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Abstract
We study resource allocation in a model due to
Brams and King [2005] and further developed by
Baumeister et al. [2014]. Resource allocation deals
with the distribution of resources to agents. We
assume resources to be indivisible, nonshareable,
and of single-unit type. Agents have ordinal prefer-
ences over single resources. Using scoring vectors,
every ordinal preference induces a utility function.
These utility functions are used in conjunction with
utilitarian social welfare to assess the quality of al-
locations of resources to agents. Then allocation
correspondences determine the optimal allocations
that maximize utilitarian social welfare.
Since agents may have an incentive to misreport
their true preferences, the question of strategy-
proofness is important to resource allocation. We
assume that a manipulator has a strictly monotonic
and strictly separable linear order on the power
set of the resources. We use extension principles
(from social choice theory, such as the Kelly and
the Gärdenfors extension) for preferences to study
manipulation of allocation correspondences. We
characterize strategy-proofness of the utilitarian al-
location correspondence: It is Gärdenfors/Kelly-
strategy-proof if and only if the number of differ-
ent values in the scoring vector is at most two or
the number of occurrences of the greatest value in
the scoring vector is larger than half the number of
goods.

1 Introduction
Resource allocation deals with the distribution of scarce re-
sources among agents, who may have different preferences
over (subsets, also called bundles, of) resources. The goal is
to find allocations, assignments of resources to agents, which
satisfy certain criteria.

We use the model proposed by Brams and King [2005]
(and followed up by Baumeister et al. [2014]) that reconciles
the need of collective utility functions for interpersonal com-
parability with ordinal preferences, using scoring vectors to
map ordinal preferences to additive utility functions. This

mapping is performed as if there were the same differences
in preferential intensity between resources across all agents.
We assume that resources are indivisible, nonshareable, and
of single-unit type, that is, they can neither be split nor belong
to multiple agents simultaneously. This ordinal-preference
model is motivated by the issue with cardinal preferences
concerning elicitation and (to a certain extent) incomparabil-
ity between two utility functions. It is far easier to ask for
a ranking of (bundles of) resources than for a utility func-
tion where every resource/bundle has a numerical value. The
tradeoff between ordinal and cardinal preferences has been
studied by Caragiannis and Procaccia [2011] in voting, who
show that the induced social welfare distortion is low.

Our main contribution is a characterization of strategy-
proofness of the utilitarian allocation correspondence: No
agent can benefit from misreporting her true preferences if
and only if the number of different values in the scoring vec-
tor is at most two or the number of occurrences of the greatest
value in the scoring vector is larger than the sum of the other
values’ numbers of occurrences (equivalently, the second part
can be restated as “the number of occurrences of the greatest
value is larger than half the number of goods”).

In Section 2, the model for resource allocation with ordi-
nal preferences due to Brams and King [2005] is presented
(in the notation of Baumeister et al. [2014]). Then, in Sec-
tion 3, strategy-proofness under that model is studied and the
main result is shown: a characterization of strategy-proofness
of the utilitarian allocation correspondence. Related work is
described in Section 4. At last, Section 5 gives a summary
and concludes with open problems and directions of future
research.

2 Scoring Allocation Correspondences
Let A = {1, . . . ,n} be a set of agents and let R = {r1, . . . ,rm}
be a set of indivisible, nonshareable resources (or goods or
objects or items) of single-unit type. An allocation of re-
sources to agents is given by a partition π = (π1, . . . ,πn),
where πi ⊆ R is the bundle of resources assigned to agent i.
Agents are assumed to have (ordinal) preferences over all
bundles of resources. However, to ensure feasibility in prac-
tice, instead of ranking all subsets of R, we assume agents
to rank only single resources. This is a crucial assumption:
While it avoids a heavy elicitation burden and allows specify-
ing our problems compactly, agents will not be able to express
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preferential dependencies between resources. Under this as-
sumption, we consider a preference profile P = (>1, . . . ,>n)
as a collection of n linear rankings over R. We now de-
fine scoring allocation correspondences, which map any such
profile to a nonempty subset of allocations.

Definition 1 A scoring vector s = (s1, . . . ,sm) consists of real
numbers satisfying s1≥ ·· · ≥ sm≥ 0 and s1 > 0. For a prefer-
ence ranking > over R and a resource r ∈ R, denote the rank
of r under > by rank(r,>). For each bundle B⊆ R, define the
utility function over 2R induced by the ranking > on R and
the scoring vector s by u>,s(B) = ∑r∈B srank(r,>).

Bouveret and Lang [2011] consider the following specific
scoring vectors for allocating indivisible goods:

• Borda scoring: borda = (m,m−1, . . . ,1),1

• lexicographic scoring: lex = (2m−1,2m−2, . . . ,1),

• quasi-indifference for some ε , 0 < ε � 1:
ε-qi = (1+(m−1)ε,1+(m−2)ε, . . . ,1).

In addition, we also consider the following scoring vector:

• k-approval: k-app = (1, . . . ,1,0, . . . ,0), where the first k
entries are all ones and the remaining entries are zeros.

A monotonic, symmetric aggregation function can then
be used to aggregate the individual utilities with the goal
of maximizing the overall utility. Typically, one considers
utilitarianism (i.e., the sum), and two versions of egalitari-
anism (namely, min and leximin); see, e.g., [Baumeister et
al., 2014]. We restrict ourselves to utilitarian social welfare
maximization: Fs(P) = argmaxπ ∑1≤i≤n u>i,s(πi), for prefer-
ence profile P= (>1, . . . ,>n) and allocation π = (π1, . . . ,πn).
From now on we slightly abuse notation by writing u>i,s(π)
instead of u>i,s(πi) to denote the utility for agent i under allo-
cation π = (π1, . . . ,πn).

3 Strategy-Proofness
Although the central authority, which collects the rankings
and computes the output, knows only the agents’ rankings
over singletons, the manipulating agent has full knowledge
of her own preferences over all sets of objects. We make the
crucial assumption that the agents’ (unrevealed) strict prefer-
ence relations are strictly separable,2 which justifies the fact
that they each can “safely” project their preference relation
over 2R onto a preference relation over R. In addition, we
assume that the (unrevealed) strict preference relations are
strictly monotonic.3 This is consistent with the common as-
sumption of free disposal and that every good has a positive

1The common definition of Borda scoring in voting is based on
the vector (m− 1,m− 2, . . . ,1,0). However, we follow Brams et
al. [2003] by setting the score of the bottom-rank resource to the
value 1. Note that scoring vectors in voting can be shifted or scaled
without changing the winner set [Hemaspaandra and Hemaspaandra,
2007]; but for scoring allocation correspondences such an operation
would have an impact in general [Baumeister et al., 2014].

2� is strictly separable if for all X ⊆ R, X1,X2 ⊆ X , Y1,Y2 ⊆
RrX , we have that X1∪Y1 �X2∪Y1 if and only if X1∪Y2 �X2∪Y2.

3� is strictly monotonic if for all X ,Y ⊆ R, if X ⊂Y then Y � X .

value which is in line with the fact that scoring vectors are
positive.

Turning now to strategy-proofness for scoring allocation
correspondences Fs we have to compare sets of winning allo-
cations that can emerge from an original profile P and a mod-
ified profile P′. We assume that the final winning allocation is
chosen by an unknown random device which assigns positive
probability to each winning allocation. For this we make use
of extension principles, which are common in social choice
theory. An extension principle lifts a preference relation over
single alternatives to a preference relation over sets of alter-
natives. Here, from the point of view of agent i, alternatives
are possible shares, i.e., sets of objects. We consider the two
classical extension principles that are due to Kelly [1977] and
Gärdenfors [1976].4 Note that the extension principles that
we use require that agents are pessimistic: No manipulation
may result in a worse outcome. Furthermore, these exten-
sion principles assume that alternatives are mutually exclu-
sive: Only one of the alternatives among the winners is ul-
timately chosen. This choice is performed under complete
uncertainty. However, bundles (alternatives) are not mutu-
ally exclusive in our model of manipulation. Suppose that
we have two bundles A,B with A ⊂ B. Then A and B are not
mutually exclusive. Nevertheless, the pessimistic manipula-
tor can pretend that the bundles are mutually exclusive for the
following reason: Even if the manipulator knows that a spe-
cific subset of a bundle is realized, e.g., in every allocation,
a pessimistic manipulator will misreport her preferences only
if this does not result in a worse outcome for her. Since the
probabilities that govern the random device are not known,
two sets of winning bundles, F(P) and F(P′), can have com-
pletely different probabilities attached to each bundle. For
example, if F(P′) extends every bundle in F(P) by an addi-
tional resource and thus, in addition, may intuitively seem to
be more appealing than F(P) because an additional resource
is guaranteed, the best bundle (according to the manipula-
tor’s preferences) could be assigned a very low probability in
F(P′), whereas in F(P) it could have a very high probability.
This is also an argument against the use of, e.g., an injective
mapping that assigns to every alternative a in F(P) an alter-
native b in F(P′) such that b is preferred to a because we
assume that manipulators are pessimistic.

To define extensions, it is easier to start with a weak order
≥ associated with a strict linear order >, where x ≥ y if and
only if x > y or x = y (here, “=” expresses indifference).

Definition 2 Let ≥ be a weak order over R and A,B ⊆ R.
Define the Kelly extension of ≥ by A �K B if and only if for
all x ∈ A and y ∈ B we have x ≥ y. Define the Gärdenfors
extension of ≥ by A �G B if and only if one of the following
conditions holds: (a) A⊂ B, and for all x ∈ A and y ∈ BrA,
we have x≥ y; (b) B⊂ A, and for all x ∈ ArB and y ∈ B, we
have x≥ y; (c) neither A⊂ B nor B⊂ A, and for all x ∈ ArB
and y ∈ BrA, we have x ≥ y. Finally, A �K B if and only if
A�K B and not B�K A, and similarly for �G.

4We don’t explicitly consider the extension principle proposed
by Fishburn [1972], which is intermediate between Kelly’s and
Gärdenfors’s; note that our results therefore apply to it as well.
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The definitions of �K and �G naturally carry over from
sets of resources to sets of allocations of resources.

We now define manipulation of allocation correspondences
according to these extension principles as follows.

Definition 3 Let e ∈ {K,G} be an extension principle, F an
allocation correspondence, P = (>1, . . . ,>n) a preference
profile, P′ = (>′i,>−i) the profile identical to P except that
agent i’s preference >i is changed to >′i, and let �i be a
strictly monotonic and strictly separable preference relation
over 2R extending >i. Define F(P)i = {πi |π ∈ F(P)}.

We say that >′i is an e-manipulation for P, F , and �i if
F(P′)i �e

i F(P)i. A scoring allocation correspondence F is
e-manipulable by an agent i if there exist P = (>1, . . . ,>n),
�i extending >i, and >′i such that >′i is an e-manipulation
for profile P, F, and �i. F is e-strategy-proof if it is not e-
manipulable by any agent.

Clearly, for each agent i, F(P′)i �K
i F(P)i implies

F(P′)i �G
i F(P)i. Therefore, Kelly-manipulability implies

Gärdenfors-manipulability; equivalently, Gärdenfors-strate-
gy-proofness implies Kelly-strategy-proofness. These no-
tions have been investigated so far only for irresolute social
choice functions in the context of voting (see, e.g., the papers
by Brandt [2015] and Brandt and Brill [2011]). We will apply
them to scoring allocation correspondences.

Note that one cannot define manipulation in terms of the
agents’ scores because their scores do not necessarily reflect
the agents’ preferences. Recall that scoring allocation corre-
spondences merely use scores as proxies.

To summarize our model, agents have preferences over the
power set of objects. However, they only submit a linear or-
der over the objects to the scoring allocation procedure. The
scoring allocation procedure uses a scoring vector to cardi-
nalize the ordinal preferences and then optimizes social wel-
fare with respect to the proxy utility functions. Since optimal
allocations are not necessarily unique, agents lift their pref-
erences over bundles of objects to preferences over sets of
bundles of objects. These lifted preferences are used to deter-
mine whether a manipulation is successful.

The following notation will be used heavily in the proofs
of this paper.

Definition 4 Ri(P) = {r ∈ R | (∃πi ∈ Fs(P)i) [r ∈ πi]} is the
set of all resources that agent i gets in some allocation of
Fs(P).

A resource r ∈ Ri(P) is sure in profile P for agent i if r ∈ πi
for all πi ∈ Fs(P)i; r is contested in P for i if it is not sure in P
for i. Let Si(P) denote the set of all sure resources in P for i.

Let s = (s1, . . . ,sm) be a scoring vector with k different val-
ues v1, . . . ,vk with v1 > v2 > · · ·> vk. Denote by αi the num-
ber of occurrences of the i-th value among v1, . . . ,vk in s, that
is, αi = ‖{ j | vi = s j,1 ≤ j ≤ m}‖. The set of resources that
are in the i-th bin for agent j with linear order > j is defined
by Ai(> j) = {r ∈ R | 1+∑

i−1
k=1 αk ≤ rank(r,> j) ≤ ∑

i
k=1 αk}.

We omit the scoring vector in all definitions when it is clear
from context.

Remark 5 Let > be a linear order on the set of resources
R = {r1, . . . ,rm}, say r1 > r2 > · · · > rm. Let s be a scoring

vector with k different values. We sometimes write > as
r1 r2 · · ·rα1−1 rα1 |rα1+1 · · ·rα1+α2 | · · · |r1+∑

k−1
i=1 αi

· · ·r
∑

k
i=1 αi

.

Now we show Gärdenfors-strategy-proofness for the case
of at most two different values in the scoring vector. The
intuition of the proof is that swapping the positions of a high-
ranked and a low-ranked resource always leads to a situation
where the high-ranked resource is replaced by the low-ranked
resource in a bundle of an optimal allocation.
Proposition 6 For at least two agents and each scoring vec-
tor s having at most two different values, Fs is Gärdenfors-
strategy-proof (and thus also Kelly-strategy-proof).
Proof. Let R be the set of resources with a,b ∈ R, and let
P = (>1, . . . ,>n), n ≥ 2, be the profile where in the ranking
of the last agent (the manipulator) a gets a higher score than
b, that is, a >n b and we have two distinct score values, α =
srank(a,>n) and β = srank(b,>n) with α > β . We distinguish the
following four cases regarding the positions of resources a
and b in the preferences of the remaining agents:
Case 1(a): There is some i < n with srank(a,>i) = α and there
is some j < n with srank(b,> j) = α . Then a is contested for n,
but agent n never receives b.
Case 1(b): There is some i < n with srank(a,>i) = α and for
all j, 1 ≤ j < n, srank(b,> j) = β . Then a and b are contested
for n.
Case 2(a): For all i, 1 ≤ i < n, we have srank(a,>i) = β and
there is some j < n with srank(b,> j) = α . Then a is sure for n,
but agent n never receives b.
Case 2(b): For all i, 1 ≤ i < n, we have srank(a,>i) = β and
for all j, 1 ≤ j < n, srank(b,> j) = β . Then a is sure and b is
contested for n.

Now, let P′n = (>1, . . . ,>n−1,>
′
n) be the modified pro-

file where the only change is that in the ranking of the last
agent the positions of resources a and b are swapped. Going
through the cases with the modified profile, we see that either
(1) a /∈ πn for all π ∈ Fs(P′) or (2) a /∈ πn for some π ∈ Fs(P′)
and either (a) b is contested for n in P′ or (b) b is sure for n
in P′. Hence we have the above four cases 1(a), 1(b), 2(a),
and 2(b). In all of them it holds that for each π ∈ Fs(P) with
a ∈ πn and b /∈ πn (which exists in all cases), there is some
π ′ ∈ Fs(P′) with π ′n = (πn r{a})∪{b}. By strict separability
of �n and since a >n b, πn �n π ′n follows. Now we show that
we can use the sets πn and π ′n in all cases of the Gärdenfors
extension:
Case I: Fs(P′)n ⊂ Fs(P)n. This is Case 1(b). It holds that π ′n
is in Fs(P′)n and πn is in Fs(P)n rFs(P′)n because of b /∈ πn
but b ∈ π ′′n is true for all π ′′n ∈ Fs(P′)n.
Case II: Fs(P)n ⊂ Fs(P′)n. This is Case 2(a). It holds that πn
is in Fs(P)n and π ′n is in Fs(P′)n rFs(P)n because of b ∈ π ′n
but b /∈ π ′′n is true for all π ′′n ∈ Fs(P)n.
Case III: Neither Fs(P′)n ⊂ Fs(P)n nor Fs(P)n ⊂ Fs(P′)n.
These are Cases 1(a) and 2(b). For both of them, πn is in
Fs(P)n rFs(P′)n and π ′n is in Fs(P′)n rFs(P)n with the same
arguments as above.

Thus it is not true that Fs(P′n)n �G
n Fs(P)n. Since this

argument analogously works for all agents, Fs is not G-
manipulable by any agent, which means it is Gärdenfors-
strategy-proof. q
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The idea of the next result is that if there are at least three
different values and the first bin is not large enough, then all
resources in the first bin of some agent fit into lower ranked
bins of some other agent. This can be used to “shift” re-
sources into the right bins.
Proposition 7 Let s be a scoring vector with k ≥ 3 different
values satisfying α1 ≤ ∑

k
i=2 αi. Then Fs is K-manipulable.

Proof. The goal is to construct profiles showing that Fs is
K-manipulable by some agent. Let R= {r1, . . . ,rm} be the set
of resources. We distinguish the following two cases.
Case 1: α1 = ∑

k
i=2 αi. Let profile P consist of two linear

orders, where agent 2 is the manipulator:

r1 >1 r2 >1 · · ·>1 rα1 >1 · · ·>1 rm

rα1+1 >2 rα1+2 >2 · · ·>2 rm >2 r1 >2 r2 >2 · · ·>2 rα1

We have S2(P) = {rα1+1,rα1+2, . . . ,rm}. Because none of the
resources in A1(>1) are assigned to agent 2, S2(P) is the only
bundle that agent 2 receives in an allocation. The manipula-
tor’s goal is to receive an additional resource without losing
one of her sure resources. This can be achieved by swapping
resource rα1+α2+1 with resource r1 in >2. Resource r1 be-
comes contested because r1 is in the first bin for both agents.
But resource rα1+α2+1 is still sure for agent 2 in profile P′
because there are at least three different values (that is, bins),
and resource rα1+α2+1 is in the third bin of agent 1 but it is in
the second bin of agent 2’s manipulation. Hence, agent 2 re-
ceives either S2(P) or S2(P)∪{r1} in an allocation. We thus
have a K-manipulation by agent 2 as required.
Case 2: α1 < ∑

k
i=2 αi. We construct a profile in a series of

steps. The number of agents depends on the scoring vector.
The linear order >1 of agent 1 is r1 >1 r2 > · · · >1 rm. First
we give the manipulative linear order of agent 2. Then we
show how to swap two resources in the manipulative linear
order such that a sure resource for agent 2 becomes contested
in the original linear order. Agent 2’s manipulative preference
is constructed as follows: We transform the linear order >1
by a series of swaps. The goal is to maximize the number of
sure resources that agent 2 receives. Therefore, all resources
in the first bin of agent 1 are swapped with resources in the
second bin, the third bin, and so on until all resources of the
first bin are in a worse bin. Because of α1 < ∑

k
i=2 αi that is

possible. Now we consider the second bin of the transformed
linear order. Again, we improve the positions of resources in
worse bins by swapping them with resources in the second
bin. This time, however, we have to pay attention to the fact
that we do not improve the position of resources that were
sent to worse bins in previous iterations. We continue this
procedure until we reach the last bin or no resources are left
that can be made sure for agent 2.

More formally, set >(1) = >1. Starting with j = 1, swap
the resources of A j(>

( j)) in decreasing order according to
>(1) with those of A j+1(>

( j))r
⋃

l< j Al(>
(1)), A j+2(>

( j))r⋃
l< j Al(>

(1)), and so on, until no longer possible. Call the
transformed linear order >( j+1). Continue until the trans-
formed linear order >(k) =>′2 is obtained.

In order to transform the manipulative linear order >′2
to the original linear order >2, we look at the rightmost

bin Aw(>
′
2) which contains a resource of A1(>1). We call

Aw(>
′
2) the worst bin. Because α1 < ∑

k
i=2 αi holds, every re-

source of A1(>1) is swapped. Hence, the worst bin is at least
the second bin. However, it cannot be the second bin. If it
were, then α1 ≤ α2 would hold because otherwise a resource
from the first bin would be swapped to at least the third bin.
But if all resources of A1(>1) are swapped with resources of
A2(>2), then the next iteration will swap resources that are
originally from the first bin with resources of the third bin.
This is true because there are at least three different values
and swapping is performed in decreasing order according to
>(1). Therefore, the worst bin of agent 2 with the manipula-
tive linear order is at least the third bin.

Looking at the resources that agent 1 has in the bin that
has the same index as agent 2’s worst bin, that is, in Aw(>1),
there is always a resource that is sure for agent 2 but not in
the first bin of agent 2 in the manipulation. Note that here
we use the fact that the worst bin has to be at least the third
bin; otherwise, every resource that is sure for agent 2 would
have to be in the first bin. Now we show that such a resource
always exists.

Pick an a ∈ Aw(>
′
2)∩A1(>1). There are two possibilities

how resource a came into Aw(>
′
2):

1. Series of swaps: Resource a was swapped with b which
is now sure for agent 2. Because there was at least one
preceding swap involving resource a, resource b cannot
be in A1(>

′
2).

2. Direct swap: After the first iteration all resources from
the bins that are to the left of the worst bin (except for the
first bin) were swapped with the resources in the first bin
of agent 1. The worst bin has not been completely filled
by new resources in the first iteration: If all resources in
Aw(>

′
2) are there due to a direct swap (that is, in the first

iteration), then there is a bin to the right of the worst bin
(otherwise, we would have α1 = ∑

k
i=2 αi, contradicting

the case assumption). Then the second iteration swaps a
resource from the bin that is to the right of the worst bin
with a resource in the second bin. The second bin just
contains resources from A1(>1). Thus Aw(>

′
2) is not the

worst bin.
If there is a resource in Aw(>

′
2) that was not swapped

in the first iteration, the second iteration picks such a
resource in order to swap it with a resource in the second
bin, which just contains resources from A1(>1).

Thus there is a resource r ∈ S2(P′) with r /∈ A1(>
′
2) and

r ∈ Aw(>1). Now swap r and a in >′2. Resource a remains
unavailable to agent 2 because resource r was not in the first
bin of agent 2 in the manipulation. However, r becomes con-
tested for agent 2, the first agent having r in the same bin.
Call this linear order >2.

Agent 2 may still receive contested resources. By adding
additional agents, we prevent that from happening. For each
contested resource rc that agent 2 receives in P′, add to pro-
files P and P′ a linear order >rc which results from swapping
resource rc with resource r1 in >1. This is always possible be-
cause α1 < ∑

k
i=2 αi implies that agent 2’s contested resources

in P′ are not in A1(>1). Hence, we have a manipulation
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with Fs(P′)2 = {S2(P′)} and Fs(P)2 = {S2(P′)r{r},S2(P′)}.
This completes Case 2.

In both cases, we have Fs(P′)2 �K
2 Fs(P)2. q

Example 8 Let s = (7,7,7,5,5,5,5,5,3) be a given scoring
vector (which corresponds to the second case of the proof of
Proposition 7). Then the linear order >1 =>(1) of agent 1 is
r1 r2 r3 |r4 r5 r6 r7 r8 |r9.

The manipulative linear order >′2 is constructed first:

>(2) : r4 r5 r6 |r1 r2 r3 r7 r8 |r9

>′2 = >(3) : r4 r5 r6 |r9 r2 r3 r7 r8 |r1

Set profile I′ = (>1,>
′
2). Then the set of sure resources for

agent 2 in I′ is S2(I′) = {r4,r5,r6,r9}, the set of contested re-
sources for agent 2 is C2(I′) = {r7,r8}. Now we construct the
original linear order >2 of agent 2. The worst bin is A3(>

′
2).

A resource in the intersection A3(>
′
2)∩ A1(>1) is r1. The

swap that brought r1 to the third bin was with r9. Swapping r1
with r9 gives >2. Set profile I = (>1,>2). Then the set of sure
resources for agent 2 in the profile I is S2(I)= {r4,r5,r6}. For
each contested resource in C2(I′), an agent is added with the
linear order >1 except for a swap of this contested resource
with r1. The complete profile P′ is:

>1 : r1 r2 r3 |r4 r5 r6 r7 r8 |r9

>′2 : r4 r5 r6 |r9 r2 r3 r7 r8 |r1

>r7 : r7 r2 r3 |r4 r5 r6 r1 r8 |r9

>r8 : r8 r2 r3 |r4 r5 r6 r7 r1 |r9

and the winning set for agent 2 in profile P′ is Fs(P′)2 =
{S2(I′)}. The profile P is the same as P′ except for ex-
changing >′2 with >2. This gives the winning set Fs(P)2 =
{S2(I),S2(I)∪{r9}}. Overall, the manipulation follows via
Fs(P′)2 �K

2 Fs(P)2.

Finally, we consider the case of scoring vectors with at
least three different values and α1 > ∑

k
i=2 αi.

Due to space constraints we omit the proofs of the follow-
ing lemmas.

Lemma 9 Let s be a scoring vector with k different values.
For each profile P with at least two agents and for each
agent j, ‖R j(P)‖ ≥ α1 and ‖S j(P)‖ ≤ ∑

k
i=2 αi.

Lemma 10 Let s be a scoring vector with k different val-
ues and R be a set of resources. For each agent j, for each
strictly monotonic and strictly separable linear order � j on
2R extending > j, and for each set X with ‖X‖ ≤ α1 and
X 6= A1(> j), we have A1(> j)� j X.

If the first bin is large, the intuition of the following re-
sult on Gärdenfors-strategy-proofness is that the set of sure
resources is small (Lemma 9), whereas the (large) first bin is
preferred to every small bundle (Lemma 10).

Proposition 11 For at least two agents and each scoring vec-
tor s with k ≥ 3 different values satisfying α1 > ∑

k
i=2 αi, Fs is

Gärdenfors-strategy-proof.

Proof. Let R be the set of resources, P be a profile, P′ be
the same profile as P except for a change of the manipulator’s
preference, let >n be the manipulator’s true linear order on R,
and �n be the manipulator’s strictly monotonic and strictly
separable linear order on 2R extending >n. Consider the three
relations of Fs(P)n and Fs(P′)n according to Gärdenfors. For
each case we exhibit two sets that satisfy the membership cri-
teria in the definition of a Gärdenfors extension and that have
the desired relation between them.
Case 1: Fs(P)n⊂Fs(P′)n. In this case we find sets π ∈Fs(P)n
and π ′ ∈ Fs(P′)n rFs(P)n such that π �n π ′ holds. Consider
the following subcases with respect to the relationship be-
tween Rn(P) and Rn(P′):
Case 1(a): Rn(P′) ⊂ Rn(P). Since Fs(P)n ⊂ Fs(P′)n implies
Rn(P)⊆ Rn(P′), this case never occurs.
Case 1(b): Rn(P) ⊂ Rn(P′). The idea is that adding a re-
source which is in Rn(P′) but not in Rn(P) to the set of sure
resources in P′ is sufficient for the set not to be in Fs(P)n.

Suppose that r ∈ Sn(P′) for all r ∈ Rn(P′)rRn(P). Then
Sn(P′) /∈ Fs(P)n is true and, by bounding the size of Sn(P′)
with Lemma 9 and then applying Lemma 10, we have A1(>n
) ∪ Sn(P) �n Sn(P′). Now suppose that there exists r′ ∈
Rn(P′)r Rn(P) with r′ /∈ Sn(P′). Then we have Sn(P′) ∪
{r′} /∈ Fs(P)n and, by Lemmas 9 and 10 and the fact that
r′ /∈ A1(>n), we have A1(>n)∪Sn(P)�n Sn(P′)∪{r′}.
Case 1(c): Rn(P) = Rn(P′). Let π ′ ∈ Fs(P′)n rFs(P)n. Then
we have π ′ 6= Rn(P′) because Rn(P) ∈ Fs(P)n. Hence, π ′ ⊂
Rn(P′) is true, which implies Rn(P)�n π ′.
Case 1(d): Rn(P) 6⊂ Rn(P′) and Rn(P′) 6⊂ Rn(P). This case
never occurs, as Fs(P)n ⊂ Fs(P′)n implies Rn(P)⊆ Rn(P′).
Case 2: Fs(P′)n ⊂ Fs(P)n. Then we find sets π ∈ Fs(P)n r
Fs(P′)n and π ′ ∈ Fs(P′)n such that π �n π ′.
Case 2(a): Rn(P′)⊂ Rn(P). We have Rn(P) /∈ Fs(P′)n (other-
wise, Rn(P)⊆ Rn(P′)). Hence, Rn(P)�n Rn(P′) is enough in
this case.
Case 2(b): Rn(P)⊂ Rn(P′). Analogously to Case 1(a).
Case 2(c): Rn(P) = Rn(P′). The premises Rn(P) = Rn(P′)
and Fs(P′)n ⊂ Fs(P)n imply that there exists a resource r ∈
Rn(P) that is contested in P but sure in P′. It follows that
r /∈ A1(>n) is true (otherwise, r would not be sure in P′
and contested in P). Thus we have r /∈ A1(>n)∪ Sn(P), and
A1(>n)∪ Sn(P) /∈ Fs(P′)n holds because r is sure in P′. By
Lemmas 9 and 10, A1(>n)∪Sn(P)�n Sn(P′).
Case 2(d): Rn(P) 6⊂ Rn(P′) and Rn(P′) 6⊂ Rn(P). Analo-
gously to Case 1(d).
Case 3: Fs(P)n 6⊂ Fs(P′)n and Fs(P′)n 6⊂ Fs(P)n. In this case
we find sets π ∈ Fs(P)n rFs(P′)n and π ′ ∈ Fs(P′)n rFs(P)n
such that π �n π ′ holds.
Case 3(a): Rn(P′) ⊂ Rn(P). We have Rn(P) /∈ Fs(P′)n (oth-
erwise, Rn(P) ⊆ Rn(P′)). Pick a set π ′ ∈ Fs(P′)n rFs(P)n.
Then π ′ ⊆ Rn(P′) is true. This implies that Rn(P)�n π ′.
Case 3(b): Rn(P) ⊂ Rn(P′). Suppose that A1(>n)∪Sn(P) /∈
Fs(P′)n holds. Then we can argue similarly to Case 1(b).

Now we show that A1(>n)∪ Sn(P) ∈ Fs(P′)n never holds:
We have Sn(P′)⊂ A1(>n)∪Sn(P). However, if r ∈ Sn(P′) is
in A1(>n), then r ∈ Sn(P) holds as well. Hence Sn(P′) ⊆
Sn(P) is true. Together with Rn(P) ⊂ Rn(P′) this implies
that Fs(P)n ⊂ Fs(P′)n because each resource c ∈ (Sn(P)r
Sn(P′))∪ (Rn(P′)rRn(P)) is contested in P′ (contradiction).
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Case 3(c): Rn(P) = Rn(P′). Rn(P) = Rn(P′) together with
Fs(P)n 6⊂ Fs(P′)n implies that there is a resource that is con-
tested in P but sure in P′. Similarly, there is a resource that is
contested in P′ but sure in P. Overall, we have Sn(P′) 6⊂ Sn(P)
and Sn(P) 6⊂ Sn(P′). Pick a resource r ∈ Sn(P′)rSn(P). The
remaining argument is analogous to Case 2(c).
Case 3(d): Rn(P) 6⊂ Rn(P′) and Rn(P′) 6⊂ Rn(P). We have
Rn(P) /∈ Fs(P′)n (otherwise, Rn(P) ⊆ Rn(P′)) and argue sim-
ilarly to Case 1(b). This completes the proof. q

Example 12 Let s = (8,8,8,8,8,5,5,4,2) be a scoring vec-
tor and R = {r1, . . . ,r9} be the set of resources. Let P be the
following profile of three agents:

>1 : r1 r2 r3 r4 r5 |r6 r7 |r8 |r9

>2 : r1 r3 r4 r5 r7 |r2 r6 |r8 |r9

>3 : r1 r2 r3 r4 r6 |r7 r9 |r8 |r5

The winning set for agent 3 consists of S3(P) = {r6r9} and
C3(P) = {r1r2r3r4r8}. Now consider the following misre-
ported linear order of agent 3:

>′3: r1 r2 r3 r4 r7 |r6 r9 |r8 |r5

If P′ is profile P with linear order >3 replaced by >′3, the
new winning set of agent 3 consists of S3(P′) = {r9} and
C3(P′) = {r1r2r3r4r6r7r8}. Then we have Fs(P)3 ⊂ Fs(P′)3
and R3(P) ⊂ R3(P′) (Case 1(b) of the proof of Proposi-
tion 11). We have R3(P′) \R3(P) = {r7}. Hence, S3(P′)∪
{r7} = {r7,r9} ∈ Fs(P′)3 and {r7,r9} /∈ Fs(P)3. It follows
that A1(>3)∪ S3(P) = {r1,r2,r3,r4,r6,r9} �3 {r7,r9} holds
because of, e.g., r1 >3 r7.

From Propositions 6, 7, and 11, we have the main result:

Theorem 13 Let s be a scoring vector with k different values.
The following three statements are equivalent: (1) Fs is Kelly-
strategy-proof; (2) Fs is Gärdenfors-strategy-proof; (3) k ≤ 2
or α1 > ∑

k
i=2 αi.

Corollary 14 For s ∈ {borda, lex, ε-qi}, the following three
statements are equivalent: (1) Fs is Kelly-strategy-proof;
(2) Fs is Gärdenfors-strategy-proof; (3) there are no more
than two resources.

Corollary 15 Fk-app is Kelly- and Gärdenfors-strategy-proof.

4 Related Work
Chevaleyre et al. [2006] survey the work on multiagent re-
source allocation, and Nguyen et al. [2013] that on approx-
imability of social welfare optimization (see also the work
of Nguyen et al. [2014]) for cardinal preferences. Since the
model that we study is inspired by scoring rules from voting,
the chapter by Brams and Fishburn [2002] might serve as an
introduction. A comparison of multiagent research in combi-
natorial auctions (which is somewhat related to fair division)
and voting by Conitzer [2010] highlights the similarities be-
tween these two fields.

Brams and King [2005] assume ordinal preferences over
single resources. They look at properties such as maximin,
Borda maximin, and envy. Similarly, Brams et al. [2003] as-
sume that each agent has an additively separable preference

over the resources, with no side payments allowed. Optimal
allocations maximize utilitarian or egalitarian social welfare,
where the utility of an agent is the Borda score of the received
bundle. Baumeister et al. [2014] extend this model by consid-
ering arbitrary scoring vectors and collective utility functions
and study scoring allocation rules with respect to axiomatic
properties. Strategy-proofness for allocation rules has been
studied by, e.g., Pápai [2001], Ehlers and Klaus [2003], and
Hatfield [2009].

A different model of resource allocation where agents
have ordinal preferences but do not submit them to a cen-
tral authority has been studied by Bouveret and Lang [2011],
who have also studied the manipulation problem in this
model [Bouveret and Lang, 2014].

In the context of social choice, the standard approaches for
lifting preferences are due to Kelly [1977], Fishburn [1972],
and Gärdenfors [1976]. The axiomatic study of extensions
was started by Kannai and Peleg [1984]. A survey is given by
Barberà et al. [2004]. The motivation of Kelly [1977] was to
abandon the single-valuedness requirement in the Gibbard–
Satterthwaite theorem [Gibbard, 1973; Satterthwaite, 1975].
A generalization of strategy-proofness is given, where the fo-
cus is on “clear-cut cases” when there is no knowledge of
the final selection process. More recently, Brandt [2015]
and Brandt and Brill [2011] establish necessary and sufficient
conditions for strategy-proofness of irresolute social choice
functions using the preference extensions due to Kelly, Fish-
burn, and Gärdenfors.

5 Conclusions
We have studied resource allocation in a model where re-
sources are indivisible, nonshareable, and of single-unit type.
Agents reveal ordinal preferences over single resources only,
thus crucially alleviating the elicitation burden. Allocations
are complete assignments of all resources to the agents. Win-
ner determination is facilitated through scoring vectors: The
ordinal preferences are transformed into utility functions as
if the agents’ preferences were additively separable. Using
these surrogate utility functions, allocations can be assessed
with tools of resource allocation with cardinal preferences
such as utilitarian social welfare.

We have studied the manipulation problem in this model.
This is the question of whether agents can benefit from mis-
reporting their preferences. Specifically, we have taken the
point of view of a manipulator where we know the manip-
ulator’s strictly monotonic and strictly separable preferences
over bundles of resources instead of single resources. As mul-
tiple allocations can maximize utilitarian social welfare, the
manipulator’s preferences are lifted to sets of bundles of re-
sources through Kelly and Gärdenfors extensions. We have
shown that the structure of the chosen scoring vector char-
acterizes whether the utilitarian allocation correspondence is
manipulable or strategy-proof: If there are at most two differ-
ent values in the scoring vector, then the utilitarian allocation
correspondence is Gärdenfors/Kelly-strategy-proof; if there
are at least three different values in the scoring vector, then it
is Gärdenfors/Kelly-strategy-proof if and only if the number
of occurrences of the greatest value in the scoring vector is
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larger than half the number of goods.
Intuitively speaking, the bottom line is that a utilitarian al-

location correspondence becomes strategy-proof when there
is high discrepancy between the choice of the scoring vector
and strict preferences. This is consistent with the intuition
that an allocation correspondence that is more oblivious to
the agents’ preferences should be strategy-proof.

As directions of future research we propose to investigate
the complexity of winner determination in this model. Fur-
thermore, a characterization of strategy-proofness for other
social welfare measures (e.g., egalitarian social welfare) is
still open. Manipulability of allocation rules as compositions
of allocation correspondences with tie-breaking mechanisms
would constitute an interesting research direction as well.
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