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Abstract

Diagnosing unwanted behaviour in Multi-Agent
Systems (MASs) is crucial to ascertain agents’ cor-
rect operation. However, generation of MAS mod-
els is both error-prone and time intense, as it ex-
ponentially increases with the number of agents
and their interactions. In this paper, we propose
a light-weight, automatic debugging-based tech-
nique, coined ESFL-MAS, which shortens the di-
agnostic process, while only relying on minimal
information about the system. ESFL-MAS uses a
heuristic that quantifies the suspiciousness of an
agent to be faulty; therefore, different heuristics
may have different impact on the diagnostic qua-
lity. Our experimental evaluation shows that 10 out
of 42 heuristics yield the best diagnostic accuracy
(96.26% on average).

1

Previous approaches to ascertain nominal behaviour of Multi-
Agent Systems (MASs) (see [Nguyen et al., 2011; Fisher et
al., 2007]) assume a priori knowledge (i.e., model) to diag-
nose observed failures. This knowledge can be appropriately
built when designers fully understand the environment upon
which agents act as well as agents’ state space.

However, in practice, due to (i) the complexity of MASs,
(i1) dynamism of the environment, and (iii) presence of legacy
systems, MAS and/or agent models are rather laborious to
build. As a consequence, building the model is an error-prone
task. Any knowledge not included in the built model by de-
signers may therefore prevent the capability of model-based
fault diagnosis to effectively recognise faults.

To address this issue, this paper considers a model-less ap-
proach to pinpoint behavioural faults in MASs. Spectrum-
based Fault Localisation (SFL) is a promising technique that
does not rely on an explicit model of the system under analy-
sis and has been shown to yield good diagnostic accuracy for
software systems [Hofer et al., 2015; Abreu et al., 2009].

The diagnosis process in SFL is based on the analysis of
the differences in the so-called program spectra (abstraction
over program traces) for passed and failed runs. SFL iso-
lates the faulty component, using a similarity coefficient as
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heuristic, whose activity most correlates with observed fail-
ures. More importantly, SFL can be applied to resource-
constrained environments due to its relatively low computa-
tional overhead [Abreu et al., 2009]. Such properties suggest
that SFL is a well-suited technique for MASs.

Literature has shown that there is no standard similarity
coefficient that yields the best result for SFL [Yoo ez al., 2014;
Hofer et al., 2015; Le et al., 2013]. Empirical evaluation is
therefore essential to establish which set of heuristics excels
for the specific context to which SFL is being applied. To the
best of our knowledge, SFL has not as yet been applied to
diagnose behavioural faults in MASs; there is hence the need
to empirically evaluate different formulae using known faults
to compare the performance yielded by several coefficients.

This paper makes the following contributions:

e We discuss the limitations of applying SFL with com-
monly used block hit spectra for time-persistent entities
such as agents;

We describe the Extended Spectrum-based Fault Loca-
lisation for Multi-Agent Systems (ESFL-MAS) to diag-
nose agent behavioural faults when testing the system as
a whole;

We present an experimental study on the impact of 42
heuristics in the ESFL-MAS diagnostic accuracy us-
ing the well-known and real-world representative Pickup
and Delivery Problem as test suite;

We show that for ESFL-MAS the Accuracy, Coverage,
Jaccard, Laplace, Least Contradiction, Ochiai, Rogers
and Tanimoto, Simple-Matching, Sorensen-Dice, and
Support outperform the remainder coefficients across the
entire quantity and quality data space (yielding 96.26%
accuracy) in the specific conditions of our test suite.

2 Related Work

There is a wide set of approaches to increase the reliability in
MASs. Formal verification, with model checking and theo-
rem proving (see [Fisher ef al., 2007]), has received great at-
tention by the community. Albeit exhaustive and automated,
such approaches are computationally costly, despite employ-
ing reduction techniques, as well as rely solely on the model
of the system under test to certify correct functioning.

As for diagnosis in the scope of MASs, Dellarocas and
Klein [2000] propose a diagnosis based on a fault-model of



agents. Fault-based diagnosis is not recommended for MASs
due to agents interactions. Micalizio [2013] proposes a di-
agnostic system that pinpoint the set of erroneous actions in-
tegrated with recovery processes. Plan-diagnosis techniques
depend on given agents’ plans curbing their usage at system-
level testing. Concerned with determining coordination fail-
ures within team of agents Kalech [2012] proposes the social
diagnosis. These works are robust and scale well in collabora-
tive MASs; however, they focus only on the coordination fail-
ures, neglecting their influence on MAS overall performance.
We refer the interested reader to Passos er al.’s [2015a] work
for further analysis.

Therefore, to the best of our knowledge, all state-of-the-art
approaches to ensure MAS correct behaviour rely on a priori
model of the system to identify flaws. This work goes fur-
ther and extends the use of SFL for MASs, collecting system
dynamics information rather than using predefined models.

3 Preliminaries

Spectrum-based Fault Localisation

SFL is a dynamic program analysis technique, which requires
minimal information about the system to be diagnosed. The
SFL abstracts the system in terms of two general concepts:
components and transaction. The former is an element of
the system that, for diagnosis purposes, is considered to be
atomic. Such entities could be individual statements, blocks,
and so forth. The latter is a set of component information,
whose correctness of output can be verified.

SFL relies on a set of test to produce a sequence of compo-
nent activities that results in a particular output. The result of
a process is either nominal (“pass”) or an error (“fail”’). These
fail and pass sets are also known as spectra, and originate
from the collection of transactions. Additionally, the overall
results of tests are called error vector. Given the hypothe-
sis that closely correlated components are more likely to be
relevant to an observed failure, the basic idea of SFL is that
comparing the transactions over multiple runs and then com-
puting the suspiciousness values of components can indicate
which of these is the most likely to be the faulty one.

Several SFL methods use different formulae of similari-
ty coefficients to compute such suspiciousness values. In
this paper, an exhaustive list of 42 heuristics [Hofer et al.,
2015] has been studied focusing on the context of fault lo-
calisation in software agents. These coefficients are: Ac-
curacy (C7), Added Value (C3), Anderberg (C3), Certainty
Factor (C}), Collective Strength (C5), Confidence (Cs), Con-
viction (C7), Coverage (Cs), Example and Counterexample
(Cy), Gini Index (C1g), Goodman and Kruskal (C'1), Infor-
mation Gain (C12), Interest (C13), Interestingness Weighting
Dependency (C14), J-Measure (Cy5), Jaccard (Cig), Kappa
(C17), Klosgen (Ch1g), Laplace (Chg), Least Contradiction
(Cs9), Leverage (C51), Loevinger (C2), Normalized Mu-
tual Information (Co3), Ochiai (Ca4), Ochiai II (Cys5), Odd
Multiplier (Ca6), Odds Ratio (Cs7), One-way Support (Csg),
Piatetsky-Shapiro (Csg), Relative Risk (C3g), Rogers and
Tanimoto (C31), Sebag-Schoenauer (Csz), Simple-Matching
(Cs3), Sorensen-Dice (C'34), Support (C'35), Tarantula (Csg),
Two-way Support (Cs7), Two-way Support Variation (C'sg),
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Yule’s Q (Csg), Yule’s Y (Cyg), Zhang (Cy1), ¢-coefficient
(Cy2). For the sake of organisation, we refer the interested
reader to Hofer et al.’s [2015] work for further details regard-
ing these formulae.

Concepts and Definitions

In this paper we consider that faults in agents’ behaviour
depend on a given context, i.e. on how each agent interprets
that particular situation; and, mainly, these faults are a sys-
temic matter as it might affect the overall performance [Pla-
ton et al., 2007]. More specifically, the term “faulty agent”
is used to refer that the agent either is unhealthy and needs to
be repaired or has been induced to a failure state (known as
cascading effect).

Diagnosis is the task of pinpointing the faulty component
that led to symptoms (failure/error). In software, the set of
components can be defined at any level of granularity: a class,
a function, or a block. The lower the level of granularity
gets, the more focused is the diagnosis, even though such low
granularity requires more computational effort [Zamir et al.,
2014]. The diagnosis problem for MASs can be defined as
follows.

Definition 1 (Multi-Agent Diagnosis Problem) Given a
multi-agent system MAS that has a set of agents AGS and a
set of observations OBS for a test case, then the diagnosis
problem is to find the faulty agent which is responsible for
the mismatch between the expected MAS performance and
the observed one.

The multi-agent diagnosis problem is defined with gran-
ularity at the agent level and thus considers agents as black
boxes. This is a fair assumption when different parties im-
plement agents reasoning and do not completely share their
knowledge and/or architecture. On the one hand, the pro-
posed technique is not able to identify the specific bug inside
the code of the faulty agent; on the other hand, however, it
has the advantage of not being either programming language
or agent architecture specific.

4 ESFL-MAS

In this section we describe our approach, called Extended
Spectrum-based Fault Localization for MAS (ESFL-MAS).
The first step is to map concepts of MASs into the afore-
mentioned elements of SFL. As stated by Definition 1, this
work deals with agent-level diagnosis and therefore compo-
nents of the system are the agents themselves. As for transac-
tions, since MASs must run during some period of time (sev-
eral time frames if considering discrete time) to observe their
emerging behaviour, ESFL-MAS considers the error status of
an agent’s behaviour at time n as a transaction. We use the
terms time frame and time step interchangeably.

The far most commonly used type of spectra is called hit
spectra [Abreu et al., 2009]. It encodes the involvement (suc-
cess/failure) of each component of the system in terms of in-
volved/not involved in a given test case. The constraint of us-
ing the hit spectra is related to the lack of useful information
about state of the agent execution. Since agents are time-
persistent entities, they are always active and acting upon
the environment; this creates spectra with very high entropy.



High entropy means that there is less useful information in the
spectra which, consequently, decreases the diagnostic quality
of SFL [Campos et al., 2013]. Therefore, block hit spectra is
not suitable in the context of MASs.

The solution proposed to overcome such a limitation is to
encode the performance of each agent in terms of being ex-
pected/unexpected at a determined time step. A detection
of symptoms (also called error detection) phase is responsi-
ble to infer any behavioural violation from observations of
the system [de Kleer and Williams, 1987]. Specifically for
agents, this can be done using several methods from monitor-
ing agent’s utility to applying anomaly detection techniques.
Note that detecting an unexpected behaviour does not neces-
sarily mean that one has identified the agent that is causing
the system failure to occur. ESFL-MAS pinpoints the faulty
agent so the designer is able to fix it, which is also essen-
tial to improve reliability of MASs. Given this performance-
oriented perspective, we propose the performance spectra,
where the error detection phase generates the set of data com-
posing the spectra. It is worthwhile mentioning that error de-
tection mechanisms are outside the scope of this paper.

Definition 2 Let N denote the number of passing and failing
time frames. Let Ny and N, Ny + N, = N, denote the
number of fail and pass sets (spectra), respectively. Let A
denote the N x M performance matrix, where a,,,, denotes
whether agent m performed an unexpected behaviour at time
n (Gpm = 1) or not (an., = 0). Let e denote the error vector,
where e,, implies whether the MAS has passed (e, = 0) or
failed (e,, = 1) the test case at time n.

Given that the pair (A, e) highly depends on both the envi-
ronment’s settings and the agents’ autonomy, SFL is limited
to catch multiple instances of both dependencies. This lim-
itation is addressed as follows. First, to solve the problem
of multiple environment’s settings, one must run the MAS
for different environment and agent settings; thus, the ESFL-
MAS collects performance spectra referring to several test
cases. Second, to solve the agent’s autonomy problem, one
must execute the MAS J rounds of the same test case to en-
sure that the collected spectra cover as many agents’ activa-
tion paths (i.e., choices) as possible.

For each agent, a dichotomy matrix is then created (see Ta-
ble 1). One dimension of this matrix is related to the amount
of time steps in which the agent had an unexpected behaviour
detected, and the other is the passed/failed MAS status deter-
mined by the expected output of a test case .

We have observed that agents are constantly monitored
over time but do not consistently fail. For this reason, the col-
lected performance spectra have several time frames in which
either every agents performed an expected behaviour or ev-
ery agent performed an unexpected behaviour. Both events
contain no information for SFL because only the variability

Behaviour of Agy,
MAS status Unexpected (anm = 1) Excepted (anm = 0)
Failed (en = 1) C11 Co1
Passed (e, = 0) c10 €00

Table 1: Dichotomy table for performance spectrum

(4,e)1) (A o)l
AgentTZ%I‘GcH c1o Co1 coo  Agent 12—];[43011 €10 Co1 Co0
Agi [11100/2 0 1 0  Ag |11000/0 1 1 1
Ag2 |01100[1 0 2 O Ag2 |11101]1 2 0 O
Ags [11000[1 0 2 O Ags [11000{0 1 1 1
Ags [11000[1 0 2 O Ags (111000 2 1 0O
Ags 11901 2 01 0 Ags 100011 0 0 2
Error (10101 Error (1001 1

Table 2: The performance spectra, error vector, and the values
of the dichotomy matrix for the running example.

of transactions in the spectrum contributes towards improv-
ing diagnostic quality. A proposed optimisation to ESFL-
MAS, named MAS-Filter, recognises these aforementioned
events and filters them from the performance spectra to in-
crease quality of the diagnosis process. Conceptually, when
excluding the non-useful time frames, the entropy value of the
spectra tends to its optimal value and consequently increases
diagnostic accuracy. The MAS-Filter is defined as follows.

MAS-Filter (4, ¢)) = (A,e)" + (A,e) —
—{(An,en): (An,en) € (A,e) A
A(Va € A, (a=1)VVa e A, (a=0))}

where (A, e)¥ is the filtered spectra. This operation is exe-
cuted when the value of a,,,, is equal to 1 or O for all agents
in the MAS. In Table 2, we highlight the lines that would be
deleted by MAS-Filter.

Running Example. [t is borrowed from our experimental
setup described in Section 5. We have reduced the number
of agents of this example. Let us assume that agent Ags er-
roneously compute its distance from a gold nugget because
of an unforeseen bug in the reasoning process unintentional
left by the designer/programmer. Because of this fault Ags
presents lower performance given some specific situation.
The faulty agent will be diagnosed using Algorithm 1.

The MAS is executed twice and assuming that there is a
mechanism able to detect unexpected behaviour in the agents,
the pairs (A, €) shown in Table 2 are built (ignoring the high-
lighted columns). MAS-Filter filters the highlighted columns
and generates the pairs (A, e)t'. They are depicted for illus-
tration purposes only as they are not taken into account in the
computation of the dichotomy matrices.

ESFL-MAS uses the information of the dichotomy matrices
from Table 2 to compute the suspiciousness values using the
similarity coefficient. In this example, we choose the Jaccard
coefficient (C1g). ESFL-MAS computes the suspiciousness
value by inserting the information of the dichotomy matrix
into the formula, e.g., for agent Ags:

C11 _ 3
ciitcotcor  3+0+1
The process is repeated for every agent until it obtains the val-

ues shown in Table 3. Afterwards, the list of agents is sorted
in descending order of the coefficient value. As expected, the

Cis = =0.75
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Algorithm 1: ESFL-MAS Algorithm

Input: Multi-Agent System M AS, set of test cases T'C', number of executions
J, and similarity coefficient s

Output: Diagnostic report D
begin
M <+— Get NumOfAgents (M AS)
SimLOGS <— RunMAS (M AS, TC, J)
TCD <— Detect_Errors (SimLOGS)
foreach i € |TC|and j € J do
(A,e) «— TCD; ;
(A, e)F «+—MasFilter((4,e))
N +— Get_NumTimeSteps ((4, e)F)
foreachn € N and m € M do

ifanm =1A e, =1then
11 ‘ c11(n) «—ci1(n)+1
elseif a,,, = 0 A e,, = 1 then
13 ‘ co1 (n) «— co1 (n) +1

14 elseif a,.m = 1 A e, = 0then
15 | cio(n) +—cio(n)+1
16 elseif a,,, = 0 A e,, = 0 then

17 \
end
end

coo (n) +— coo (n) +1

end

d < Calc_Suspiciousness (S, €11, Co1, C10, Coo, M)
D <— sort (d)

return D

end

Saulty agent Ags was the highest ranked by ESFL-MAS in the
end of the process.

S Experimental Setup

5.1 Test Suite

We use an instance of the Pickup and Delivery Problem
(PDP) [Savelsbergh and Sol, 1995] to test our approach be-
cause (i) it is well-known and (ii) it is a real-world repre-
sentative problem. MASs offer an interesting solution for
PDP [Fischer et al., 1996].

The Second Edition of the Multi-Agent Programming Con-
test (MAPC)! [Dastani et al., 2007] provides an instance of
PDP known as the GoldMiners scenario. GoldMiners imple-
ments fundamental concepts of MASs, such as autonomy,
team-work coordination, high-level interaction, as well as
partial and local perception of the environment. We chose
the MAS programmed in AgentSpeak, an agent-oriented pro-
gramming language, using Jason [Bordini et al., 2007], an
interpreter for an extended version of AgentSpeak, given
our previous experience using AgentSpeak [Rossetti et al.,
2002]. Additionally, MAPC’s implementations were previ-
ously tested and validated by the MAS community.

The Jason implementation aims to find a schedule that
delivers as many items as possible at a lowest cost relying
on a twofold strategy: first, a priori allocation of agents’

'"MAPC is an annual competition that, since 2005, aims at pro-
viding suitable test suites offering key problems for the community
to test agent-oriented programming approaches.

Agent | Agr  Ago  Ags  Ags  Ags
Coefficient Value | 0.40 033 0.20 0.17 0.75
Ranking (D) 2 3 4 5 1

Table 3: The Jaccard coefficient values and ranking.
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NCNO NCO CNO CO
X

Qnt. Fault Description

Agent disrespects its search quadrant
Agent conceals nugget positions
Agent has a delayed response

Agent gets stuck in a specific goal
Agent gets the farthest gold nuggets.
Delete a belief in the agent.

Delete a plan in the agent.

Delete the condition part of a rule.
Replace the triggering event operator.
Delete the context of a plan.

Delete the body of a plan.

Delete a formula in the body plan.
Swap adjacent formulae in a plan.
Replace the operator of a goal.
Replace receivers in a message.
Replace the illocutionary force.
Delete a propositional in a message.

WWWWWWWWWWWWwHEEE-
XXX L L L L R X

XXX LR R R X
L R s X
SN SESESE SN

Table 4: Description of Type of Faults - Highlighted rows
represent the hand-seeded faults and the others are generated
through mutation operators. Use or not of faults is repre-
sented by 1/ and x respectively

search quadrants and, second, a team-work coordination aim-
ing to find and carry gold nuggets to the depot. Seeking
completeness of our test suite and knowing MAS organiza-
tions [Horling and Lesser, 2004], we implement modified
MASs varying both the coordination and spatial organisa-
tion dimensions resulting in the following types of MAS:
(1) Non-Coordinated and Non-Organised (NCNO), where
agents work individually (not cooperatively) and do not re-
ceive a search quadrant (loose spatial organization); (2) Non-
Coordinated and Organised (NCO), where agents work indi-
vidually but each of them has an assigned search quadrant;
(3) Coordinated and Non-Organised (CNO), where agents
coordinate the gold-nuggets search, yet there is no allocated
quadrant; and (4) Coordinated and Organised (CO), where
agents coordinate the gold-nuggets search as well as have an
assigned search quadrant.

We used both hand-seeded and seeded by mutation through
rules (called mutation operators) to inject faults. Hand-seeded
faults aim to emulate dysfunctional behaviours specifically
for the aforementioned strategy [Passos et al., 2014] and,
moreover, faults seeded by mutation rules automatically build
a set of validated faulty versions as we used high-level muta-
tion operators proposed by Huang et al. [2014]. Table 4 gives
an overview of the faulty versions in the test suite.

5.2 Data Acquisition

A two-step process (depicted in Figure 1) generates the spec-
tra required by the experiments.

Collecting Logs A MAS initially configured according to a
given test case is executed to obtain the logs both from agents
and from the overall system. For the experimental setup,
we randomly generated 5 test cases and each of them cor-
responded to a set of initial positions for: agents, the depot,
and gold nuggets. To collect information to generate spectra,
the MAS with 25 agents was executed 75 times for each test
case recording 1000 time steps.

Expected MAS Performance and Error Detection Both
used test cases and the generation of performance spectra de-



Correct MAS

Figure 1: Experimental Phases

Faulty MAS

Test Cases |

Generate |}
Performance | i
Thresholds | !

mands for measurements to verify MAS and agent correct-
ness. Agent and the MAS are measured by the amount of
carried gold nuggets in each time frame and the amount of
gold nuggets in the depot, respectively. We run the correct
version of MAS and compute the MAS performance base-
line. While assessing the faulty versions, time steps with
performance values above the baseline are marked as passed
(e = 0) and below as failed (e,, = 1).

Differently from the original SFL, ESFL-MAS does not
directly get spectra from the involvement of agents in a test
case and thus an error detection phase is necessary to generate
the performance spectra. Thus, we emulate an error-detection
phase in our experiments to assess ESFL-MAS, even though
proposing such mechanism is not within the scope of this
work. Error detection for Miner agents is done similarly to
the calculation of expected MAS performance. We compute
the average amount of gold nuggets carried by each agent in
a certain time frame and use this value as baseline to detect
whether the agent is performing as expected (a,,, = 0) or
not (@, = 1) for time n, therefore mapping collected logs
to spectra.

5.3 Evaluation Metric

Diagnostic performance is expressed in terms of diagnostic
quality (also referred to as accuracy) that evaluates how many
agents need to be inspected before the faulty agent is found. If
other agents have the same similarity coefficient as the faulty
agent, we use the average ranking position for these agents.
Diagnostic quality is defined as [Steimann et al., 2013]

o1

where S; and Sy denote the suspiciousness value for agent
j and for the faulty agent respectively, and M is the total
number of agents. Intuitively, the [{j|S; > S}| term repre-
sents the number of agents ranked in front of the faulty agent
whereas [{j]S; > Sy}| represents the number of agents with
same or higher suspiciousness compared to the faulty one.

_ WIS > Seil 4+ HilS; = Spdf — 1

2(M — 1)

> * 100%

6 Experimental Results

The resulting groups for our benchmark are shown in Fig-
ure 2; moreover, Table 5 presents the average of diagnostic
quality for each group of coefficients, as well as the standard
deviation (o). Note that the number of groups (and their el-
ements) is not the same in every type of MAS. Only Group
01 has the same similarity coefficients and consistently yields
the best accuracy (average of 96.26%) for our benchmark.
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Figure 2: Similarity coefficients grouped by their accuracy:
each node corresponds to a group; edges indicate relation-
ships between groups such that A — B means “group A re-
quires less effort to diagnose than group B”; those with the
same vertical alignment present less than 1% difference in
the mean accuracy.

After carefully analysing the group compositions, two fun-
damental aspects can explain them. First, from the mathe-
matical formulae of coefficients, there is a logical causal re-
lation between accuracy and the dichotomy matrix: the more
significance a coefficient assigns to anomalous behaviour for
which a system’s error has been detected (represented by c11),
the better the diagnostic quality. Second, the test suite has re-
duced capacity of representing cascading effects of undesired
behaviour. Thus, coefficients with greater emphasis on cqg
have lower diagnostic quality.

Second, the test suite has reduced capacity of represent-
ing cascading effects of undesired behaviour; for instance,
the faulty agent sending the wrong location of a gold nuggets
for a correct agent inducing the latter in failure. Thus, coeffi-
cients that give greater emphasis on time steps where MASs
are correct and an agent have performed unexpectedly have
lower diagnostic quality.

On the Impact of Observation Quantity

In the previous results, we have assumed that the de-
signer/tester has time to run the MAS several times under
different conditions to collect a considerable amount of mea-
surements. In practice, the tester works under short-time con-
straints. To investigate how the amount of data influences
ESFL-MAS performance, we evaluate () while varying the
number of passed (/V,,) and failed time steps (Nr) encom-

— Group
@ (o) [%] 01 02 03 04 05 06 07
NCNO 96.25 | 73.96 | 53.61 | 47.90 | 43.54 | 36.85 | 22.08
(11.27)|(31.15)((22.98)((12.90)|(19.61)|(21.58) |(27.95)
NCO 95.16 | 67.74 | 53.27 | 47.87 | 46.19 | 37.47 | 23.32
(12.68)((27.45)((27.02)|(17.81)|(14.26)|(21.39)|(31.46)
CNO 97.08 | 55.83 | 54.10 | 50.00 | 8.358 ) )
(10.35)((39.88)((31.77)| (0.00) |(19.67)
co 96.54 | 66.23 | 49.95 | 44.92 | 27.36 ) )
(10.74)|(36.46)((1.628)|(21.33)|(38.17)

Table 5: Mean accuracy for each similarity coefficient
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Figure 4: EDP for all MAS versions

passed in the diagnosis process. We study this influence on
the diagnostic accuracy () throughout all the range of avail-
able data in the range of 0.001-100%.

Figure 3 shows such evaluations of Group 01 and 02 for
NCNO and CO versions. We can see that N, changes the di-
agnostic quality, however, as agents are more organised and
coordinated, this effect becomes insignificant for all groups.
This happens because, when agents work as teammates in
an organised manner, the MAS performs as a “well-oiled
machine” and no agent fails when the system is performing
properly, otherwise the system itself would fail. Concern-
ing the number of erroneous time steps Ny, we confirm from
Figure 3 that adding failed time steps improves the diagnos-
tic quality. The benefit of inducing more than 200 steps is
marginal on average.

On the Impact of Error Detection Precision

This experiment discloses how precision in detecting error
affects diagnostic quality for each similarity coefficient. For
any realistic system and practical error-detection mechanism,
there will very likely exist errors that go undetected. They can
go undetected because of two reasons. First, the fault agent
only jeopardises system’s operation under specific conditions.
For instance, let us assume that a Miner agent, erroneously, is
not able to perceive gold nuggets; no error is detected unless
the agent is near a gold nugget. Second, analogously to faults

NCNO

100

Group 01

Quality [%]

1 10°

10” 10”10

2 210
Np [%] 0 10

Nf [%]

107 10

Group 02
Quality [%)]
Quality [%]

10710
Nf [%]

-210°
Nf [%]

310 310

0" -3 = 10° 3 =
10 10

Figure 3: Observation quantity impact of Groups 01 and 02
for NCNO and CO versions
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in software, errors induced by agents might not propagate all
the way to system failures and thus would go undetected.

Consequently, the number of rows in spectra, in which both
faulty agent and system fail, will only be a fraction of the total
rows in which the agent fails. More intuitively, this propor-
tion represents the Error Detection Precision (£ D P), that is,
how precisely the error detection phase is able to correlate
a system failure with the faulty agent. Using the prevision
notation, we define

cu1 (f)
c11 (f) + cio (f)

where f is the location of the faulty agent.

Each faulty version of our benchmark has an inherent value
for ED P fluctuating from 3.31% to 97.77%. We vary ED P
by (1) excluding time steps that activate the faulty agent,
but for which no system error has been detected decreasing
c10 (f), and increasing EDP; and (2) excluding time steps
that activate the faulty agent and for each an system error has
been detected decreasing c;1 (f), and decreasing EDP.

Figure 4 shows for all cases how the diagnostic quality
changes with respect to the error detection precision. We
see that, on average for all cases, a detection precision more
than 40% has marginal contribution to a better fault diagno-
sis. This does not mean that the community needs to give up
improving error detection techniques; this means that, when
coupled with a diagnosis phase, error detection needs a solid
(not necessarily optimal) performance. Moreover, we con-
firm the Group 01 as the best set of similarity coefficients for
MAS:s also regarding the /D P variation. Foremost, we show
that ESFL-MAS can maintain high accuracy even for low er-
ror detection precision being the borderline EDP > 10%.

EDP = ( ) * 100%

7 Conclusions

We proposed a novel approach, called ESFL-MAS, to localise
faults in MASs that is able to identify agents that may jeop-
ardise the overall performance through run-time profiles of
the system. We argued that SFL needs be extended to sup-
port agent-specific features (such as autonomy) and then we
proposed such extensions.

The empirical evaluation produced prominent results, giv-
ing a good prospect for the application of ESFL-MAS.
Results show that Accuracy, Coverage, Jaccard, Laplace,



Least Contradiction, Ochiai, Rogers and Tanimoto, Simple-
Matching, Sorensen-Dice, and Support yield the best diag-
nostic accuracy for the used benchmark. They yield roughly
96.26% diagnostic accuracy and are stable when varying ei-
ther error detection precision and quantity of observations.
However, from the experiments we also observed that ESFL-
MAS’ accuracy might be jeopardised by cascading faults,
produced by highly interacting agents.

Future work will address the improvement in our ex-
perimental setup to support cascading faults. Afterwards,
we intend to compare ESFL-MAS to other diagnosis ap-
proaches including Kalech’s [2012] and Micalizio’s [2013];
as well as experiment with the spectrum-based reasoning
technique [Abreu et al., 2009] which reasons in terms of mul-
tiple faults. Finally, we plan to integrate ESFL.-MAS with an
agent-oriented methodology [Passos ef al., 2015b].
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