp(−δ2µ/3)

3 Sample Complexity Lower Bounds
Our lower bounds for the sample complexity of the (c, ε, δ)–
MOV problem are derived from the information-theoretic
lower bound for distinguishing two distributions. We start
with the following basic observation. Let X be a random
variable taking value 1 with probability 1

2 − ε and 0 with
probability 1

2 + ε; Y be a random variable taking value 1

with probability 1
2 and 0 with probability 1

2 . Then, it is well-
known that every algorithm needs at least 1

4ε2 ln 1
8e
√
πδ

many
samples to distinguish between X and Y with probability
of making an error being at most δ [Canetti et al., 1995;
Bar-Yossef et al., 2001]. Immediately, we have:

Theorem 2. The sample complexity of the (c, ε, δ)–
MOV problem for the plurality voting rule is at least
(1−c)2
36ε2 ln

(
1

8e
√
πδ

)
for any c ∈ [0, 1).

Proof: Consider two vote distributions X and Y , each over
the candidate set {a, b}. In X , exactly 1

2 + 6ε+2c/n
1−c fraction of

voters prefer a to b and thus the margin of victory is 3ε+c/n
1−c n.

In Y , exactly 1
2 fraction of voters prefer b to a and thus the

margin of victory is one. Any (c, ε, δ)–MOV algorithm A
for the plurality voting rule gives us a distinguisher between
X and Y with probability of error at most 2δ. This is so
because, if the input to A is X then, the output of A is less
than c+ 2εn with probability at most δ, whereas, if the input
to A is Y then, the output of A is more than c + εn with
probability at most δ. Now, since n can be arbitrarily large,
we get the result. �

Theorem 2 immediately gives the following corollary.

Corollary 1. For any c ∈ [0, 1), every (c, ε, δ)–MOV algo-

rithm needs at least (1−c)2
36ε2 ln

(
1

8e
√
πδ

)
many samples for all

voting rules which reduce to the plurality rule for two candi-
dates. In particular, the lower bound holds for scoring rules,
approval, Bucklin, maximin, and Copelandα voting rules.

We note that the lower bound results in Theorem 2 and
Corollary 1 do not assume anything about the sampling strat-
egy or the computational complexity of the estimator.

4 Sampling Based Algorithms
A natural approach for estimating the margin of victory of an
election efficiently is to compute the margin of victory of a
suitably small number of sampled votes. Certainly, it is not im-
mediate that samples chosen uniformly at random preserve the
value of the margin of victory of the original election within
some desired factor. Although it may be possible to formulate
clever sampling strategies that tie into the margin of victory
structure of the election, we will show that uniformly chosen
samples are good enough to design algorithms for estimating
the margin of victory for the voting rules studied here. Our
proposal has the advantage that the sampling component of our
algorithms are always easy to implement, and further, there
is no compromise on the bounds in the sense that they are
optimal for any constant number of candidates.

Our algorithms involve computing a quantity (which de-
pends on the voting rule under consideration) based on the
sampled votes, which we argue to be a suitable estimate of
the margin of victory of the original election. This quantity
is not necessarily the margin of victory of the sampled votes.
For scoring rules, for instance, we will use the sampled votes
to estimate candidate scores, and we use the difference be-
tween the top two candidate scores (suitably scaled) as the
margin of victory estimate. We also establish a relationship
between scores and values of the margin of victory to achieve
the desired bounds on the estimate. The overall strategy is in a
similar spirit for other voting rules as well, although the exact
estimates may be different. We now turn to a more detailed
description, although some proofs are omitted due to lack of
space.

4.1 Scoring Rules and Approval Voting Rule
We begin with the class of scoring rules. Interestingly, the
margin of victory of any scoring rule based election can still
be estimated quite accurately by sampling only 12

ε2 ln 2m
δ many

votes. An important thing to note is that, the sample complex-
ity upper bound is independent of the score vector. Before
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embarking on the proof of this general result, we prove a struc-
tural lemma which will be used crucially in the subsequent
proof.
Lemma 1. Let α = (α1, . . . , αm) be any normalized score
vector (hence, αm = 0). If w and z are the candidates that
receive highest and second highest score respectively in a
α–scoring rule election instance E = (V,C), then,

α1(Mα(E)− 1) ≤ s(w)− s(z) ≤ 2α1Mα(E)

Proof: Let Mα(E) be the margin of victory of E . We claim
that there must be at leastMα(E)−1 many votes v ∈ V where
w is preferred over z. Indeed, otherwise, we swap w and z in
all the votes where w is preferred over z. This makes z win the
election. However, we have changed at most Mα(E)−1 votes
only. This contradicts the definition of margin of victory (see
Definition 2). Let v ∈ V be a vote where w is preferred over z.
Let αi and αj(≤ αi) be the scores received by the candidates
w and z respectively from the vote v. We replace the vote v
by v′ = z � · · · � c. This vote change reduces the value of
s(w) − s(z) by α1 + αi − αj which is at least α1. Hence,
α1(Mα(E)−1) ≤ s(w)−s(z). Each vote change reduces the
value of s(w) − s(z) by at most 2α1 since αm = 0. Hence,
s(w)− s(z) ≤ 2α1Mα(E). �

With Lemma 1 at hand, we show our estimation algorithm
for the scoring rules next.
Theorem 3. There is a polynomial time ( 1

3 , ε, δ)–MOV algo-
rithm for the scoring rules with sample complexity 12

ε2 ln 2m
δ .

Proof: Let α = (α1, . . . , αm) be any arbitrary normalized
score vector and E = (V,C) an election instance. We sample `
(the value of ` will be chosen later) votes uniformly at random
from the set of votes with replacement. For a candidate x,
define a random variable Xi(x) = αi

α1
if x gets a score of αi

from the ith sample vote. Define s̄(x) = nα1

`

∑`
i=1Xi(x) the

estimate of s(x), the score of x. Also define ε′ = ε
2 . Now,

using Chernoff bound (Theorem 1), we have the following.

Pr [|s̄(x)− s(x)| ≥ α1ε
′n] ≤ 2 exp

(
−ε
′2`

3

)
We now use the union bound to get the following.

Pr[∃x ∈ C, |s̄(x)− s(x)| > α1ε
′n] ≤ 2m exp

(
− ε

′2`
3

)
(1)

Define M̄
def
== s̄(w̄)−s̄(z̄)

1.5α1
the estimate of the margin

of victory of the election E (and thus the output of the
algorithm), where w̄ ∈ arg maxx∈C{s̄(x)} and z̄ ∈
arg maxx∈C\{w̄}{s̄(x)}. We claim that, if ∀x ∈ C, |s̄(x) −
s(x)| ≤ ε′n, then |M̄ −Mα(E)| ≤ 1

3Mα(E) + εn. This can
be shown as follows.

M̄ −Mα(E) =
s̄(w̄)− s̄(z̄)

1.5α1
−Mα(E)

≤ s(w)− s(z)
1.5α1

+
2ε′n

1.5
−Mα(E)

≤ 1

3
Mα(E) + εn

The second inequality follows from the fact that, s̄(w̄) ≤
s(w̄)+ε′n ≤ s(w)+ε′n and s̄(z̄) ≥ s̄(z) ≥ s(z)−ε′n. The

third inequality follows from Lemma 1. Similarly, we bound
Mα(E)− M̄ as follows.

Mα(E)− M̄ = Mα(E)− s̄(w)− s̄(z)
1.5α1

≤ 1

3
Mα(E) + εn

This proves the claim. Now, we bound the success prob-
ability of the algorithm as follows. Let A be the event that
∀x ∈ C, |s̄(x)− s(x)| ≤ ε′n.

Pr

[
|M̄ −Mα(E)| ≤ 1

3
Mα(E) + εn

]
≥ Pr

[
|M̄ −Mα(E)| ≤ 1

3
Mα(E) + εn

∣∣∣∣A]Pr[A]

= Pr[A] ≥ 1− 2m exp
(
−ε′2`/3

)
The third equality follows from Lemma 1 and the fourth

inequality follows from inequality 1. Now, by choosing
` = 12

ε2 ln 2m
δ , we get a ( 1

3 , ε, δ)–MOV algorithm for the
scoring rules. �

Now, we show an algorithm for the (0, ε, δ)–MOV problem
for the k-approval voting rule which not only provides more
accurate estimate of the margin of victory, but also has a
lower sample complexity. The following lemmas will be used
subsequently.

Lemma 2. Let E = (V,C) be an arbitrary instance of a
k-approval election. If w and z are the candidates that receive
highest and second highest score respectively in E , then,

2(Mk−approval(E)− 1) < s(w)− s(z) ≤ 2Mk−approval(E)

Proof: We call a vote v ∈ V favorable if w appears within
the top k positions and z does not appear within top the k
positions in v. We claim that the number of favorable votes
must be at least Mk−approval(E). Indeed, otherwise, we swap
the positions of w and z in all the favorable votes while
keeping the other candidates fixed. This makes the score
of z at least as much as the score of w which contradicts
the fact that the margin of victory is Mk−approval(E).
Now, notice that the score of z must remain less than the
score of w even if we swap the positions of w and z in
Mk−approval(E)− 1 many favorable votes, since the margin
of victory is Mk−approval(E). Each such vote change
increases the score of z by one and reduces the score of w by
one. Hence, 2(Mk−approval(E)− 1) < s(w)− s(z). Again,
since the margin of victory is Mk−approval(E), there exists a
candidate x other than w and Mk−approval(E) many votes in
V which can be modified such that x becomes a winner of
the modified election. Now, each vote change can reduce the
score of w by at most one and increase the score of x by at
most one. Hence, s(w)− s(x) ≤ 2Mk−approval(E) and thus
s(w)− s(z) ≤ 2Mk−approval(E) since s(z) ≥ s(x). �

Lemma 3. Let f : R −→ R be a function defined by f(t) =

e−
λ
t . Then,

f(x) + f(y) ≤ f(x+ y), for x, y > 0,
λ

x+ y
> 2, x < y
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With Lemma 2 and 3 at hand, we now describe our margin
of victory estimator.
Theorem 4. There is a polynomial time (0, ε, δ)–MOV al-
gorithm for the k-approval rule whose sample complexity is
12
ε2 ln 2k

δ .
Proof: Let E = (V,C) be an arbitrary k-approval election. We
sample ` votes uniformly at random from V with replacement.
For a candidate x, define a random variableXi(x) which takes
value 1 if x appears among the top k candidates in the ith

sample vote, and 0 otherwise. Define s̄(x)
def
== n

`

∑`
i=1Xi(x)

the estimate of the score of the candidate x, and let s(x) be the
actual score of x. Also define ε′ = ε

2 . Then by the Chernoff
bound (Theorem 1), we have:

Pr [|s̄(x)− s(x)| > ε′n] ≤ 2 exp

(
− ε
′2`n

3s(x)

)
Now, we apply the union bound to get the following.

Pr[∃x ∈ C, |s̄(x)− s(x)| > ε′n]

≤
∑
x∈C

2 exp

(
− ε
′2`n

3s(x)

)
≤ 2k exp

(
−ε′2`/3

)
(2)

The second inequality follows from Lemma 3 : The expres-
sion

∑
x∈C 2 exp

(
− ε′2`n

3s(x)

)
is maximized subject to the con-

straints that 0 ≤ s(x) ≤ n,∀x ∈ C and
∑
x∈C s(x) = kn,

when s(x) = n∀x ∈ C ′ for any subset of candidates C ′ ⊆ C
with |C ′| = k and s(x) = 0∀x ∈ C \ C ′.

Now, to estimate the margin of victory of the given elec-
tion E , let w̄ and z̄ be candidates with maximum and sec-
ond maximum estimated score respectively. That is, w̄ ∈
arg maxx∈C{s̄(x)} and z̄ ∈ arg maxx∈C\{w̄}{s̄(x)}. We

define M̄ def
== s̄(w̄)−s̄(z̄)

2 the estimate of the margin of vic-
tory of the election E (and thus the output of the algorithm).
Let A be the event that ∀x ∈ C, |s̄(x) − s(x)| ≤ ε′n. We
bound the success probability of the algorithm as follows.

Pr
[
|M̄ −Mk−approval(E)| ≤ εn

]
≥ Pr

[
|M̄ −Mk−approval(E)| ≤ εn

∣∣A]Pr[A]

= Pr[A] ≥ 1− 2k exp
(
−ε′2`/3

)
The second equality follows from Lemma 2 and an argument
analogous to the proof of Theorem 3. The third inequality
follows from inequality 2. Now, by choosing ` = 12

ε2 ln 2k
δ ,

we get a (0, ε, δ)–MOV algorithm. �

Note that, the sample complexity upper bound matches
with the lower bound proved in Corollary 1 for the k-approval
voting rule when k is a constant, irrespective of the number of
candidates. For the approval voting rule, we have the following
result.
Theorem 5. There is a polynomial time (0, ε, δ)–MOV algo-
rithm for the approval rule with sample complexity 12

ε2 ln 2m
δ .

4.2 Bucklin Voting Rule
Now, we consider the Bucklin voting rule. Given an election
E = (V,C), a candidate x ∈ C, and an integer ` ∈ [m], we

denote the number of votes in V in which x appears within
the top ` positions by n`(x). We prove useful bounds on the
margin of victory of any Bucklin election in Lemma 4.
Lemma 4. Let E = (V,C) be an arbitrary instance of a
Bucklin election and w be the winner of E . Let us define a
quantity ∆(E) as follows.

∆(E)
def
== min

`∈[m−1]:n`(w)>n/2,
x∈C\{w}:n`(x)≤n/2

{n`(w)− n`(x) + 1}

Then,
∆(E)

2
≤MBucklin(E) ≤ ∆(E)

Proof: Pick any ` ∈ [m − 1] and x ∈ C \ {w} such that,
n`(w) > n/2 and n`(x) ≤ n/2. Now by changing n`(w)−
bn/2c many votes, we can ensure that w is not placed within
the top ` positions in more than n/2 votes: choose n`(w) −
bn/2c many votes where w appears within top ` positions and
swap w with candidates placed at the last position in those
votes. Similarly, by changing bn/2c+ 1− n`(x) many votes,
we can ensure that x is placed within top ` positions in more
than n/2 votes. Hence, by changing at most n`(w)−bn/2c+
bn/2c + 1 − n`(x) = n`(w) − n`(x) + 1 many votes, we
can make w not win the election. Hence, MBucklin(E) ≤
n`(w)− n`(x) + 1. Now, since we have picked an arbitrary `
and an arbitrary candidate x, we have MBucklin(E) ≤ ∆(E).

For the other inequality, since the margin of victory is
MBucklin(E), there exists an `′ ∈ [m − 1], a candidate
x ∈ C \ {w}, and MBucklin(E) many votes in V such that,
we can change those votes in such a way that in the modified
election, w is not placed within top `′ positions in more than
n/2 votes and x is placed within top `′ positions in more than
n/2 votes. Hence, we have the following.
MBucklin(E) ≥ n′`(w)−

⌊
n
2

⌋
,MBucklin(E) ≥

⌊
n
2

⌋
+ 1− n′`(x)

⇒MBucklin(E) ≥ max{n`′(w)−
⌊n

2

⌋
,
⌊n

2

⌋
+ 1− n`′(x)}

⇒MBucklin(E) ≥
n`′(w)−

⌊
n
2

⌋
+
⌊
n
2

⌋
+ 1− n`′(x)

2

≥ ∆(E)

2
�

Notice that, given an election E , ∆(E) can be computed
in polynomial amount of time. Lemma 4 leads us to the
following Theorem.
Theorem 6. There is a polynomial time ( 1

3 , ε, δ)–MOV algo-
rithm for the Bucklin rule with sample complexity 12

ε2 ln 2m
δ .

4.3 Maximin Voting Rule
Next, we show the result for the maximin voting rule.
Lemma 5. Let E = (V,C) be any instance of a maximin
election. If w and z are the candidates that receive highest
and second highest maximin score respectively in E , then,

2Mmaximin(E) ≤ s(w)− s(z) ≤ 4Mmaximin(E)

Proof: Each vote change can increase the value of s(z)
by at most two and decrease the value of s(w) by at most
two. Hence, we have s(w) − s(z) ≤ 4Mmaximin(E).
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Let x be the candidate that minimizes DE(w, x), that is,
x ∈ arg minx∈C\{w}{DE(w, x)}. Let v ∈ V be a vote
where w is preferred over x. We replace the vote v by the
vote v′ = z � x � · · · � w. This vote change reduces the
score of w by two and does not reduce the score of z. Hence,
s(w)− s(z) ≥ 2Mmaximin(E). �

Theorem 7. There is a polynomial time ( 1
3 , ε, δ)–MOV algo-

rithm for the maximin rule with sample complexity 24
ε2 ln 2m

δ .
Proof sketch: Let E = (V,C) be an instance of maximin
election. Let x and y be any two candidates. We sample
` votes uniformly at random from the set of all votes with
replacement. Let Xi(x, y) be a random variable taking value
1 if x � y in the ith sample vote and −1 otherwise. Define
D̄E(x, y) = n

`

∑`
i=1Xi(x, y). By using the Chernoff bound

and union bound, we have the following.

Pr
[
∃x, y ∈ C, |D̄E(x, y)−DE(x, y)| > εn

]
≤ 2m2 exp

(
− ε

2`
3

)
We define M̄

def
== s̄(w̄)−s̄(z̄)

3 , the estimate of the margin
of victory of E , where w̄ ∈ arg maxx∈C{s̄(x)} and
z̄ ∈ arg maxx∈C\{w̄}{s̄(x)}. Now, using Lemma 5, we can
complete the rest of the proof in a way that is analogous to the
proof of Theorem 3. �

4.4 Copelandα Voting Rule
Now, we present our result for the Copelandα voting rule. Xia
introduced the brilliant quantity called the relative margin of
victory (see Section 5.1 in [Xia, 2012]) which is a crucial
ingredient in our algorithm for the Copelandα voting rule.
Given an election E = (V,C), a candidate x ∈ C, and an
integer (may be negative also) t, s′t(V, x) is defined as follows.

s′t(V, x) =|{y ∈ C : y 6= x,DE(y, x) < 2t}|
+ α|{y ∈ C : y 6= x,DE(y, x) = 2t}|

For every two distinct candidates x and y, the relative margin
of victory, denoted by RM(x, y), between x and y is defined
as the minimum integer t such that, s′−t(V, x) ≤ s′t(V, y).
Let w be the winner of the election E . We define a quantity
Γ(E) to be minx∈C\{w}{RM(w, x)}. Notice that, given an
election E , Γ(E) can be computed in a polynomial amount of
time. Now we have the following lemma.
Lemma 6. Γ(E) ≤MCopelandα(E) ≤ 2(dlogme+ 1)Γ(E).

Proof: Follows from Theorem 11 in [Xia, 2012]. �

Theorem 8. For the Copelandα voting rule, there is a poly-
nomial time

(
1−O

(
1

logm

)
, ε, δ

)
–MOV algorithm whose

sample complexity is 96
ε2 ln 2m

δ .
Proof: Let E = (V,C) be an instance of a Copelandα elec-
tion. For every x, y ∈ C, we compute D̄E(x, y), which is
an estimate of DE(x, y), within an approximation factor of
(0, ε′), where ε′ = ε

4 . This can be achieved with an error
probability at most δ by sampling 96

ε2 ln 2m
δ many votes uni-

formly at random with replacement (the argument is same as

the proof of Theorem 3). We define s̄′t(V, x) = |{y ∈ C : y 6=
x,DE(y, x) < 2t}| + α|{y ∈ C : y 6= x,DE(y, x) = 2t}|.
We also define RM(x, y) between x and y to be the minimum
integer t such that, s̄′−t(V, x) ≤ s′t(V, y). Let w̄ be the winner
of the sampled election, z̄ = arg minx∈C\{w̄}{RM(w, x)},
w the winner of E , and z = arg minx∈C\{w}{RM(w, x)}.
Since, D̄E(x, y) is an approximation of DE(x, y) within a
factor of (0, ε′), we have the following for every candidate
x, y ∈ C.

s′t(V, x)− ε′n ≤ s̄′t(V, x) ≤ s′t(V, x) + ε′n

RM(x, y)− 2ε′n ≤ RM(x, y) ≤ RM(x, y) + 2ε′n (3)

Define Γ̄(E) = RM(w̄, z̄) to be the estimate of Γ(E). We
show the following claim.
Claim 1. With the above definitions ofw, z, w̄, and z̄, we have
the following.

Γ(E)− 4ε′n ≤ Γ̄(E) ≤ Γ(E) + 4ε′n

Proof: Below, we show the upper bound for Γ̄(E).

Γ̄(E) = RM(w̄, z̄) ≤ RM(w, z̄) + 2ε′n

≤ RM(w, z) + 2ε′n

≤ RM(w, z) + 4ε′n

= Γ(E) + 4ε′n

The second inequality follows from the fact that D̄E(x, y)
is an approximation of DE(x, y) by a factor of (0, ε′). The
third inequality follows from the definition of z̄, and the fourth
inequality uses inequality 3. Now, we show the lower bound
for Γ̄(E).

Γ̄(E) = RM(w̄, z̄) ≥ RM(w, z̄)− 2ε′n

≥ RM(w, z̄)− 4ε′n

≥ RM(w, z)− 4ε′n

= Γ(E)− 4ε′n

The third inequality follows from inequality 3 and the
fourth inequality follows from the definition of z. �

We define M̄ , the estimate of MCopelandα(E), to be
4(logm+1)
2 logm+3 Γ̄(E). The following argument shows that M̄

is a
(

1−O
(

1
logm

)
, ε, δ

)
–estimate of MCopelandα(E).

M̄ −MCopelandα(E)

=
4(logm+ 1)

2 logm+ 3
Γ̄(E)−MCopelandα(E)

≤ 4(logm+ 1)

2 logm+ 3
Γ(E)−MCopelandα(E) +

16(logm+ 1)

2 logm+ 3
ε′n

≤ 4(logm+ 1)

2 logm+ 3
MCopelandα(E)−MCopelandα(E) + εn

≤ 2 logm+ 1

2 logm+ 3
MCopelandα(E) + εn

≤
(

1−O
(

1

logm

))
MCopelandα(E) + εn
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The second inequality follows from Claim 1 and the third
inequality follows from Lemma 6. Analogously, we have:

MCopelandα(E)− M̄

= MCopelandα(E)− 4(logm+ 1)

2 logm+ 3
Γ̄(E)

≤MCopelandα(E)− 4(logm+ 1)

2 logm+ 3
Γ(E) +

16(logm+ 1)

2 logm+ 3
ε′n

≤MCopelandα(E)− 2(logm+ 1)

2 logm+ 3
MCopelandα(E) + εn

≤ 2 logm+ 1

2 logm+ 3
MCopelandα(E) + εn

≤
(

1−O
(

1

logm

))
MCopelandα(E) + εn

The second line follows Claim 1 and the third line follows
from Lemma 6. �

The approximation factor in Theorem 8 is weak when we
have a large number of candidates. The main difficulty for
showing a better approximation factor for the Copelandα
voting rule is to find a polynomial time computable quantity
(for example, Γ(E) in Lemma 6) that exhibits tight bounds
with margin of victory. We remark that, existence of such a
quantity will not only imply a better estimation algorithm,
but also, a better approximation algorithm (the best known
approximation factor for finding the margin of victory for the
Copelandα voting rule is O(logm) and it uses the quantity
Γ(E)). However, we remark that Theorem 8 will be useful
in applications, for example, post election audit and polling,
where the number of candidates is often small.

5 Conclusion
We have introduced the (c, ε, δ)–MOV problem and presented
efficient sampling based algorithms for solving it for many
commonly used voting rules. Besides closing the gap in the
sample complexity, an interesting future direction is to study
how the knowledge of social network structure among the vot-
ers impacts sample complexity. Characterizing voting rules for
which the sample complexity of this problem is independent
of m and n is another interesting research direction to pursue.
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